
1

CMU SCS

15-721 DB Sys. Design & Impl.

Distributed DBMSs & R*

Christos Faloutsos
www.cs.cmu.edu/~christos

15-721 C. Faloutsos 2

CMU SCS

Roadmap
1) Roots: System R and Ingres
2) Implementation: buffering, indexing, q-opt
3) Transactions: locking, recovery
4) Distributed DBMSs

intro
R* architecture
R* optimizer

5) Parallel DBMSs: Gamma, Alphasort
6) OO/OR DBMS
7) Data Analysis - data mining

15-721 C. Faloutsos 3

CMU SCS

Problem – definition

• centralized DB:

LA NY

CHICAGO

15-721 C. Faloutsos 4

CMU SCS

Problem – definition
• Distr. DB:
• DB stored in many places
• ... connected

LA NY

15-721 C. Faloutsos 5

CMU SCS

Problem – definition

LA NY

EMP
EMPLOYEE

connect to LA; exec sql select * from EMP; ...

connect to NY; exec sql select * from EMPLOYEE; ...

now:

DBMS1 DBMS2

15-721 C. Faloutsos 6

CMU SCS

Problem – definition

EMP

EMPLOYEE

connect to distr-LA; exec sql select * from EMPL;ideally:

LA NY

DBMS1 DBMS2

D-DBMSD-DBMS

2

15-721 C. Faloutsos 7

CMU SCS

Requirements

• ?

15-721 C. Faloutsos 8

CMU SCS

Requirements
• location transparency
• performance transparency (-> distr. q-opt)
• copy transparency
• transactions transparency
• fragment transparency
• schema transparency
• local dbms transparency
• (no system has all these features)

15-721 C. Faloutsos 9

CMU SCS

What’s new?

• Q-opt

15-721 C. Faloutsos 10

CMU SCS

What’s new?

• Q-opt
– communication cost
– larger search space
– load balance
– speed, cost, space, time differences on

machines

15-721 C. Faloutsos 11

CMU SCS

What’s new?

• Q-opt
• CC

15-721 C. Faloutsos 12

CMU SCS

What’s new?

• Q-opt
• CC

– need distributed algorithms (distr. deadlock)

3

15-721 C. Faloutsos 13

CMU SCS

What’s new?

• Q-opt
• CC
• Recovery

15-721 C. Faloutsos 14

CMU SCS

What’s new?

• Q-opt
• CC
• Recovery

– much more complex; more parts that can fail;
‘2 phase commit’

15-721 C. Faloutsos 15

CMU SCS

What’s new?

• Q-opt
• CC
• Recovery
• multiple copies; fragments

15-721 C. Faloutsos 16

CMU SCS

What’s new?

• Q-opt
• CC
• Recovery
• multiple copies; fragments

– (but, at most 2, in practice)

15-721 C. Faloutsos 17

CMU SCS

D-DBMS in practice

Why would one need a D-DBMS?

15-721 C. Faloutsos 18

CMU SCS

D-DBMS in practice

Why would one need a D-DBMS?
• geographic distribution / performance
• off-loading mainframes with local

processing
• ‘sins of the past’ - integrating legacy

systems

4

15-721 C. Faloutsos 19

CMU SCS

D-DBMS in practice

• there are products (IBM Data Joiner,
Oracle*)

• BUT: they are not commercially as
successful as we would expect! - why?

15-721 C. Faloutsos 20

CMU SCS

D-DBMS - why not?

Speculations:
• data warehouses (copy DBs locally! Sears,

Wal-Mart, Kmart)
• D-DBMSs would cut down sales of D/W

products
• distr. q-opt is immature

15-721 C. Faloutsos 21

CMU SCS

D-DBMS - other issues?

Integration of data sources: desirable, because
of the web - remaining issues:

• semantic consistency (e.g., salaries
before/after taxes)

• authentication
• 2-phase-commit on top of legacy databases

15-721 C. Faloutsos 22

CMU SCS

Conclusions

D-DBMS research produced great ideas,
useful for

• parallel dbms / “active disks” / sensors
• p2p (peer to peer networks)
• ‘middle-ware’

15-721 C. Faloutsos 23

CMU SCS

Conclusions

Namely:
• 2 phase commit
• distributed q-opt - semi-joins/bloom-joins
• distributed catalogue
• distributed deadlock detection

15-721 C. Faloutsos 24

CMU SCS

Roadmap
1) Roots: System R and Ingres
2) Implementation: buffering, indexing, q-opt
3) Transactions: locking, recovery
4) Distributed DBMSs

intro
R* architecture
R* optimizer

5) Parallel DBMSs: Gamma, Alphasort
6) OO/OR DBMS
7) Data Analysis - data mining

5

15-721 C. Faloutsos 25

CMU SCS

System R* architecture

Citation
R. Williams, et al., "R* : An Overview of the

Architecture." IBM Research Report RJ3325

15-721 C. Faloutsos 26

CMU SCS

Detailed outline

• Environment
• Object naming
• Distributed Catalogues
• Xact management - commit protocols
• Q-opt
• CC- recovery
• SQL changes

