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CMU SCS

Roadmap
1) Roots: System R and Ingres
2) Implementation: buffering, indexing, q-opt
3) Transactions: locking, recovery
4) Distributed DBMSs

intro
R* architecture
R* optimizer

5) Parallel DBMSs: Gamma, Alphasort
6) OO/OR DBMS
7) Data Analysis - data mining
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Problem – definition

• centralized DB:

LA NY

CHICAGO
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CMU SCS

Problem – definition
• Distr. DB:
• DB stored in many places
• ... connected

LA NY
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CMU SCS

Problem – definition

LA NY

EMP
EMPLOYEE

connect to LA; exec sql select * from EMP; ...

connect to NY; exec sql select * from EMPLOYEE; ...

now:

DBMS1 DBMS2
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Problem – definition

EMP

EMPLOYEE

connect to distr-LA; exec sql select * from EMPL;ideally:

LA NY

DBMS1 DBMS2

D-DBMSD-DBMS



2

15-721 C. Faloutsos 7

CMU SCS

Requirements

• ?
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Requirements
• location transparency
• performance transparency (-> distr. q-opt)
• copy transparency
• transactions transparency
• fragment transparency
• schema transparency
• local dbms transparency
• (no system has all these features)
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CMU SCS

What’s new?

• Q-opt
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CMU SCS

What’s new?

• Q-opt
– communication cost
– larger search space
– load balance
– speed, cost, space, time differences on

machines
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CMU SCS

What’s new?

• Q-opt
• CC
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CMU SCS

What’s new?

• Q-opt
• CC

– need distributed algorithms (distr. deadlock)
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CMU SCS

What’s new?

• Q-opt
• CC
• Recovery
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CMU SCS

What’s new?

• Q-opt
• CC
• Recovery

– much more complex; more parts that can fail;
‘2 phase commit’

15-721 C. Faloutsos 15

CMU SCS

What’s new?

• Q-opt
• CC
• Recovery
• multiple copies; fragments
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What’s new?

• Q-opt
• CC
• Recovery
• multiple copies; fragments

– (but, at most 2, in practice)
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D-DBMS in practice

Why would one need a D-DBMS?
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D-DBMS in practice

Why would one need a D-DBMS?
• geographic distribution / performance
• off-loading mainframes with local

processing
• ‘sins of the past’ - integrating legacy

systems
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D-DBMS in practice

• there are products (IBM Data Joiner,
Oracle*)

• BUT: they are not commercially as
successful as we would expect! - why?
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D-DBMS - why not?

Speculations:
• data warehouses (copy DBs locally! Sears,

Wal-Mart, Kmart)
• D-DBMSs would cut down sales of D/W

products
• distr. q-opt is immature
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D-DBMS - other issues?

Integration of data sources: desirable, because
of the web - remaining issues:

• semantic consistency (e.g., salaries
before/after taxes)

• authentication
• 2-phase-commit on top of legacy databases
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Conclusions

D-DBMS research produced great ideas,
useful for

• parallel dbms / “active disks” / sensors
• p2p (peer to peer networks)
• ‘middle-ware’
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Conclusions

Namely:
• 2 phase commit
• distributed q-opt - semi-joins/bloom-joins
• distributed catalogue
• distributed deadlock detection
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CMU SCS

Roadmap
1) Roots: System R and Ingres
2) Implementation: buffering, indexing, q-opt
3) Transactions: locking, recovery
4) Distributed DBMSs

intro
R* architecture
R* optimizer

5) Parallel DBMSs: Gamma, Alphasort
6) OO/OR DBMS
7) Data Analysis - data mining
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System R* architecture

Citation
R. Williams, et al., "R* : An Overview of the

Architecture." IBM Research Report RJ3325
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Detailed outline

• Environment
• Object naming
• Distributed Catalogues
• Xact management - commit protocols
• Q-opt
• CC- recovery
• SQL changes
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Environment

LA NY

DBMS1 DBMS2

D-DBMSD-DBMS
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Environment

LA NY

DBMS1 DBMS2

R*
R* CICS CICS
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Environment

Relations:
• dispersed;
• replicated
• fragmented (hor./vert.);
• snapshots
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Object naming
No global naming system (why?)
Instead: System Wide Names (SWN)
• by attaching ‘site’ on user-names
• by attaching ‘birth-site’ on tables
e.g.:
bruce.EMPLOYEE ->
bruce@san-jose . EMPLOYEE@yorktown
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CMU SCS

Distributed catalogues

• Q: where and how should we store the
schema?

• A1: fully replicated (but:....)
• A2: single copy (but:...)
• A3?
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CMU SCS

Distributed catalogues

• Q: where and how should we store the
schema?

