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Problem

Given a large collection of (multimedia)
records, find similar/interesting things, ie:

• Allow fast, approximate queries, and
• Find rules/patterns
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Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining
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Indexing - Detailed outline

• primary key indexing
– B-trees and variants
– (static) hashing
– extendible hashing

• secondary key indexing
• spatial access methods
• text
• ...
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Primary key indexing

• find employee with ssn=123

15-826 Copyright: C. Faloutsos (2005) 6

CMU SCS

B-trees

• the most successful family of index
schemes (B-trees, B+-trees, B*-trees)

• Can be used for primary/secondary,
clustering/non-clustering index.

• balanced “n-way” search trees
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B-trees

Eg., B-tree of order 3:
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B - tree properties:

• each node, in a B-tree of order n:
– Key order
– at most n pointers
– at least n/2 pointers (except root)
– all leaves at the same level
– if number of pointers is k, then node has exactly k-1

keys
– (leaves are empty)

v1 v2 … vn-1

p1 pn
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Properties

• “block aware” nodes: each node -> disk
page

• O(log (N)) for everything! (ins/del/search)

• typically, if m = 50 - 100, then 2 - 3 levels

• utilization >= 50%, guaranteed; on average
69%
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Queries

• Algo for exact match query? (eg., ssn=8?)
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Queries

• Algo for exact match query? (eg., ssn=8?)
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Queries

• Algo for exact match query? (eg., ssn=8?)
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accesses)
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Queries

• what about range queries? (eg., 5<salary<8)
• Proximity/ nearest neighbor searches? (eg.,

salary ~ 8 )
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Queries

• what about range queries? (eg., 5<salary<8)
• Proximity/ nearest neighbor searches? (eg.,

salary ~ 8 )
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B-trees: Insertion

• Insert in leaf; on overflow, push middle up
(recursively)

• split: preserves B - tree properties
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B-trees

Easy case: Tree T0; insert ‘8’
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B-trees

Tree T0; insert ‘8’
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B-trees

Hardest case: Tree T0; insert ‘2’
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B-trees

Hardest case: Tree T0; insert ‘2’
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B-trees

Hardest case: Tree T0; insert ‘2’
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B-trees

Hardest case: Tree T0; insert ‘2’
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B-trees: Insertion

• Q: What if there are two middles? (eg, order
4)

• A: either one is fine
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B-trees: Insertion

• Insert in leaf; on overflow, push middle up
(recursively – ‘propagate split’ )

• split: preserves all B - tree properties (!!)
• notice how it grows: height increases when

root overflows & splits
• Automatic, incremental re-organization
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Overview

• B – trees

– Dfn, Search, insertion, deletion

•  B+ - trees

• hashing
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Deletion

Rough outline of algo:
• Delete key;
• on underflow, may need to merge

In practice, some implementors just allow underflows to
happen…
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B-trees – Deletion

Easiest case: Tree T0; delete ‘3’
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B-trees – Deletion

Easiest case: Tree T0; delete ‘3’
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B-trees – Deletion

• Case1: delete a key at a leaf – no underflow
• Case2: delete non-leaf key – no underflow
• Case3: delete leaf-key; underflow, and ‘rich

sibling’
• Case4: delete leaf-key; underflow, and ‘poor

sibling’
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B-trees – Deletion

• Case1: delete a key at a leaf – no underflow
(delete 3 from T0)
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B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)
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B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)
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B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

1 7

9

13

<6

>6 <9 >9

Delete &
promote, ie:3

15-826 Copyright: C. Faloutsos (2005) 36

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)
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B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

• Q: How to promote?
• A: pick the largest key from the left sub-tree

(or the smallest from the right sub-tree)

• Observation: every deletion eventually
becomes a deletion of a leaf key
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B-trees – Deletion

• Case1: delete a key at a leaf – no underflow
• Case2: delete non-leaf key – no underflow
• Case3: delete leaf-key; underflow, and ‘rich

sibling’
• Case4: delete leaf-key; underflow, and ‘poor

sibling’
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B-trees – Deletion

• Case3: underflow & ‘rich sibling’  (eg.,
delete 7 from T0)
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B-trees – Deletion

• Case3: underflow & ‘rich sibling’  (eg.,
delete 7 from T0)
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B-trees – Deletion

• Case3: underflow & ‘rich sibling’

• ‘rich’  = can give a key, without
underflowing

• ‘borrowing’  a key: THROUGH the
PARENT!
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B-trees – Deletion

• Case3: underflow & ‘rich sibling’  (eg.,
delete 7 from T0)
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B-trees – Deletion

• Case3: underflow & ‘rich sibling’  (eg.,
delete 7 from T0)
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B-trees – Deletion

• Case3: underflow & ‘rich sibling’  (eg.,
delete 7 from T0)
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B-trees – Deletion

• Case3: underflow & ‘rich sibling’  (eg.,
delete 7 from T0)
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B-trees – Deletion

• Case1: delete a key at a leaf – no underflow
• Case2: delete non-leaf key – no underflow
• Case3: delete leaf-key; underflow, and ‘rich

sibling’
• Case4: delete leaf-key; underflow, and ‘poor

sibling’

15-826 Copyright: C. Faloutsos (2005) 47

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’  (eg.,
delete 13 from T0)
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B-trees – Deletion

• Case4: underflow & ‘poor sibling’  (eg.,
delete 13 from T0)
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B-trees – Deletion

• Case4: underflow & ‘poor sibling’  (eg.,
delete 13 from T0)
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B-trees – Deletion

• Case4: underflow & ‘poor sibling’  (eg.,
delete 13 from T0)

• Merge, by pulling a key from the parent
• exact reversal from insertion: ‘split and push

up’ , vs. ‘merge and pull down’
• Ie.:
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B-trees – Deletion

• Case4: underflow & ‘poor sibling’  (eg.,
delete 13 from T0)
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B-trees – Deletion

• Case4: underflow & ‘poor sibling’  (eg.,
delete 13 from T0)
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B-trees – Deletion

• Case4: underflow & ‘poor sibling’
• -> ‘pull key from parent, and merge’
• Q: What if the parent underflows?
• A: repeat recursively
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Overview

• B – trees

• B+ - trees, B*-trees

• hashing
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B+ trees - Motivation

B-tree – print keys in sorted order:
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B+ trees - Motivation

B-tree needs back-tracking – how to avoid it?
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Solution: B+ - trees

• facilitate sequential ops

• They string all leaf nodes together

• AND

• replicate keys from non-leaf nodes, to make
sure every key appears at the leaf level
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B+ trees
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B+ trees - insertion
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Eg., insert ‘8’
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Overview

• B – trees

• B+ - trees, B*-trees

• hashing
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B*-trees

• splits drop util. to 50%, and maybe increase
height

• How to avoid them?
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B*-trees: deferred split!
• Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)
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B*-trees: deferred split!
• Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)
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B*-trees: deferred split!
• Notice: shorter, more packed, faster tree
• It’ s a rare case, where space utilization and

speed improve together
• BUT: What if the sibling has no room for

our ‘lending’ ?
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B*-trees: deferred split!
• BUT: What if the sibling has no room for

our ‘lending’ ?
• A: 2-to-3 split: get the keys from the

sibling, pool them with ours (and a key
from the parent), and split in 3.

• Details: too messy (and even worse for
deletion)
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Conclusions

• Main ideas: recursive; block-aware; on
overflow -> split; defer splits

• All B-tree variants have excellent, O(logN)
worst-case performance for ins/del/search

• It’ s the prevailing indexing method

• More details: [Knuth vol 3.]


