
1

CMU SCS

15-721 DB Sys. Design & Impl.

CC in B-trees

Christos Faloutsos
www.cs.cmu.edu/~christos

15-721 C. Faloutsos 2

CMU SCS

Roadmap
1) Roots: System R and Ingres
2) Implementation: buffering, indexing, q-opt
3) Transactions: locking, recovery
 granularity of locks

optimistic CC
 recovery

B-trees
4) Distributed DBMSs
5) Parallel DBMSs: Gamma, Alphasort
...

15-721 C. Faloutsos 3

CMU SCS

References

Lehman & Yao: "Efficient Locking for Concurrent
Operations in B-trees." TODS 6(4): 650-670
(1981)

(for B-trees: e.g., see Knuth, Volume III)

15-721 C. Faloutsos 4

CMU SCS

Detailed overview

• B-trees - reminders
– definition
– search
– insertion
– (deletion)
– variations: B+trees, B*trees

• CC on B-trees - B-link-trees

15-721 C. Faloutsos 5

CMU SCS

B-trees

• the most successful family of index
schemes (B-trees, B+-trees, B*-trees)

• Can be used for primary/secondary,
clustering/non-clustering index.

• balanced “n-way” search trees

15-721 C. Faloutsos 6

CMU SCS

B-trees

Eg., B-tree of order 3:

1 3

6

7

9

13

<6

>6 <9 >9

2

15-721 C. Faloutsos 7

CMU SCS

B - tree properties:

• each node, in a B-tree of order n:
– Key order
– at most n pointers
– at least n/2 pointers (except root)
– all leaves at the same level
– if number of pointers is k, then node has exactly k-1

keys
– (leaves are empty)

v1 v2 … vn-1

p1 pn

15-721 C. Faloutsos 8

CMU SCS

Properties

• “block aware” nodes: each node -> disk
page

• O(log (N)) for everything! (ins/del/search)

• typically, if m = 50 - 100, then 2 - 3 levels

• utilization >= 50%, guaranteed; on average
69%

15-721 C. Faloutsos 9

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9

15-721 C. Faloutsos 10

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9

15-721 C. Faloutsos 11

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9

15-721 C. Faloutsos 12

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9

3

15-721 C. Faloutsos 13

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9
H steps (= disk
accesses)

15-721 C. Faloutsos 14

CMU SCS

Queries

• what about range queries? (eg., 5<salary<8)
• Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)

15-721 C. Faloutsos 15

CMU SCS

Queries

• what about range queries? (eg., 5<salary<8)
• Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)

1 3

6

7

9

13

<6

>6 <9 >9

15-721 C. Faloutsos 16

CMU SCS

Queries

• what about range queries? (eg., 5<salary<8)
• Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)

1 3

6

7

9

13

<6

>6 <9 >9

15-721 C. Faloutsos 17

CMU SCS

B-trees: Insertion

• Insert in leaf; on overflow, push middle up
(recursively)

• split: preserves B - tree properties

15-721 C. Faloutsos 18

CMU SCS

B-trees

Easy case: Tree T0; insert ‘8’

1 3

6

7

9

13

<6

>6 <9 >9

4

15-721 C. Faloutsos 19

CMU SCS

B-trees

Tree T0; insert ‘8’

1 3

6

7

9

13

<6

>6 <9 >9

8

15-721 C. Faloutsos 20

CMU SCS

B-trees

Hardest case: Tree T0; insert ‘2’

1 3

6

7

9

13

<6

>6 <9 >9

2

15-721 C. Faloutsos 21

CMU SCS

B-trees

Hardest case: Tree T0; insert ‘2’

1 2

6

7

9

133

push middle up

15-721 C. Faloutsos 22

CMU SCS

B-trees

Hardest case: Tree T0; insert ‘2’

6

7

9

131 3

22Ovf; push middle

15-721 C. Faloutsos 23

CMU SCS

B-trees

Hardest case: Tree T0; insert ‘2’

7

9

131 3

2

6
Final state

15-721 C. Faloutsos 24

CMU SCS

B-trees - insertion

• Q: What if there are two middles? (eg, order
4)

• A: either one is fine

5

15-721 C. Faloutsos 25

CMU SCS

B-trees: Insertion

• Insert in leaf; on overflow, push middle up
(recursively – ‘propagate split’)

• split: preserves all B - tree properties (!!)
• notice how it grows: height increases when

root overflows & splits
• Automatic, incremental re-organization

(contrast with ISAM!)

