
1

CMU SCS

15-721 DB Sys. Design & Impl.

Locking and Consistency

Christos Faloutsos
www.cs.cmu.edu/~christos

15-721 C. Faloutsos 2

CMU SCS

Roadmap
1) Roots: System R and Ingres
2) Implementation: buffering, indexing, q-opt
3) Transactions: locking, recovery

locking & degrees of consistency
optimistic C.C
B-trees and locking
...

4) Distributed DBMSs
5) Parallel DBMSs: Gamma, Alphasort

15-721 C. Faloutsos 3

CMU SCS

Paper

Granularity of locks and degrees of
consistency in a shared data base

Gray, Lorie, Putzolu, Traiger
IFIP Working Conf. On Modelling of DBMS

pp 1-29, 1997

15-721 C. Faloutsos 4

CMU SCS

Detailed Roadmap

• Reminders
– transactions / ACID properties
– serializability; Locking; 2PL

• Multiple Granularity locks
• Degrees of consistency

15-721 C. Faloutsos 5

CMU SCS

Reminders:

• (see undergrad book, eg., Silberschatz, Korth + Sudarshan)

• transaction - DFN?
• ACID properties
• serializability - DFN
• locking and 2PL
• (deadlocks)

15-721 C. Faloutsos 6

CMU SCS

Transactions - dfn

= unit of work, eg.
move $10 from savings to checking

Atomicity (all or none)
Consistency
Isolation (as if alone)
Durability

recovery

concurrency
control

2

15-721 C. Faloutsos 7

CMU SCS

Isolation

other transactions should not affect us
counter-example: lost update problem:

read(N)
 read(N)

N = N - 1
 N=N-1
 write(N)
 write(N)

1
1

15-721 C. Faloutsos 8

CMU SCS

Interleaved execution
Read(X)

X=X-10
Write(X)

Read(X)

Read(Y)
Y=Y+10
Write(Y)

X = X * 1.1
Write(X)
Read(Y)
Y=Y*1.1
Write(Y)

‘correct’?

time

15-721 C. Faloutsos 9

CMU SCS

How to define correctness?

A: Serializability:
A schedule (=interleaving) is ‘correct’ if it is

serializable,
ie., equivalent to a serial interleaving
(regardless of the exact nature of the updates)
examples and counter-examples:

15-721 C. Faloutsos 10

CMU SCS

‘Lost update’ case

T1
Read(N)

T2

Read(N)
N=N-1

N= N-1

Write(N)
Write(N)

How to check
for correctness?

15-721 C. Faloutsos 11

CMU SCS

Precedence graph
T1
Read(N)

T2

Read(N)
N=N-1

N= N-1

Write(N)
Write(N) T1

T2N

N

Cycle -> not serializable

RW, WR, WW
conflicts

15-721 C. Faloutsos 12

CMU SCS

(counter) example: ‘Inconsistent
analysis’

T1
Read(A)
A=A-10
Write(A)

T2

Read(A)
Sum = A
Read(B)
Sum += B

Read(B)
B=B+10
Write(B)

Precedence graph?

3

15-721 C. Faloutsos 13

CMU SCS

Locking

• Q: how to automatically create correct
interleavings?

• A: locks to the rescue
– lock(X); unlock(X)
– exclusive/shared locks; compatibility matrix
– locks are not enough:

15-721 C. Faloutsos 14

CMU SCS

Locks are not enough

• (counter) examle?

15-721 C. Faloutsos 15

CMU SCS

‘Inconsistent analysis’

T1
Read(A)
A=A-10
Write(A)

T2

Read(A)
Sum = A

 Read(B)
Sum += B

Read(B)
B=B+10
Write(B)

Precedence graph?

time

15-721 C. Faloutsos 16

CMU SCS

‘Inconsistent analysis’ – w/ locks

time T1

L(A)

Read(A)

...

U(A)

T2

L(A)

....

L(B)

....

the problem
remains!

Solution??

15-721 C. Faloutsos 17

CMU SCS

General solution:

• Protocol(s)
• Most popular one: 2 Phase Locking (2PL)
• X-lock version: transactions issue no lock

requests, after the first ‘unlock’
THEOREM: if all transactions obey 2PL ->

all schedules are serializable (*)

* but deadlocks are possible
15-721 C. Faloutsos 18

CMU SCS

2PL – X/S lock version

Q: how to modify 2PL, for the
shared/exclusive lock case?

