g CMU SCS

15-826: Multimedia Databases
and Data Mining

Primary key indexing — B-trees
Christos Faloutsos - CMU

www.cs.cmu.edu/~christos

g CMU SCS

Problem

Given a large collection of (multimedia)
records, find similar/interesting things, ie:

* Allow fast, approximate queries, and
* Find rules/patterns

15-826 Copyright: C. Faloutsos (2005)

g CMU SCS
Outline

Goal: ‘Find similar / interesting things’
e Intro to DB

#- Indexing - similarity search
* Data Mining

15-826 Copyright: C. Faloutsos (2005) 3

g CMU SCS

Indexing - Detailed outline

q- primary key indexing
— B-trees and variants
— (static) hashing
— extendible hashing
* secondary key indexing
* spatial access methods
e text

. e

15-826 Copyright: C. Faloutsos (2005)

g CMU SCS
Primary key indexing

* find employee with ssn=123

15-826 Copyright: C. Faloutsos (2005) 5

g CMU SCS

B-trees

* the most successful family of index
schemes (B-trees, B*trees, B*-trees)

* Can be used for primary/secondary,
clustering/non-clustering index.

* balanced “n-way” search trees

15-826 Copyright: C. Faloutsos (2005)

g CMU SCS

B-trees

Eg., B-tree of order 3:

15-826 Copyright: C. Faloutsos (2005) 7

g CMU SCS

B - tree properties:

¢ each node, in a B-tree of order n:
— Key order
— at most n pointers

at least /2 pointers (except root)
— all leaves at the same level
— if number of pointers is k, then node has exactly k-1

g CMU SCS

Properties

¢ “block aware” nodes: each node -> disk
page

* O(log (N)) for everything! (ins/del/search)

e typically, if m =50 - 100, then 2 - 3 levels

e utilization >= 50%, guaranteed; on average
69%

15-826 Copyright: C. Faloutsos (2005) 9

keys
— (leaves are empty) pl pn
i vz [[- [y
15-826 Copyright: C. Faloutsos (2005) v 8
g CMU SCS
Queries

* Algo for exact match query? (eg., ssn=87?)

15-826 Copyright: C. Faloutsos (2005) 10

g CMU SCS

Queries

* Algo for exact match query? (eg., ssn=87?)

<6 !g!nl
>

>6,/<9

"N EN H_U M_U

15-826 Copyright: C. Faloutsos (2005) 1

9

g CMU SCS

Queries

* Algo for exact match query? (eg., ssn=87?)

<6 !g!nl
>

9
>6 o <9
s | QLQ_U M_U
15826 Copyright: C. Faloutsos (2005) 12

% CMU SCS

Queries

* Algo for exact match query? (eg., ssn=87?)

s)

15-826 Copyright: C. Faloutsos (2005) 13

% CMU SCS

Queries
* Algo for exact match query? (eg., ssn=87?)

h
H steps (= disk
accesses)

s)

15-826 Copyright: C. Faloutsos (2005) 14

% CMU SCS

Queries
» what about range queries? (eg., 5<salary<§)

¢ Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

15-826 Copyright: C. Faloutsos (2005) 15

% CMU SCS

Queries

¢ what about range queries? (eg., 5<salary<§)
* Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)
<6
>9
13] !’!7!1! I !l!ls!l! I
15-826 Copyright: C. Faloutsos (2005) 16

% CMU SCS

Queries

» what about range queries? (eg., 5<salary<§)
¢ Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

<6

15-826 Copyright: C. Faloutsos (2005) 17

% CMU SCS

B-trees: Insertion

 Insert in leaf; on overflow, push middle up
(recursively)
 split: preserves B - tree properties

15-826 Copyright: C. Faloutsos (2005) 18

% CMU SCS
B-trees

Easy case: Tree TO; insert ‘8’

<6 {yEat
>9

>6,/<9

|ENEN H_U M_U

15-826

Copyright: C. Faloutsos (2005)

% CMU SCS
B-trees

Hardest case: Tree TO; insert ‘2’

<6 {yEat
-6 >9

<9
|ENIEN !|!7!|! I !1!13!1!_”
2
15-826 Copyright: C. Faloutsos (2005) 21
% CMU SCS
B-trees

Hardest case: Tree TO; insert ‘2’

v WICIT
[0 G0 G0 o

15-826

Copyright: C. Faloutsos (2005) 23

% CMU SCS
B-trees

Tree TO; insert ‘8’

<6 {yEat
>9

>6,/<9

|ENEN !|!7!|!8” !|!13!I! I

15-826

Copyright: C. Faloutsos (2005)

% CMU SCS
B-trees

Hardest case: Tree TO; insert ‘2’

push middle up

15-826

Copyright: C. Faloutsos (2005)

% CMU SCS
B-trees

Hardest case: Tree TO; insert ‘2’

Final state /HZ[s

HHII

15-826 Copyright: C. Faloutsos (2005)

g CMU SCS

B-trees: Insertion
¢ Q: What if there are two middles? (eg, order

4)

¢ A: cither one is fine

15-826 Copyright: C. Faloutsos (2005) 25

g CMU SCS

Overview

¢ B —trees
q — Dfn, Search, insertion, deletion
e B+ -trees

* hashing

15-826 Copyright: C. Faloutsos (2005) 27

g CMU SCS

B-trees: Insertion

¢ Insert in leaf; on overflow, push middle up
(recursively — ‘propagate split’)

e split: preserves all B - tree properties (!!)