15-721 C. Faloutsos 26

CMU SCS

INSERTION OF KEY ’ K’

 find the correct leaf node ’ L’ ;

 if (’ L’ overflows){

 split ’ L’ , by pushing the middle key upstairs to parent node ’ P’ ;

 if (’ P’ overflows){

 repeat the split recursively;

 }

 else{

 add the key ’ K’ in node ’ L’ ; /* maintaining the key order in ’ L’ */

 }

Pseudo-code

15-721 C. Faloutsos 27

CMU SCS

Detailed overview

• B-trees - reminders
– definition
– search
– insertion
– (deletion)
– variations: B+trees, B*trees

• CC on B-trees - B-link-trees

15-721 C. Faloutsos 28

CMU SCS

Deletion

Rough outline of algo:
• Delete key;
• on underflow, may need to merge

In practice, some implementors just allow underflows to
happen…

skip

15-721 C. Faloutsos 29

CMU SCS

B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

1 3

6

7

9

13

<6

>6 <9 >9

skip

15-721 C. Faloutsos 30

CMU SCS

B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

1

6

7

9

13

<6

>6 <9 >9

skip

6

15-721 C. Faloutsos 31

CMU SCS

B-trees – Deletion

• Case1: delete a key at a leaf – no underflow
• Case2: delete non-leaf key – no underflow
• Case3: delete leaf-key; underflow, and ‘rich

sibling’
• Case4: delete leaf-key; underflow, and ‘poor

sibling’

skip

15-721 C. Faloutsos 32

CMU SCS

B-trees – Deletion

• Case1: delete a key at a leaf – no underflow
(delete 3 from T0)

1 3

6

7

9

13

<6

>6 <9 >9

skip

15-721 C. Faloutsos 33

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

1 3

6

7

9

13

<6

>6 <9 >9

Delete &
promote, ie:

skip

15-721 C. Faloutsos 34

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

1 3 7

9

13

<6

>6 <9 >9

Delete &
promote, ie:

skip

15-721 C. Faloutsos 35

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

1 7

9

13

<6

>6 <9 >9

Delete &
promote, ie:3

skip

15-721 C. Faloutsos 36

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

1 7

9

13

<3

>3 <9 >9
3

FINAL TREE

skip

7

15-721 C. Faloutsos 37

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

• Q: How to promote?
• A: pick the largest key from the left sub-tree

(or the smallest from the right sub-tree)

• Observation: every deletion eventually
becomes a deletion of a leaf key

skip

15-721 C. Faloutsos 38

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

1 7

9

13

<6

>6 <9 >9

Delete &
promote, ie:3

skip

15-721 C. Faloutsos 39

CMU SCS

B-trees – Deletion

• Case1: delete a key at a leaf – no underflow
• Case2: delete non-leaf key – no underflow
• Case3: delete leaf-key; underflow, and ‘rich

sibling’
• Case4: delete leaf-key; underflow, and ‘poor

sibling’

skip

15-721 C. Faloutsos 40

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1 3

6

7

9

13

<6

>6 <9 >9

Delete &
borrow, ie:

skip

15-721 C. Faloutsos 41

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1 3

6 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

Rich sibling

skip

15-721 C. Faloutsos 42

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’

• ‘rich’ = can give a key, without
underflowing

• ‘borrowing’ a key: THROUGH the
PARENT!

skip

8

15-721 C. Faloutsos 43

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1 3

6 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

Rich sibling

NO!!