• A1: fully replicated (but:....)
• A2: single copy (but:...)
• A3: only birth site keeps moving info - thus
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Distributed catalogues

• A3: only birth site keeps moving info - thus
each site has
– local schema +
– moving info (for items ‘born’  here) and
– birth sites of global objects

• thus: <= 2 messages are enough to locate
non-local object
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Detailed outline

• Environment
• Object naming
• Distributed Catalogues
• Xact management - commit protocols
• Q-opt
• Query execution
• SQL changes
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Xact management

• Q: how to give xact-ids?
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Xact management

• Q: how to give xact-ids?
• A: site-id & sequence#

– ordered (to break deadlocks)
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Transactions – recovery

• Problem: eg., a transaction moves
$100 from NY -> $50 to LA, $50 to Chicago

• 3 sub-transactions, on 3 systems, with 3
W.A.L.s

• how to guarantee atomicity (all-or-none)?
• Observation: additional types of failures

(links, servers, delays, time-outs ....)
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Transactions – recovery

• Problem: eg., a transaction moves
$100 from NY -> $50 to LA, $50 to Chicago
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Distributed recovery

CHICAGO

LA NY

T1,1:-$100

T1,2: +$50

T1,3: +$50

How?
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Distributed recovery

NY

CHICAGO

LA NY

T1,1:-$100

T1,2: +$50

T1,3: +$50

Step1: choose
coordinator
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Distributed recovery

• Step 2: execute a protocol, eg., “2 phase
commit”
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2 phase commit

time

T1,1 (coord.) T1,2 T1,3

prepare to commit
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2 phase commit

time

T1,1 (coord.) T1,2 T1,3

prepare to commit

Y

Y

flush log records
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2 phase commit

time

T1,1 (coord.) T1,2 T1,3

prepare to commit

Y

Y

commit
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2 phase commit

time

T1,1 (coord.) T1,2 T1,3

prepare to commit

Y

Y

commit

ACK
ACK 15-721 C. Faloutsos 46
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2 phase commit (eg., failure)

time

T1,1 (coord.) T1,2 T1,3

prepare to commit
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2 phase commit

time

T1,1 (coord.) T1,2 T1,3

prepare to commit

Y

N
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2 phase commit

time

T1,1 (coord.) T1,2 T1,3

prepare to commit

Y

N

abort
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Distributed recovery

• Many, many additional details (what if the
coordinator fails? what if a link fails? etc)

• and many other solutions (eg., 3-phase
commit)
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Detailed outline

• Environment
• Object naming
• Distributed Catalogues
• Xact management - commit protocols
• Q-opt
• Query execution
• SQL changes
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Distributed Q-opt

• Steps:
– parse
– resolve names
– authorization
– compilation + plan generation

• binding? (eg., an access path may be dropped mid-
flight!)
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Distributed Q-opt

• Q: how to do binding?
– A1: at a chosen site (-> ~ centralized)
– A2: at the originating site (but: needs much

info, which may be out-dated)
– A3: distributed binding
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Distributed binding

• master site decides inter-site issues + high
level binding

• local sites do low-level decisions
Local optimality: OK
global optimality: NOK
Solution: Master sites sends global plan; local

sites complain, if things changed
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Distributed q-opt

• cost to minimize?
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Distributed q-opt

• cost to minimize?
• cost = CPU + I/O + communication

– comm. cost =
msg-cost * #messages +
byte-cost * #bytes

• (could minimize elapsed time, instead...)
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Distr. Q-opt –joins

s11

s5

s2

s1

...s#S1

SUPPLIER

p9s2

p5s3

p1s2

p1s1

p#s#

SHIPMENT

S2

S3
SUPPLIER Join SHIPMENT = ?
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Distr. q-opt - join plans

Joins: join order + join method + LOCATION

15-721 C. Faloutsos 58

CMU SCS

Distr. q-opt - join plans

SEVERAL choices - R* chooses one of 5:
• (a) ship inner to S1; join there
• (b) ship outer to S2, tuple-at-a-time
• (c) (‘semi-join’ ): reduce inner; ship that to

S1
• (d) ship both tables to a third site
• (e) ship outer to a third site; do (c)
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Semijoins
• Idea: reduce the tables before shipping

s11

s5

s2

s1

...s#S1

SUPPLIER

p9s2

p5s3

p1s2

p1s1

p#s#

SHIPMENT

S3
SUPPLIER Join SHIPMENT = ?

(s1,s2,s5,s11)
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Semijoins

• Formally:
• SHIPMENT’  = SHIPMENT      SUPPLIER

��
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Detailed outline

• Environment
• Object naming
• Distributed Catalogues
• Xact management - commit protocols
• Q-opt
• Query execution
• SQL changes
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Detailed outline

• Environment
• Object naming
• Distributed Catalogues
• Xact management - commit protocols
• Q-opt
• Query execution
• SQL changes
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Distributed deadlocks

LA NY

T1,la

T2,la

T1,ny

T2,ny
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Distributed deadlocks

LA NY

T1,la

T2,la

T1,ny

T2,ny
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Distributed deadlocksLA NY

T1,la

T2,la

T1,ny

T2,ny

•  cites need to exchange wait-for graphs

•  clever algorithms, to reduce # messages
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Distributed deadlocks

• cites need to exchange wait-for graphs

• clever algorithms, to reduce # messages

– naively: each site ships its wait-for strings, until
all have all

– anything better?
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Distributed deadlocks

• anything better?

• A: each site ships ONLY the strings where
‘first-xact-id’  < ‘last-xact-id’

– (any other ordering, is fine!)

• Eg: LA: T1-> T2; NY T2->T1

– only NY will send
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Detailed outline

• Environment
• Object naming
• Distributed Catalogues
• Xact management - commit protocols
• Q-opt
• Query execution
• SQL changes
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SQL extensions

• DEFINE SYNONYM <rel-name> AS <SWN>
• DISTRIBUTE TABLE <t-name>

HORIZONTALLY | VERTICALLY |
REPLICATED ...

• DEFINE SNAPSHOT ...
• REFRESH SNAPSHOT
• MIGRATE TABLE ...
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Conclusions

• 2 phase commit
• distributed q-opt; distr. deadlock detection
• distributed catalogue