* notice how it grows: height increases when
root overflows & splits

e Automatic, incremental re-organization

15-826 Copyright: C. Faloutsos (2005) 2

g CMU SCS

Deletion

Rough outline of algo:
¢ Delete key;
* on underflow, may need to merge

In practice, some implementors just allow underflows to
happen...

15-826 Copyright: C. Faloutsos (2005) 23

g CMU SCS

B-trees — Deletion

Easiest case: Tree TO; delete 3’

<6 {yEat
>9

>6,/<9
L1 3) H_U M_U
15-826 Copyright: C. Faloutsos (2005) 29

g CMU SCS

B-trees — Deletion

Easiest case: Tree TO; delete ‘3’

<6 e

15-826 Copyright: C. Faloutsos (2005) 30

g CMU SCS

B-trees — Deletion

e Casel: delete a key at a leaf — no underflow
* Case2: delete non-leaf key — no underflow
e Case3: delete leaf-key; underflow, and ‘rich

sibling’

* Case4: delete leaf-key; underflow, and ‘poor
sibling’

15-826 Copyright: C. Faloutsos (2005) 31

g CMU SCS

B-trees — Deletion

e Casel: delete a key at a leaf — no underflow
(delete 3 from TO)

< 6 30 |
>9

>6 /<9
s QLE_U M_U
15826 Copyright: C. Faloutsos (2005))

g CMU SCS

B-trees — Deletion

e Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

Delete &
<6 lg ! nl promote, ie:
>6 /<9 >9
|ERIER! !I! 7 h! I !l!ls !|! I
15-826 Copyright: C. Faloutsos (2005) 33

g CMU SCS

B-trees — Deletion

e Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

N Delete &
<6 l- ! nl promote, ie:
>6 /<9 >9
s | !I! 7 h! I !l!ls !|! I
15-826 Copyright: C. Faloutsos (2005) 34

g CMU SCS

B-trees — Deletion

e Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

Delete &
promote, ie:

15-826 Copyright: C. Faloutsos (2005) 35

g CMU SCS

B-trees — Deletion

e Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

FINAL TREE
3 3 410 |
>3,/<9 >0

|l H_U M_U

15-826 Copyright: C. Faloutsos (2005) 36

g CMU SCS
B-trees — Deletion

e Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

* Q: How to promote?

* A: pick the largest key from the left sub-tree
(or the smallest from the right sub-tree)

* Observation: every deletion eventually
becomes a deletion of a leaf key

15-826 Copyright: C. Faloutsos (2005) 37

g CMU SCS

B-trees — Deletion

e Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from TO)
Delete &
<6 lginl borrow, ie:
>6 /<9 >9
|EN/EN! !1!7!|! I !!13!! I
15826 Copyright: C. Faloutsos (2005) »

g CMU SCS

B-trees — Deletion

e Casel: delete a key at a leaf — no underflow
» Case2: delete non-leaf key — no underflow
= « Case3: delete leaf-key; underflow, and ‘rich

sibling’

* Case4: delete leaf-key; underflow, and ‘poor
sibling’

15-826 Copyright: C. Faloutsos (2005) 38

g CMU SCS

B-trees — Deletion

e Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from TO)
Delete &
Rich sibling <6 lg!nl >9 pormom e
~ >6 /<9
{3] !I! xh! I !|!13 !l! I
15826 Copyright: C. Faloutsos (2005) 40

g CMU SCS

B-trees — Deletion

* Case3: underflow & ‘rich sibling’

e ‘rich’ = can give a key, without
underflowing

* ‘borrowing’ a key: THROUGH the
PARENT!

15-826 Copyright: C. Faloutsos (2005) 41

g CMU SCS

B-trees — Deletion

e Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from TO)
Delete &
borrow, ie:
Rich sibling <6 lg!nl " 0rrow, ie
~. >6 /<9
() 0 ey
: on 94

15-826 Copyright: C. Faloutsos (2005))

g CMU SCS

B-trees — Deletion

e Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from TO)
Delete &
<6 lg!nl borrow, ie:
>6 /1<9 >9
{3 | !I! !|! I !l! 13 !|! I
15826 Copyright: C. Faloutsos (2005) I

g CMU SCS

B-trees — Deletion

e Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

FINAL TREE Delete &

<3 l ! nl borrow,
>3 /<9 >9

through the
parent

|l H_U M_U

15-826 Copyright: C. Faloutsos (2005) 45

g CMU SCS

B-trees — Deletion

e Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from TO)
Delete &
<6 l!nl borrow, ie:
>6 /<9 >9
el H_U M_U
15826 Copyright: C. Faloutsos (2005) "

g CMU SCS

B-trees — Deletion

e Casel: delete a key at a leaf — no underflow
* Case2: delete non-leaf key — no underflow
e Case3: delete leaf-key; underflow, and ‘rich

sibling’