skip

15-721 C. Faloutsos 44

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1 3

6 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

skip

15-721 C. Faloutsos 45

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1

3 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

6

skip

15-721 C. Faloutsos 46

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1

3 9

13

<3

>3 <9 >9

Delete &
borrow,
through the
parent

6

FINAL TREE

skip

15-721 C. Faloutsos 47

CMU SCS

B-trees – Deletion

• Case1: delete a key at a leaf – no underflow
• Case2: delete non-leaf key – no underflow
• Case3: delete leaf-key; underflow, and ‘rich

sibling’
• Case4: delete leaf-key; underflow, and ‘poor

sibling’

skip

15-721 C. Faloutsos 48

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

9

13

<6

>6 <9 >9

skip

9

15-721 C. Faloutsos 49

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

9<6

>6 <9 >9

skip

15-721 C. Faloutsos 50

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

9<6

>6 <9 >9

A: merge w/
‘poor’ sibling

skip

15-721 C. Faloutsos 51

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

• Merge, by pulling a key from the parent
• exact reversal from insertion: ‘split and push

up’ , vs. ‘merge and pull down’
• Ie.:

skip

15-721 C. Faloutsos 52

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

<6

>6

A: merge w/
‘poor’ sibling

9

skip

15-721 C. Faloutsos 53

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

<6

>6
9

FINAL TREE

skip

15-721 C. Faloutsos 54

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’
• -> ‘pull key from parent, and merge’
• Q: What if the parent underflows?
• A: repeat recursively

skip

10

15-721 C. Faloutsos 55

CMU SCS

B-tree deletion - pseudocode

DELETION OF KEY ’ K’
 locate key ’ K’ , in node ’ N’
 if(’ N’ is a non-leaf node) {
 delete ’ K’ from ’ N’ ;
 find the immediately largest key ’ K1’ ;
 /* which is guaranteed to be on a leaf node ’ L’ */
 copy ’ K1’ in the old position of ’ K’ ;
 invoke this DELETION routine on ’ K1’ from the leaf node ’ L’ ;
 else {
/* ’ N’ is a leaf node */
... (next slide..)

skip

15-721 C. Faloutsos 56

CMU SCS

B-tree deletion - pseudocode

/* ’ N’ is a leaf node */
 if(’ N’ underflows){
 let ’ N1’ be the sibling of ’ N’ ;
 if(’ N1’ is "rich"){ /* ie., N1 can lend us a key */
 borrow a key from ’ N1’ THROUGH the parent node;
 }else{ /* N1 is 1 key away from underflowing */
 MERGE: pull the key from the parent ’ P’ ,
 and merge it with the keys of ’ N’ and ’ N1’ into a new node;
 if(’ P’ underflows){ repeat recursively }
 }
 }

skip

15-721 C. Faloutsos 57

CMU SCS

B-trees in practice
In practice:
• no empty leaves;
• ptrs to records

1 3

6

7

9

13

<6

>6 <9 >9
theory

15-721 C. Faloutsos 58

CMU SCS

B-trees in practice
In practice:
• no empty leaves;
• ptrs to records

1 3

6

7

9

13

<6

>6 <9 >9
practice

15-721 C. Faloutsos 59

CMU SCS

B-trees in practice
In practice:

1 3

6

7

9

13

<6

>6 <9 >9

1
9

6

7
3

……Ssn

15-721 C. Faloutsos 60

CMU SCS

B-trees in practice
In practice, the formats are:
- leaf nodes: (v1, rp1, v2, rp2, … vn, rpn)
- Non-leaf nodes: (p1, v1, rp1, p2, v2, rp2, …)

1 3

6

7

9

13

<6

>6 <9 >9

11

15-721 C. Faloutsos 61

CMU SCS

Detailed overview

• B-trees - reminders
– definition
– search
– insertion
– (deletion)
– variations: B+trees, B*trees

• CC on B-trees - B-link-trees

15-721 C. Faloutsos 62

CMU SCS

B+ trees - Motivation

B-tree – print keys in sorted order:

1 3

6

7

9

13

<6

>6 <9 >9

15-721 C. Faloutsos 63

CMU SCS

B+ trees - Motivation

B-tree needs back-tracking – how to avoid it?