15-721 C. Faloutsos 27

CMU SCS

Environment

LA NY

DBMS1 DBMS2

D-DBMSD-DBMS

15-721 C. Faloutsos 28

CMU SCS

Environment

LA NY

DBMS1 DBMS2

R*
R* CICS CICS

15-721 C. Faloutsos 29

CMU SCS

Environment

Relations:
• dispersed;
• replicated
• fragmented (hor./vert.);
• snapshots

15-721 C. Faloutsos 30

CMU SCS

Object naming
No global naming system (why?)
Instead: System Wide Names (SWN)
• by attaching ‘site’ on user-names
• by attaching ‘birth-site’ on tables
e.g.:
bruce.EMPLOYEE ->
bruce@san-jose . EMPLOYEE@yorktown

6

15-721 C. Faloutsos 31

CMU SCS

Distributed catalogues

• Q: where and how should we store the
schema?

• A1: fully replicated (but:....)
• A2: single copy (but:...)
• A3?

15-721 C. Faloutsos 32

CMU SCS

Distributed catalogues

• Q: where and how should we store the
schema?

• A1: fully replicated (but:....)
• A2: single copy (but:...)
• A3: only birth site keeps moving info - thus

15-721 C. Faloutsos 33

CMU SCS

Distributed catalogues

• A3: only birth site keeps moving info - thus
each site has
– local schema +
– moving info (for items ‘born’ here) and
– birth sites of global objects

• thus: <= 2 messages are enough to locate
non-local object

15-721 C. Faloutsos 34

CMU SCS

Detailed outline

• Environment
• Object naming
• Distributed Catalogues
• Xact management - commit protocols
• Q-opt
• Query execution
• SQL changes

15-721 C. Faloutsos 35

CMU SCS

Xact management

• Q: how to give xact-ids?

15-721 C. Faloutsos 36

CMU SCS

Xact management

• Q: how to give xact-ids?
• A: site-id & sequence#

– ordered (to break deadlocks)

7

15-721 C. Faloutsos 37

CMU SCS

Transactions – recovery

• Problem: eg., a transaction moves
$100 from NY -> $50 to LA, $50 to Chicago

• 3 sub-transactions, on 3 systems, with 3
W.A.L.s

• how to guarantee atomicity (all-or-none)?
• Observation: additional types of failures

(links, servers, delays, time-outs)

15-721 C. Faloutsos 38

CMU SCS

Transactions – recovery

• Problem: eg., a transaction moves
$100 from NY -> $50 to LA, $50 to Chicago

15-721 C. Faloutsos 39

CMU SCS

Distributed recovery

CHICAGO

LA NY

T1,1:-$100

T1,2: +$50

T1,3: +$50

How?

15-721 C. Faloutsos 40

CMU SCS

Distributed recovery

NY

CHICAGO

LA NY

T1,1:-$100

T1,2: +$50

T1,3: +$50

Step1: choose
coordinator

15-721 C. Faloutsos 41

CMU SCS

Distributed recovery

• Step 2: execute a protocol, eg., “2 phase
commit”

15-721 C. Faloutsos 42

CMU SCS

2 phase commit

time

T1,1 (coord.) T1,2 T1,3

prepare to commit

8

15-721 C. Faloutsos 43

CMU SCS

2 phase commit

time

T1,1 (coord.) T1,2 T1,3

prepare to commit

Y

Y

flush log records

15-721 C. Faloutsos 44

CMU SCS

2 phase commit

time

T1,1 (coord.) T1,2 T1,3

prepare to commit

Y

Y

commit

15-721 C. Faloutsos 45

CMU SCS

2 phase commit

time

T1,1 (coord.) T1,2 T1,3

prepare to commit

Y

Y

commit

ACK
ACK 15-721 C. Faloutsos 46

CMU SCS

2 phase commit (eg., failure)

time

T1,1 (coord.) T1,2 T1,3

prepare to commit

15-721 C. Faloutsos 47

CMU SCS

2 phase commit

time

T1,1 (coord.) T1,2 T1,3

prepare to commit

Y

N

15-721 C. Faloutsos 48

CMU SCS

2 phase commit

time

T1,1 (coord.) T1,2 T1,3

prepare to commit

Y

N

abort

9

15-721 C. Faloutsos 49

CMU SCS

Distributed recovery

• Many, many additional details (what if the
coordinator fails? what if a link fails? etc)

• and many other solutions (eg., 3-phase
commit)

15-721 C. Faloutsos 50

CMU SCS

Detailed outline

• Environment
• Object naming
• Distributed Catalogues
• Xact management - commit protocols
• Q-opt
• Query execution
• SQL changes

15-721 C. Faloutsos 51

CMU SCS

Distributed Q-opt

• Steps:
– parse
– resolve names
– authorization
– compilation + plan generation

• binding? (eg., an access path may be dropped mid-
flight!)