=« Cased: delete leaf-key; underflow, and ‘poor
sibling’

15-826 Copyright: C. Faloutsos (2005) 46

g CMU SCS

B-trees — Deletion

e Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

< 6 39 |
-6 >9

<9

|EN/EN H_U H_U

15-826 Copyright: C. Faloutsos (2005) 47

g CMU SCS

B-trees — Deletion

e Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

< 6 30 |
>9

>6 /<9

|ENEN H_U M_U

15-826 Copyright: C. Faloutsos (2005) 48

g CMU SCS

B-trees — Deletion

e Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

A: merge w/

<6 ‘poor’ sibling

|EN/EN

15-826 Copyright: C. Faloutsos (2005) 49

g CMU SCS

B-trees — Deletion

e Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

A: merge w/
‘poor’ sibling

15-826 Copyright: C. Faloutsos (2005) 51

g CMU SCS

B-trees — Deletion

e Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

* Merge, by pulling a key from the parent

 exact reversal from insertion: ‘split and push
up’, vs. ‘merge and pull down’

e Je.:

15-826 Copyright: C. Faloutsos (2005) 50

g CMU SCS

B-trees — Deletion

e Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

FINAL TREE
<6 o I |
>6
s 7 Lo |y

15-826 Copyright: C. Faloutsos (2005) 52

g CMU SCS

B-trees — Deletion

* Case4: underflow & ‘poor sibling’

e -> ‘pull key from parent, and merge’
¢ Q: What if the parent underflows?

e A: repeat recursively

15-826 Copyright: C. Faloutsos (2005) 53

g CMU SCS

Overview
¢ B —trees
¢ B+ - trees, B*-trees
* hashing

15-826 Copyright: C. Faloutsos (2005) 54

% CMU SCS

B+ trees - Motivation

B-tree — print keys in sorted order:

<6 {yEat
>9

>6,/<9
L1 3) H_U M_U
15-826 Copyright: C. Faloutsos (2005) 55

% CMU SCS

B+ trees - Motivation

B-tree needs back-tracking — how to avoid it?

<6
_ /-
IEN/ENI

15-826 Copyright: C. Faloutsos (2005)

% CMU SCS

Solution: B+ - trees

« facilitate sequential ops
 They string all leaf nodes together
« AND

« replicate keys from non-leaf nodes, to make
sure every key appears at the leaf level

15-826 Copyright: C. Faloutsos (2005) 57

% CMU SCS

B+ trees

<6 {yEat
<9

15-826 Copyright: C. Faloutsos (2005)

% CMU SCS

B+ trees - insertion

Eg., insert ‘8’

<6 o 419
<9 =9

>=6

NN R N

15-826 Copyright: C. Faloutsos (2005) 59

% CMU SCS

Overview

¢ B —trees
¢ B+ - trees, B*-trees
* hashing

15-826 Copyright: C. Faloutsos (2005)

10

g CMU SCS

B*-trees
* splits drop util. to 50%, and maybe increase
height

¢ How to avoid them?

15-826 Copyright: C. Faloutsos (2005) 61

g CMU SCS

B*-trees: deferred split!

* Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

<6 o 410
A' 9 >9
\ERER! !|!7!|! I !1!13_¥_U
*
2

15-826 Copyright: C. Faloutsos (2005) 62

g CMU SCS

B*-trees: deferred split!

* Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

FINAL TREE
a3 3 41 |
>3 /<9 >9
L1 2 | h!ﬁh! dl !|!13!I! I
t
2
15-826 Copyright: C. Faloutsos (2005) 63

g CMU SCS

B*-trees: deferred split!

» Notice: shorter, more packed, faster tree

 It’s a rare case, where space utilization and
speed improve together

e BUT: What if the sibling has no room for
our ‘lending’?

15-826 Copyright: C. Faloutsos (2005) 64

g CMU SCS

B*-trees: deferred split!

e BUT: What if the sibling has no room for
our ‘lending’?

e A: 2-to-3 split: get the keys from the
sibling, pool them with ours (and a key
from the parent), and split in 3.

¢ Details: too messy (and even worse for
deletion)

15-826 Copyright: C. Faloutsos (2005) 65

g CMU SCS

Conclusions
¢ Main ideas: recursive; block-aware; on
overflow -> split; defer splits

¢ All B-tree variants have excellent, O(logN)
worst-case performance for ins/del/search

e It’s the prevailing indexing method

¢ More details: [Knuth vol 3.]

15-826 Copyright: C. Faloutsos (2005) 66

11