1 3

6

7

9

13

<6

>6 <9 >9

15-721 C. Faloutsos 64

CMU SCS

Solution: B+ - trees

• facilitate sequential ops

• They string all leaf nodes together

• AND

• replicate keys from non-leaf nodes, to make
sure every key appears at the leaf level

15-721 C. Faloutsos 65

CMU SCS

B+ trees

1 3

6

6

9

9

<6

>=6 <9 >=9

7 13

15-721 C. Faloutsos 66

CMU SCS

B+ tree insertion
INSERTION OF KEY ’ K’
 insert search-key value to ’ L’ such that the keys are in order;
 if (’ L’ overflows) {
 split ’ L’ ;
 insert (ie., COPY) smallest search-key value
 of new node to parent node ’ P’ ;
 if (’ P’ overflows) {
 repeat the B-tree split procedure recursively;
 /* Notice: the B-TREE split; NOT the B+ -tree */
 }
 }

12

15-721 C. Faloutsos 67

CMU SCS

B+-tree insertion – cont’ d

/* ATTENTION:
a split at the LEAF level is handled by

COPYING the middle key upstairs;
A split at a higher level is handled by PUSHING

the middle key upstairs
*/

15-721 C. Faloutsos 68

CMU SCS

B+ trees - insertion

1 3

6

6

9

9

<6

>=6 <9 >=9

7 13

Eg., insert ‘8’

15-721 C. Faloutsos 69

CMU SCS

B+ trees - insertion

1 3

6

6

9

9

<6

>=6 <9 >=9

7 13

Eg., insert ‘8’

8

15-721 C. Faloutsos 70

CMU SCS

B+ trees - insertion

1 3

6

6

9

9

<6

>=6 <9 >=9

7 13

Eg., insert ‘8’

8

COPY middle upstairs

15-721 C. Faloutsos 71

CMU SCS

B+ trees - insertion

1 3

6

6

9<6

>=6 <9
>=9

9 13

Eg., insert ‘8’

COPY middle upstairs

7 8

7

15-721 C. Faloutsos 72

CMU SCS

B+ trees - insertion

1 3

6

6

9<6

>=6 <9
>=9

9 13

Eg., insert ‘8’

COPY middle upstairs

7 8

7

Non-leaf overflow –
just PUSH the middle

13

15-721 C. Faloutsos 73

CMU SCS

B+ trees - insertion

1 3

6

6

<6

>=6
>=9

9 13

Eg., insert ‘8’

7 8

7

9

<7 >=7

<9

FINAL TREE

15-721 C. Faloutsos 74

CMU SCS

B*-tree

• In B-trees, worst case util. = 50%, if we
have just split all the pages

• how to increase the utilization of B - trees?

• ..with B* - trees!

15-721 C. Faloutsos 75

CMU SCS

B-trees and B*-trees

Eg., Tree T0; insert ‘2’

1 3

6

7

9

13

<6

>6 <9 >9

2

15-721 C. Faloutsos 76

CMU SCS

B*-trees: deferred split!
• Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

1 3

6

7

9

13

<6

>6 <9 >9

2

15-721 C. Faloutsos 77

CMU SCS

B*-trees: deferred split!
• Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

1 2

3

6

9

13

<3

>3 <9 >9

2

7

FINAL TREE

15-721 C. Faloutsos 78

CMU SCS

B*-trees: deferred split!
• Notice: shorter, more packed, faster tree
• It’ s a rare case, where space utilization and

speed improve together
• BUT: What if the sibling has no room for

our ‘lending’ ?

14

15-721 C. Faloutsos 79

CMU SCS

B*-trees: deferred split!
• BUT: What if the sibling has no room for

our ‘lending’ ?
• A: 2-to-3 split: get the keys from the

sibling, pool them with ours (and a key
from the parent), and split in 3.

• Details: too messy (and even worse for
deletion)

15-721 C. Faloutsos 80

CMU SCS

B-trees - Conclusions

• all B – tree variants can be used for any
type of index: primary/secondary, sparse
(clustering), or dense (non-clustering)

• All have excellent, O(logN) worst-case
performance for ins/del/search

• It’ s the prevailing indexing method

15-721 C. Faloutsos 81

CMU SCS

Detailed overview

• B-trees - reminders
• CC on B-trees - B-link-trees

– problem and past methods
– main idea
– algorithms and correctness proofs

15-721 C. Faloutsos 82

CMU SCS

Lehman and Yao – CC on B-trees

• “safe” node: node with <2k entries
• “unsafe” node: node with =2k entries
• Simple CC won’ t do. Why?

15-721 C. Faloutsos 83

CMU SCS

Example
���

� �

��������	
���

� �

������� ��	���

������

�

� ���

�

�

Transaction 1:
read x;
look for 15;
get ptr to y;

Transaction 2:
read x; read y;
insert 9
split y into y+y’

ERROR!!!