15-721 C. Faloutsos 52

CMU SCS

Distributed Q-opt

• Q: how to do binding?
– A1: at a chosen site (-> ~ centralized)
– A2: at the originating site (but: needs much

info, which may be out-dated)
– A3: distributed binding

15-721 C. Faloutsos 53

CMU SCS

Distributed binding

• master site decides inter-site issues + high
level binding

• local sites do low-level decisions
Local optimality: OK
global optimality: NOK
Solution: Master sites sends global plan; local

sites complain, if things changed

15-721 C. Faloutsos 54

CMU SCS

Distributed q-opt

• cost to minimize?

10

15-721 C. Faloutsos 55

CMU SCS

Distributed q-opt

• cost to minimize?
• cost = CPU + I/O + communication

– comm. cost =
msg-cost * #messages +
byte-cost * #bytes

• (could minimize elapsed time, instead...)

15-721 C. Faloutsos 56

CMU SCS

Distr. Q-opt –joins

s11

s5

s2

s1

...s#S1

SUPPLIER

p9s2

p5s3

p1s2

p1s1

p#s#

SHIPMENT

S2

S3
SUPPLIER Join SHIPMENT = ?

15-721 C. Faloutsos 57

CMU SCS

Distr. q-opt - join plans

Joins: join order + join method + LOCATION

15-721 C. Faloutsos 58

CMU SCS

Distr. q-opt - join plans

SEVERAL choices - R* chooses one of 5:
• (a) ship inner to S1; join there
• (b) ship outer to S2, tuple-at-a-time
• (c) (‘semi-join’): reduce inner; ship that to

S1
• (d) ship both tables to a third site
• (e) ship outer to a third site; do (c)

15-721 C. Faloutsos 59

CMU SCS

Semijoins
• Idea: reduce the tables before shipping

s11

s5

s2

s1

...s#S1

SUPPLIER

p9s2

p5s3

p1s2

p1s1

p#s#

SHIPMENT

S3
SUPPLIER Join SHIPMENT = ?

(s1,s2,s5,s11)

15-721 C. Faloutsos 60

CMU SCS

Semijoins

• Formally:
• SHIPMENT’ = SHIPMENT SUPPLIER

��

11

15-721 C. Faloutsos 61

CMU SCS

Detailed outline

• Environment
• Object naming
• Distributed Catalogues
• Xact management - commit protocols
• Q-opt
• Query execution
• SQL changes

15-721 C. Faloutsos 62

CMU SCS

Detailed outline

• Environment
• Object naming
• Distributed Catalogues
• Xact management - commit protocols
• Q-opt
• Query execution
• SQL changes

15-721 C. Faloutsos 63

CMU SCS

Distributed deadlocks

LA NY

T1,la

T2,la

T1,ny

T2,ny

15-721 C. Faloutsos 64

CMU SCS

Distributed deadlocks

LA NY

T1,la

T2,la

T1,ny

T2,ny

15-721 C. Faloutsos 65

CMU SCS

Distributed deadlocksLA NY

T1,la

T2,la

T1,ny

T2,ny

• cites need to exchange wait-for graphs

• clever algorithms, to reduce # messages
15-721 C. Faloutsos 66

CMU SCS

Distributed deadlocks

• cites need to exchange wait-for graphs

• clever algorithms, to reduce # messages

– naively: each site ships its wait-for strings, until
all have all

– anything better?

12

15-721 C. Faloutsos 67

CMU SCS

Distributed deadlocks

• anything better?

• A: each site ships ONLY the strings where
‘first-xact-id’ < ‘last-xact-id’

– (any other ordering, is fine!)

• Eg: LA: T1-> T2; NY T2->T1

– only NY will send

15-721 C. Faloutsos 68

CMU SCS

Detailed outline

• Environment
• Object naming
• Distributed Catalogues
• Xact management - commit protocols
• Q-opt
• Query execution
• SQL changes

15-721 C. Faloutsos 69

CMU SCS

SQL extensions

• DEFINE SYNONYM <rel-name> AS <SWN>
• DISTRIBUTE TABLE <t-name>

HORIZONTALLY | VERTICALLY |
REPLICATED ...

• DEFINE SNAPSHOT ...
• REFRESH SNAPSHOT
• MIGRATE TABLE ...

15-721 C. Faloutsos 70

CMU SCS

Conclusions

• 2 phase commit
• distributed q-opt; distr. deadlock detection
• distributed catalogue

