
1

CMU SCS

15-826: Multimedia Databases
and Data Mining

Primary key indexing – B-trees
Christos Faloutsos - CMU

www.cs.cmu.edu/~christos

15-826 Copyright: C. Faloutsos (2005) 2

CMU SCS

Problem

Given a large collection of (multimedia)
records, find similar/interesting things, ie:

• Allow fast, approximate queries, and
• Find rules/patterns

15-826 Copyright: C. Faloutsos (2005) 3

CMU SCS

Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining

15-826 Copyright: C. Faloutsos (2005) 4

CMU SCS

Indexing - Detailed outline

• primary key indexing
– B-trees and variants
– (static) hashing
– extendible hashing

• secondary key indexing
• spatial access methods
• text
• ...

15-826 Copyright: C. Faloutsos (2005) 5

CMU SCS

Primary key indexing

• find employee with ssn=123

15-826 Copyright: C. Faloutsos (2005) 6

CMU SCS

B-trees

• the most successful family of index
schemes (B-trees, B+-trees, B*-trees)

• Can be used for primary/secondary,
clustering/non-clustering index.

• balanced “n-way” search trees

2

15-826 Copyright: C. Faloutsos (2005) 7

CMU SCS

B-trees

Eg., B-tree of order 3:

1 3

6

7

9

13

<6

>6 <9 >9

15-826 Copyright: C. Faloutsos (2005) 8

CMU SCS

B - tree properties:

• each node, in a B-tree of order n:
– Key order
– at most n pointers
– at least n/2 pointers (except root)
– all leaves at the same level
– if number of pointers is k, then node has exactly k-1

keys
– (leaves are empty)

v1 v2 … vn-1

p1 pn

15-826 Copyright: C. Faloutsos (2005) 9

CMU SCS

Properties

• “block aware” nodes: each node -> disk
page

• O(log (N)) for everything! (ins/del/search)

• typically, if m = 50 - 100, then 2 - 3 levels

• utilization >= 50%, guaranteed; on average
69%

15-826 Copyright: C. Faloutsos (2005) 10

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9

15-826 Copyright: C. Faloutsos (2005) 11

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9

15-826 Copyright: C. Faloutsos (2005) 12

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9

3

15-826 Copyright: C. Faloutsos (2005) 13

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9

15-826 Copyright: C. Faloutsos (2005) 14

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9
H steps (= disk
accesses)

15-826 Copyright: C. Faloutsos (2005) 15

CMU SCS

Queries

• what about range queries? (eg., 5<salary<8)
• Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)

15-826 Copyright: C. Faloutsos (2005) 16

CMU SCS

Queries

• what about range queries? (eg., 5<salary<8)
• Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)

1 3

6

7

9

13

<6

>6 <9 >9

15-826 Copyright: C. Faloutsos (2005) 17

CMU SCS

Queries

• what about range queries? (eg., 5<salary<8)
• Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)

1 3

6

7

9

13

<6

>6 <9 >9

15-826 Copyright: C. Faloutsos (2005) 18

CMU SCS

B-trees: Insertion

• Insert in leaf; on overflow, push middle up
(recursively)

• split: preserves B - tree properties

4

15-826 Copyright: C. Faloutsos (2005) 19

CMU SCS

B-trees

Easy case: Tree T0; insert ‘8’

1 3

6

7

9

13

<6

>6 <9 >9

15-826 Copyright: C. Faloutsos (2005) 20

CMU SCS

B-trees

Tree T0; insert ‘8’

1 3

6

7

9

13

<6

>6 <9 >9

8

15-826 Copyright: C. Faloutsos (2005) 21

CMU SCS

B-trees

Hardest case: Tree T0; insert ‘2’

1 3

6

7

9

13

<6

>6 <9 >9

2

15-826 Copyright: C. Faloutsos (2005) 22

CMU SCS

B-trees

Hardest case: Tree T0; insert ‘2’

1 2

6

7

9

133

push middle up

15-826 Copyright: C. Faloutsos (2005) 23

CMU SCS

B-trees

Hardest case: Tree T0; insert ‘2’