15-721 C. Faloutsos 84

CMU SCS

Example

Transaction 1:
read x;

look for 15;
get ptr to y;

Transaction 2:

read x;

read y;
insert 9
split y into y+y’

15

15-721 C. Faloutsos 85

CMU SCS

Previous B-tree CC algorithms

• What would you do?
• Can you find an algo, where “ readers” need

NO LOCKS?(!)

... ...

15-721 C. Faloutsos 86

CMU SCS

Previous B-tree CC algorithms

• S-locks and X-locks? (~[Samadi, ‘76])

... ...

unsafe

node

15-721 C. Faloutsos 87

CMU SCS

Previous B-tree CC algorithms

• S-locks and X-locks? (~[Samadi, ‘76])
– find highest affected node & X-lock it
– but: writers need to (temporarily) X-lock root!

... ...

15-721 C. Faloutsos 88

CMU SCS

Previous B-tree CC algorithms

• ‘intent’ locks?

... ...

insert(39)

39

15-721 C. Faloutsos 89

CMU SCS

Previous B-tree CC algorithms

• actually, S-locks, X-locks, and ‘warning-
locks’ (‘writer-X-locks’)

... ...

get ‘warning lock’

15-721 C. Faloutsos 90

CMU SCS

Previous B-tree CC algorithms

• actually, S-locks, X-locks, and ‘warning-
locks’

... ...

‘safe’: release

warning lock

for parent

16

15-721 C. Faloutsos 91

CMU SCS

Previous B-tree CC algorithms

• actually, S-locks, X-locks, and ‘warning-
locks’

... ...
... and get w.l. here

15-721 C. Faloutsos 92

CMU SCS

Previous B-tree CC algorithms

• actually, S-locks, X-locks, and ‘warning-
locks’

... ...

15-721 C. Faloutsos 93

CMU SCS

Previous B-tree CC algorithms

• actually, S-locks, X-locks, and ‘warning-
locks’

... ...

leaf is safe -

get X-lock for leaf

and release w.l

15-721 C. Faloutsos 94

CMU SCS

Previous B-tree CC algorithms

• actually, S-locks, X-locks, and ‘warning-
locks’

... ...

leaf is safe -

get X-lock for leaf

and release w.l

15-721 C. Faloutsos 95

CMU SCS

Previous B-tree CC algorithms

• actually, S-locks, X-locks, and ‘warning-
locks’

... ...

leaf is safe -

get X-lock for leaf

and release w.l

15-721 C. Faloutsos 96

CMU SCS

Previous B-tree CC algorithms

• Samadi 1976
– lock the whole subtree of affected node

• Bayer & Schkolnick 1977
– parameters on degree/type of consistency

required
– writer-exclusion locks (readers may proceed)

upper
– exclusive locks on modified nodes

17

15-721 C. Faloutsos 97

CMU SCS

Detailed overview

• B-trees - reminders
• CC on B-trees - B-link-trees

– problem and past methods
– main idea
– algorithms and correctness proofs

15-721 C. Faloutsos 98

CMU SCS

Blink-tree

• Slightly MODIFY the B-tree structure
• Readers can ALWAYS proceed (!!)
• Use some redundancy, so that readers can

always reach a valid B-tree
• Specifically: add right-link pointer on every

node, pointing to the next node on the same
level (rightmost nodes: null pointers)

15-721 C. Faloutsos 99

CMU SCS

Blink-tree

• right-link pointer, so that the split for ‘a’
goes like:

f

a c

15-721 C. Faloutsos 100

CMU SCS

Blink-tree

• right-link pointer, so that the split for ‘a’
goes like:

f

a c

b’

15-721 C. Faloutsos 101

CMU SCS

Blink-tree

• right-link pointer, so that the split for ‘a’
goes like:

f

a’ c

b’

(*)

15-721 C. Faloutsos 102

CMU SCS

Blink-tree

• right-link pointer, so that the split for ‘a’
goes like:

f’

a’ c

b’

18

15-721 C. Faloutsos 103

CMU SCS

Blink-tree

• right-link pointer, so that the split for ‘a’
goes like:

f’

a’ c

b’
Notice: at ANY point, a reader sees a valid B(link) tree!

