
1

CMU SCS

15-721 DB Sys. Design & Impl.

R* Optimizer

Christos Faloutsos
www.cs.cmu.edu/~christos

15-721 C. Faloutsos 2

CMU SCS

Roadmap
1) Roots: System R and Ingres
2) Implementation: buffering, indexing, q-opt
3) Transactions: locking, recovery
4) Distributed DBMSs

intro
R* architecture
R* optimizer

5) Parallel DBMSs: Gamma, Alphasort
6) OO/OR DBMS
7) Data Analysis - data mining

15-721 C. Faloutsos 3

CMU SCS

Citation

Mackert & Lohman, “R* Optimizer Validation and
Performance Evaluation for Distributed Queries” VLDB
1986.

15-721 C. Faloutsos 4

CMU SCS

Problem – definition

EMP

EMPLOYEE

connect to distr-LA; exec sql select * from EMPL;ideally:

LA NY

DBMS1 DBMS2

D-DBMSD-DBMS

15-721 C. Faloutsos 5

CMU SCS

Overview

• Distr. computation and Optimization
• Instrumentation
• Distr. join results
• Alternative join strategies
• Conclusions

15-721 C. Faloutsos 6

CMU SCS

Introduction - targets of study

• Validation of q-optimizer
– how often is the chosen plan sub-optimal?
– which are the most influential parms?
– sensitivity analysis

• Other questions
– other improvements for distr. joins?
– other promising techniques?

2

15-721 C. Faloutsos 7

CMU SCS

Distr. comp. & opt.

• Definitions / assumptions
– each table: stored at one site (no partitioning)
– dfn: query site; master site; apprentice sites

15-721 C. Faloutsos 8

CMU SCS

Distr. comp. & opt.

• in centralized q-opt:
– join order; method; access path

• now: ++ join site
• how to send inner rel. to join site?

– “ship whole” (W)
– ‘fetch matches’ (F) (~ semijoin)

15-721 C. Faloutsos 9

CMU SCS

Distr. comp. & opt.

• ‘fetch matches’ (F)

12

12
12

15-721 C. Faloutsos 10

CMU SCS

Overview

• Distr. computation and Optimization
• Instrumentation
• Distr. join results
• Alternative join strategies
• Conclusions

15-721 C. Faloutsos 11

CMU SCS

Instrumentation

• ?

15-721 C. Faloutsos 12

CMU SCS

Instrumentation

• distributed EXPLAIN
– (PLAN_TABLE @ master, + local ones)

• COLLECT COUNTERS
– RSS stats, I/Os, buffer look-ups, comm. stats)

• FORCE OPTIMIZER

3

15-721 C. Faloutsos 13

CMU SCS

General measurements

Cost function:
– cpu + I/O + #msgs + #bytes

• wCPU 0.0004 msec/instr (2.5MIPS)
• wI/O 23msec (actually: 17msec)
• wmsg 11msec (actually: 16msec)
• wbyte 0.002 msec/byte (4Mbits/sec)

15-721 C. Faloutsos 14

CMU SCS

Overview

• Distr. computation and Optimization
• Instrumentation
• Distr. join results
• Alternative join strategies
• Conclusions

15-721 C. Faloutsos 15

CMU SCS

Distr. join results

• Q1: how to ship data - ship ‘whole’, or
‘fetch’, or?

• A1:

15-721 C. Faloutsos 16

CMU SCS

Distr. join results

• Q1: how to ship data - ship ‘whole’, or
‘fetch’, or?

• A1: ship outer to inner and back

card. of outer table

time Fetch
whole

outer->inner & back

15-721 C. Faloutsos 17

CMU SCS

Distr. join results

• Q2: Distr. vs local joins
• A2:

15-721 C. Faloutsos 18

CMU SCS

Distr. join results

• Q2: Distr. vs local joins
• A2: Distr. have more overhead, but better

parallelism and buffer contention
• (distinguish: response time vs resource

time)

4

15-721 C. Faloutsos 19

CMU SCS

Distr. join results

• Q3: relative importance of cost components?
(2.5MIPS, 20ms/IO, 11ms/msg, 4Mbps)

• A3:

15-721 C. Faloutsos 20

CMU SCS

Distr. join results

• Q3: relative importance of cost components?
• A3: local cost is important

– high speed net.: comm. cost < 10%
– medium speed net: local cost still not negligible
 (50msec/msg, 40Kbps)

15-721 C. Faloutsos 21

CMU SCS

Distr. join results

• Q4: Opt. evaluation - how often sub-
optimal?

• A4: usually OK - problems with join
selectivity est.
– solution:?

15-721 C. Faloutsos 22

CMU SCS

Distr. join results

• Q4: Opt. evaluation - how often sub-
optimal?

• A4: usually OK - problems with join
selectivity est.
– solution: use estimate from previous execution!

15-721 C. Faloutsos 23

CMU SCS

Overview

• Distr. computation and Optimization
• Instrumentation
• Distr. join results
• Alternative join strategies
• Conclusions

15-721 C. Faloutsos 24

CMU SCS

Alternative join strategies

• 1) temporary indices
• 2) semi-joins
• 3) “Bloom”-joins

5

15-721 C. Faloutsos 25

CMU SCS

1) Temporary indices

• ship table T; build local index

15-721 C. Faloutsos 26

CMU SCS

2) Semijoins
• Idea: reduce the tables before shipping

s11

s5

s2

s1

...s#S1

SUPPLIER

p9s2

p5s3

p1s2

p1s1

p#s#

SHIPMENT

S3
SUPPLIER Join SHIPMENT = ?