6

7

9

131 3

22Ovf; push middle

15-826 Copyright: C. Faloutsos (2005) 24

CMU SCS

B-trees

Hardest case: Tree T0; insert ‘2’

7

9

131 3

2

6
Final state

5

15-826 Copyright: C. Faloutsos (2005) 25

CMU SCS

B-trees: Insertion

• Q: What if there are two middles? (eg, order
4)

• A: either one is fine

15-826 Copyright: C. Faloutsos (2005) 26

CMU SCS

B-trees: Insertion

• Insert in leaf; on overflow, push middle up
(recursively – ‘propagate split’)

• split: preserves all B - tree properties (!!)
• notice how it grows: height increases when

root overflows & splits
• Automatic, incremental re-organization

15-826 Copyright: C. Faloutsos (2005) 27

CMU SCS

Overview

• B – trees

– Dfn, Search, insertion, deletion

• B+ - trees

• hashing

15-826 Copyright: C. Faloutsos (2005) 28

CMU SCS

Deletion

Rough outline of algo:
• Delete key;
• on underflow, may need to merge

In practice, some implementors just allow underflows to
happen…

15-826 Copyright: C. Faloutsos (2005) 29

CMU SCS

B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

1 3

6

7

9

13

<6

>6 <9 >9

15-826 Copyright: C. Faloutsos (2005) 30

CMU SCS

B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

1

6

7

9

13

<6

>6 <9 >9

6

15-826 Copyright: C. Faloutsos (2005) 31

CMU SCS

B-trees – Deletion

• Case1: delete a key at a leaf – no underflow
• Case2: delete non-leaf key – no underflow
• Case3: delete leaf-key; underflow, and ‘rich

sibling’
• Case4: delete leaf-key; underflow, and ‘poor

sibling’

15-826 Copyright: C. Faloutsos (2005) 32

CMU SCS

B-trees – Deletion

• Case1: delete a key at a leaf – no underflow
(delete 3 from T0)

1 3

6

7

9

13

<6

>6 <9 >9

15-826 Copyright: C. Faloutsos (2005) 33

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

1 3

6

7

9

13

<6

>6 <9 >9

Delete &
promote, ie:

15-826 Copyright: C. Faloutsos (2005) 34

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

1 3 7

9

13

<6

>6 <9 >9

Delete &
promote, ie:

15-826 Copyright: C. Faloutsos (2005) 35

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

1 7

9

13

<6

>6 <9 >9

Delete &
promote, ie:3

15-826 Copyright: C. Faloutsos (2005) 36

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

1 7

9

13

<3

>3 <9 >9
3

FINAL TREE

7

15-826 Copyright: C. Faloutsos (2005) 37

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

• Q: How to promote?
• A: pick the largest key from the left sub-tree

(or the smallest from the right sub-tree)

• Observation: every deletion eventually
becomes a deletion of a leaf key

15-826 Copyright: C. Faloutsos (2005) 38

CMU SCS

B-trees – Deletion

• Case1: delete a key at a leaf – no underflow
• Case2: delete non-leaf key – no underflow
• Case3: delete leaf-key; underflow, and ‘rich

sibling’
• Case4: delete leaf-key; underflow, and ‘poor

sibling’

15-826 Copyright: C. Faloutsos (2005) 39

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1 3

6

7

9

13

<6

>6 <9 >9

Delete &
borrow, ie:

15-826 Copyright: C. Faloutsos (2005) 40

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1 3

6 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

Rich sibling

15-826 Copyright: C. Faloutsos (2005) 41

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’

• ‘rich’ = can give a key, without
underflowing

• ‘borrowing’ a key: THROUGH the
PARENT!

15-826 Copyright: C. Faloutsos (2005) 42

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1 3

6 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

Rich sibling

NO!!