(Even in state (*), if we are careful!)
15-721 C. Faloutsos 104

CMU SCS

Blink-tree

Details:
#1) legal to have “ left twin” and no parent

(when will this happen?)

15-721 C. Faloutsos 105

CMU SCS

Blink-tree

Details:
#2) other change in the B+ tree structure?

p0 K1 p1 ... pn-1 Kn pn plink

15-721 C. Faloutsos 106

CMU SCS

Blink-tree

Details:
#2) other change in the B+ tree structure?
A: highest Key value

p0 K1 p1 ... pn-1 Kn pn plink

Khigh

15-721 C. Faloutsos 107

CMU SCS

Blink-tree

A: highest Key value (in the sub-tree)
Q: Why?

15-721 C. Faloutsos 108

CMU SCS

Blink-tree

A: highest Key value
Q: Why?
A: so that, on search, we can detect case (*)

and fetch the right twin
f

a’ c

b’

(*)

19

15-721 C. Faloutsos 109

CMU SCS

Advantages

• Allows for “ temporary fix” until all pointers
are added correctly

• Link pointers would be used infrequently
– because splitting a node is a “ special case”

• “ Level traversal” comes for free as a side
effect

15-721 C. Faloutsos 110

CMU SCS

Detailed overview

• B-trees - reminders
• CC on B-trees - B-link-trees

– problem and past methods
– main idea
– algorithms and correctness proofs

15-721 C. Faloutsos 111

CMU SCS

Search

• No locks needed for reads
• Just move right as well as down

40 99

35 40 47 99

51 9941 4736 40

15-721 C. Faloutsos 112

CMU SCS

Search

• No locks needed for reads
• Just move right as well as down

40 99

35 40 47 99

51 9941 4736 40

normal B+ tree:
<=40

<=35

40< <=99

15-721 C. Faloutsos 113

CMU SCS

Search

• case (*) - eg., look for ‘39’

40 99

47 9935 38

39 4038

f

a’ c

b’

15-721 C. Faloutsos 114

CMU SCS

Search

• case (*) - eg., look for ‘39’

40 99

47 9935 38

39 4038

<=40

20

15-721 C. Faloutsos 115

CMU SCS

Search

pseudo code:
– descend to leaf level (visiting right-twins,

whenever case (*) appears)
– keep moving right, if neccesary

 more details: in book.
x = scannode(v,A) : scans page A, for value v

and returns the correct pointer (link or not)

15-721 C. Faloutsos 116

CMU SCS

Insertion

• Well-ordered locks
• locks are requested bottom-up
• needs at most 3 locks at a time (and,

usually, 1 or 2)
• Use stack to remember ancestors
• Split while preserving links
in more detail:

15-721 C. Faloutsos 117

CMU SCS

Insertion

descend to leaf page ‘A’
// B+-tree - all keys are also at the leaf level!
keeping track of parents in a stack

lock(A)
if ‘A’ is safe,

insert v into ‘A’ ; unlock(A)
else

15-721 C. Faloutsos 118

CMU SCS

Insertion (cont’ d)

else // ‘A’ is not safe - will split
get extra page B
re-distribute contents of ‘A’ into ‘newA’ and ‘B’
write(B); then write(newA)
// insert correct value to parent node ‘F’
// may need to scan right-links, if ‘F’ has split in the

meanwhile!
lock(F); unlock(A)
split ‘F’ recursively, if needed

f

a’ c

b’

15-721 C. Faloutsos 119

CMU SCS

Deletions

• ignore underflows; no merging
• reorganize, if too many nodes underflow

15-721 C. Faloutsos 120

CMU SCS

Detailed overview

• B-trees - reminders
• CC on B-trees - B-link-trees

– problem and past methods
– main idea
– algorithms
– correctness proofs

21

15-721 C. Faloutsos 121

CMU SCS

Proofs - observations

• THM: deadlocks are impossible
– because locks are ordered - top to bottom; left

to right

• Lemma: readers are always handled
correctly (thanks to the right-links!)

15-721 C. Faloutsos 122

CMU SCS

Conclusions

• B+ trees: very popular
• B-link trees allow high concurrency

– 3 locks at most;
– no locks needed for readers
– no deadlocks!