4

15-721 C. Faloutsos 19

CMU SCS

2PL – X/S lock version

A: transactions issue no lock/upgrade request,
after the first unlock/downgrade

In general: ‘growing’ and ‘shrinking’ phase

Privileges/
locks

time
15-721 C. Faloutsos 20

CMU SCS

2PL – observations

- limits concurrency
- may lead to deadlocks (what to do, then?)
- 2PLC (keep locks until ‘commit’)

Q1: lock granularity?
Q2: how to trade-off correctness for

concurrency?

15-721 C. Faloutsos 21

CMU SCS

Detailed Roadmap

• Reminders
– transactions / ACID properties
– serializability; Locking; 2PL

• Multiple Granularity locks
• Degrees of consistency

15-721 C. Faloutsos 22

CMU SCS

Motivation

- lock granularity – field? record? page?
table?

- Pros and cons?
- (Ideally, each transaction should obtain a

few locks)

15-721 C. Faloutsos 23

CMU SCS

Multiple granularity

• Eg:

attr1 attr1attr2

record-nrecord2record1

Table2Table1

DB

15-721 C. Faloutsos 24

CMU SCS

what types of locks?

• X/S locks for leaf level
• higher levels? X/S are too restrictive!

– Why not go directly to the proper level?

5

15-721 C. Faloutsos 25

CMU SCS

what types of locks?

• X/S locks for leaf level +
• ‘intent’ locks, for higher levels
• IS: intent to obtain S-lock underneath
• IX: intent X-lock ...
• S: shared lock for this level
• X: ex- lock for this level
• (SIX: shared lock here; + IX)

15-721 C. Faloutsos 26

CMU SCS

Protocol
- each xact obtains appropriate lock at highest

level
- proceeds to desirable lower levels

- must have IS/IX lock on parent, for IS/S/IX
lock on children

- must have IX/SIX lock on parent, for IX/X/SIX
on childre

- when done, unlock items, bottom-up

15-721 C. Faloutsos 27

CMU SCS

Compatibility matrix

X

SIX

S

IX

IS

XSIXSIXIS T2 wants
T1 has

15-721 C. Faloutsos 28

CMU SCS

Examples

• T1 wants to update “Smith”s record
– IX on DB
– IX on EMPLOYEE table
– X on “Smith”s record

15-721 C. Faloutsos 29

CMU SCS

• T2 wants to give 10% raise to everybody
that is below average salary
– IX on DB
– SIX on EMPLOYEE
– X on appropriate employee tuples

• OR:
– IX on DB
– X on EMPLOYEE

Examples - cont’ d

15-721 C. Faloutsos 30

CMU SCS

Consistency

DFN: “Dirty” data: updates of un-committed
xacts

DFN: long locks: held until commit

Q: what is the impact of long/short S-locks,
and long X-locks on correctness

6

15-721 C. Faloutsos 31

CMU SCS

Consistency levels:

Degree 0: short write locks on updated items
Degree 1: long write locks on updated items

("long" means to hold until the transaction finishes)

Degree 2: long write locks on updated items, and
short read locks on items read

Degree 3: long write locks on updated items, and
long read locks on items read

15-721 C. Faloutsos 32

CMU SCS

Consistency levels:

(no locks: ERRORS!)
Degree 0: short write locks on updated items
-> we may update uncommitted data ->
cascaded aborts

15-721 C. Faloutsos 33

CMU SCS

Consistency levels:

Degree 0: short write locks on updated items
Degree 1: long write locks on updated items

-> we may read uncommitted data

15-721 C. Faloutsos 34

CMU SCS

Consistency levels:

Degree 0: short write locks on updated items
Degree 1: long write locks on updated items
Degree 2: long write locks on updated items, and

short read locks on items read
-> we read clean data, but repeated reads may

give different results

15-721 C. Faloutsos 35

CMU SCS

Consistency levels:

Degree 0: short write locks on updated items
Degree 1: long write locks on updated items
Degree 2: long write locks on updated items, and

short read locks on items read
Degree 3: long write locks on updated items, and

long read locks on items read
-> (= 2PLC): ‘correct’

15-721 C. Faloutsos 36

CMU SCS

Consistency Levels

• Concurrency increases conversely with
‘correctness’

• Degree 3 is the default.

7

15-721 C. Faloutsos 37

CMU SCS

Conclusions

• (locks and 2PL for consistency)
• multiple granularity locks
• levels of consistency