8

15-826 Copyright: C. Faloutsos (2005) 43

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1 3

6 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

15-826 Copyright: C. Faloutsos (2005) 44

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1

3 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

6

15-826 Copyright: C. Faloutsos (2005) 45

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1

3 9

13

<3

>3 <9 >9

Delete &
borrow,
through the
parent

6

FINAL TREE

15-826 Copyright: C. Faloutsos (2005) 46

CMU SCS

B-trees – Deletion

• Case1: delete a key at a leaf – no underflow
• Case2: delete non-leaf key – no underflow
• Case3: delete leaf-key; underflow, and ‘rich

sibling’
• Case4: delete leaf-key; underflow, and ‘poor

sibling’

15-826 Copyright: C. Faloutsos (2005) 47

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

9

13

<6

>6 <9 >9

15-826 Copyright: C. Faloutsos (2005) 48

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

9<6

>6 <9 >9

9

15-826 Copyright: C. Faloutsos (2005) 49

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

9<6

>6 <9 >9

A: merge w/
‘poor’ sibling

15-826 Copyright: C. Faloutsos (2005) 50

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

• Merge, by pulling a key from the parent
• exact reversal from insertion: ‘split and push

up’ , vs. ‘merge and pull down’
• Ie.:

15-826 Copyright: C. Faloutsos (2005) 51

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

<6

>6

A: merge w/
‘poor’ sibling

9

15-826 Copyright: C. Faloutsos (2005) 52

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

<6

>6
9

FINAL TREE

15-826 Copyright: C. Faloutsos (2005) 53

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’
• -> ‘pull key from parent, and merge’
• Q: What if the parent underflows?
• A: repeat recursively

15-826 Copyright: C. Faloutsos (2005) 54

CMU SCS

Overview

• B – trees

• B+ - trees, B*-trees

• hashing

10

15-826 Copyright: C. Faloutsos (2005) 55

CMU SCS

B+ trees - Motivation

B-tree – print keys in sorted order:

1 3

6

7

9

13

<6

>6 <9 >9

15-826 Copyright: C. Faloutsos (2005) 56

CMU SCS

B+ trees - Motivation

B-tree needs back-tracking – how to avoid it?

1 3

6

7

9

13

<6

>6 <9 >9

15-826 Copyright: C. Faloutsos (2005) 57

CMU SCS

Solution: B+ - trees

• facilitate sequential ops

• They string all leaf nodes together

• AND

• replicate keys from non-leaf nodes, to make
sure every key appears at the leaf level

15-826 Copyright: C. Faloutsos (2005) 58

CMU SCS

B+ trees

1 3

6

6

9

9

<6

>=6 <9 >=9

7 13

15-826 Copyright: C. Faloutsos (2005) 59

CMU SCS

B+ trees - insertion

1 3

6

6

9

9

<6

>=6 <9 >=9

7 13

Eg., insert ‘8’

15-826 Copyright: C. Faloutsos (2005) 60

CMU SCS

Overview

• B – trees

• B+ - trees, B*-trees

• hashing

11

15-826 Copyright: C. Faloutsos (2005) 61

CMU SCS

B*-trees

• splits drop util. to 50%, and maybe increase
height

• How to avoid them?

15-826 Copyright: C. Faloutsos (2005) 62

CMU SCS

B*-trees: deferred split!
• Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

1 3

6

7

9

13

<6

>6 <9 >9

2

15-826 Copyright: C. Faloutsos (2005) 63

CMU SCS

B*-trees: deferred split!
• Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

1 2

3

6

9

13

<3

>3 <9 >9

2

7

FINAL TREE

15-826 Copyright: C. Faloutsos (2005) 64

CMU SCS

B*-trees: deferred split!
• Notice: shorter, more packed, faster tree
• It’ s a rare case, where space utilization and

speed improve together
• BUT: What if the sibling has no room for

our ‘lending’ ?

15-826 Copyright: C. Faloutsos (2005) 65

CMU SCS

B*-trees: deferred split!
• BUT: What if the sibling has no room for

our ‘lending’ ?
• A: 2-to-3 split: get the keys from the

sibling, pool them with ours (and a key
from the parent), and split in 3.

• Details: too messy (and even worse for
deletion)

15-826 Copyright: C. Faloutsos (2005) 66

CMU SCS

Conclusions

• Main ideas: recursive; block-aware; on
overflow -> split; defer splits

• All B-tree variants have excellent, O(logN)
worst-case performance for ins/del/search

• It’ s the prevailing indexing method

• More details: [Knuth vol 3.]