(s1,s2,s5,s11)

15-721 C. Faloutsos 27

CMU SCS

Semijoins
• Idea: reduce the tables before shipping
• Eg., to reduce ‘SHIPMENT’

– send distinct values of SUPPLIER.S#

15-721 C. Faloutsos 28

CMU SCS

Semijoins

• Formally:
• SHIPMENT’ = SHIPMENT SUPPLIER

��

15-721 C. Faloutsos 29

CMU SCS

A brilliant idea: two-way
semijoins

• (not in book, not in final exam)
• reduce both relations with one more

exchange: [Kang, ’ 86]
• ship back the list of keys that didn’ t match

15-721 C. Faloutsos 30

CMU SCS

Two-way Semijoins

s11

s5

s2

s1

...s#S1

SUPPLIER

p9s2

p5s3

p1s2

p1s1

p#s#

SHIPMENT

S3

(s1,s2,s5,s11)

(s5,s11)

S2

6

15-721 C. Faloutsos 31

CMU SCS

Two-way semijoins

• ship back the list of keys that didn’ t match
• CAN NOT LOSE! (why?)
• further improvement:

– or the list of ones that matched – whatever is
shorter!

15-721 C. Faloutsos 32

CMU SCS

3) ‘Bloom-joins’

• how to ship the projection, say, of
SUPPLIER.s#, even cheaper?

• A: Bloom-filter [Lohman+] =
– quick&dirty membership testing

15-721 C. Faloutsos 33

CMU SCS

Bloom-join
• Idea: reduce table - using only,say, 10 bits? !!

s11

s5

s2

s1

...s#S1

SUPPLIER

p9s2

p5s3

p1s2

p1s1

p#s#

SHIPMENT

S3
SUPPLIER Join SHIPMENT = ?

(s1,s2,s5,s11)

4bytes

15-721 C. Faloutsos 34

CMU SCS

Bloom-join

• idea: use a bit-string and hashing
– may have “false alarms” (OK!)

s1
s2
s5

s11

15-721 C. Faloutsos 35

CMU SCS

Bloom-join

• idea: use a bit-string and hashing
– may have “false alarms” (OK!)

s1
s2
s5

s11

s3 15-721 C. Faloutsos 36

CMU SCS

Bloom-join

• idea: use a bit-string and hashing
– may have “false alarms” (OK!)

s1
s2
s5

s11

s26

7

15-721 C. Faloutsos 37

CMU SCS

Bloom filters

• could set m>1 bits per value
• used for text retrieval (“Zato-coding”, in

‘49(!); signature files)
• differential files [Lohman+Severance]
• UNIX’ s spell checker [McIlroy - IEEE

COM’ 82]
• membership testing, in general

15-721 C. Faloutsos 38

CMU SCS

Bloom join

• Q1: How many false alarms, if we have
– F bits, and
– Ds (# of distinct values in table ‘S’)
– Ct (# of tuples in table ‘T’)
– SCt (# of tuples in ‘T’ that match)

• Q1’ : How many ‘1’ s, in the Bloom filter?
• A1’ :

15-721 C. Faloutsos 39

CMU SCS

Bloom join

• Q1: How many false alarms, if we have
– F bits, and
– Ds (# of distinct values in table ‘S’)
– Ct (# of tuples in table ‘T’)
– SCt (# of tuples in ‘T’ that match)

• Q1’ : How many ‘1’ s, in the Bloom filter?
• A1’ : bitsS = F(1 - (1 - 1/F) Ds) ~ F(1- exp(-Ds/F)

15-721 C. Faloutsos 40

CMU SCS

Bloom join

• Q1: How many false alarms, if we have
– F bits, and
– Ds (# of distinct values in table ‘S’)
– Ct (# of tuples in table ‘T’)
– SCt (# of tuples in ‘T’ that match)

• A1: BCt = SCt + bitsS /F * (Ct -SCt)
– (book: slightly different formula)

15-721 C. Faloutsos 41

CMU SCS

Comparison

• A join B
• A: 1,000 tuples (query site)
• B: 100 - 6,000 tuples
• F=4Kb for bloom filter
• high/medium speed network
• R*, R*+temp-index, semijoin, bloom-join

15-721 C. Faloutsos 42

CMU SCS

Comparison

time

card. of ‘B’

semijoins

R* (distr)
temp ind

R* (local)

bloomj.

size of ‘A’

8

15-721 C. Faloutsos 43

CMU SCS

Comparison

• Q: why bloom joins are better than
semijoins?

15-721 C. Faloutsos 44

CMU SCS

Comparison

• Q: why bloom joins are better than
semijoins?

• A: lower local processing! (simple scan of
‘B’)

• (similar results for ‘B’ being the query site)

15-721 C. Faloutsos 45

CMU SCS

Comparison - slower network

• bloom joins outperform all distributed
algo’ s
– (fewer bytes shipped)

15-721 C. Faloutsos 46

CMU SCS

Conclusions

• ship whole inner table wins
• R* optimizer: accurate
• distribution of queries: often helps, due to

– parallelism
– more buffers

• local cost: not negligible

