

Common answer:

- Fractals / self-similarities / power laws
- Seminal works from Hilbert, Minkowski, Cantor, Mandelbrot, (Hausdorff, Lyapunov, Ken Wilson, ...)

Sierpinsky triangle

$\log (\#$ pairs
within $<=\mathrm{r})$

- disk traces: self-similar:
\#bytes

15-721
C. Faloutsos

32

5

Solution\#3: traffic

Clarification:

- fractal: a set of points that is self-similar
- multifractal: a probability density function that is self-similar

Many other time-sequences are bursty/clustered: (such as?)

15-721
C. Faloutsos

34

- Motivation - 3 problems / case studies
- Definition of fractals and power laws
- Solutions to posed problems
\Rightarrow - More tools and examples
- Discussion - putting fractals to work!
- Conclusions - practitioner's guide
- Appendix: gory details - boxcounting plots

15-721

Even more power laws:

- publication counts (Lotka's law)
- Distribution of UNIX file sizes
- Income distribution (Pareto's law)
- web hit counts [Huberman]

More power laws

- duration of UNIX jobs
- Energy of earthquakes (Gutenberg-Richter law) [simscience.org]

35

Power laws, cont'ed

- In- and out-degree distribution of web sites [Barabasi], [IBM-CLEVER]
- length of file transfers [Bestavros+]
- Click-stream data (w/ A. Montgomery (CMU-GSIA) + MediaMetrix)

- Motivation - 3 problems / case studies
- Definition of fractals and power laws
- Solutions to posed problems
- More examples and tools
- Discussion - putting fractals to work!
- Conclusions - practitioner's guide
- Appendix: gory details - boxcounting plots

Settings for fractals:

Points; areas, eg:

- cities/stores/hospitals, over earth's surface
- time-stamps of events (customer arrivals, packet losses, criminal actions) over time
- regions (sales areas, islands, patches of habitats) over space

Some uses of fractals:

- Detect non-existence of rules (if points are uniform)
- Detect non-homogeneous regions (eg., legal login time-stamps may have different fd than intruders')
- Estimate number of neighbors / customers / competitors within a radius

Settings for fractals:

- customer feature vectors (age, income, frequency of visits, amount of sales per visit)

15-721
C. Faloutsos

35
 Conclusions

- tool\#1: (for points) 'correlation integral': (\#pairs within $<=r$) vs (distance r)
- tool\#2: (for categorical values) rankfrequency plot (a'la Zipf)
- tool\#3: (for numerical values) CCDF:

Complementary cumulative distr. function (\#of elements with value $>=a$)

cmuscs

Practitioner's guide:

- tool\#1: \#pairs vs distance, for a set of objects, with a distance function (slope $=$ intrinsic dimensionality)

$\log (\#$ pairs(within $<=$ r) $)$

5

Books

- Strongly recommended intro book:
- Manfred Schroeder Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise W.H. Freeman and Company, 1991
- Classic book on fractals:
- B. Mandelbrot Fractal Geometry of Nature, W.H. Freeman, 1977

Fast estimation of $\mathrm{fd}(\mathrm{s})$:

- compute sum($\mathrm{pi}^{\wedge} \wedge^{2}$) for another grid side, r^{\prime}

Conclusions

- many fractal dimensions, with nearby values
- can be computed quickly $(\mathrm{O}(\mathrm{N})$ or $\mathrm{O}(\mathrm{N} \log (\mathrm{N}))$
- (code: on the web)

Observations, cont'd

- in general, the Dq's take similar, but not identical, values.
- except for perfectly self-similar point-sets, where $\mathrm{Dq}=\mathrm{Dq}$ ' for any q, q^{\prime}

