
1

CMU SCS

15-721 DB Sys. Design & Impl.

Buffering - LRU-K

Christos Faloutsos
www.cs.cmu.edu/~christos

15-721 C. Faloutsos 2

CMU SCS

Roadmap
1) Roots: System R and Ingres
2) Implementation: buffering, indexing, q-opt
3) Transactions: locking, recovery
4) Distributed DBMSs
5) Parallel DBMSs: Gamma, Alphasort
6) OO/OR DBMS
7) Data Analysis - data mining
8) Benchmarks
9) vision statements
 extras (streams/sensors, graphs, multimedia, web, fractals)

15-721 C. Faloutsos 3

CMU SCS

Detailed Roadmap
1) Roots: System R and Ingres
2) Implementation: buffering, indexing, q-opt

OS and DBMSs
R-trees, z-ordering
buffer management: DBMIN
buffer management: LRU-K
...

3) Transactions: locking, recovery

15-721 C. Faloutsos 4

CMU SCS

Reference

E. O’Neil, P. O’Neil, G. Weikum: The LRU-K Page
Replacement Algorithm for Database Disk
Buffering, SIGMOD 1993, pp. 297-306

15-721 C. Faloutsos 5

CMU SCS

Outline of LRU-K

• Motivation
• Limitations of previous approaches
• Basic concepts
• Addressing realistic problems
• Algorithm

15-721 C. Faloutsos 6

CMU SCS

Motivation
GUESS when the page will be referenced again.
Problems with LRU:?

2

15-721 C. Faloutsos 7

CMU SCS

Motivation
GUESS when the page will be referenced again.
Problems with LRU:

– Makes decision based on too little info
– Cannot tell between frequent/infrequent refs on time
– System spends resources to keep useless stuff

around

15-721 C. Faloutsos 8

CMU SCS

Example Scenario 1
• Relation CUSTOMER with 20,000 tuples
• Clustered B-tree on CUST_ID, 20b/key
• 4K pages, 4000 bytes useful space
• 100 leaf pages
• Many users
• References L1, R1, L2, R2, L3, R3, …
• Probability to ref Li is .005, to ref Ri is .00005

• LRU?

15-721 C. Faloutsos 9

CMU SCS

Example Scenario 2

• Relation R with 1,000,000 tuples
• A bunch of processes ref 5000 (0.5%)

tuples
• A few batch processes do sequential scans

• LRU?

15-721 C. Faloutsos 10

CMU SCS

Outline of LRU-K

• Motivation
• Limitations of previous approaches
• Basic concepts
• Addressing realistic problems
• Algorithm

15-721 C. Faloutsos 11

CMU SCS

Related Work
• Page pool tuning (I.e., domain separation)

– Needs constant recalibration
– Cannot handle locality (hot spot patterns)changes
– Hard to program

• Query execution plan analysis (hot set, DBMIN, hint-
passing approaches)
– Info from the query optimizer
– Works well when same plan rereferences

• DBMIN is best of the above
– But multiuser breaks it (optimizer can’ t detect overlaps)

15-721 C. Faloutsos 12

CMU SCS

Outline of LRU-K

• Motivation
• Limitations of previous approaches
• Basic concepts
• Addressing realistic problems
• Algorithm

3

15-721 C. Faloutsos 13

CMU SCS

Basic concepts

Idea: Take into account history: last K
references

(Classic LRU: K=1 (LRU-1))
(keep track of history, and try to predict)

15-721 C. Faloutsos 14

CMU SCS

Basic concepts (cont’ d)

Parameters:
• Pages N={1,2,…,n}
• Reference string r1, r2, …, rt, …
• rt=p for page p at time t
• bp = probability that rt+1=p
• Time between references of p: Ip = 1/bp

SKIP

15-721 C. Faloutsos 15

CMU SCS

Algorithm
• Backward K-distance bt(p,K):

#refs from t back to the Kth most recent reference to p
• bt(p,K) = � if Kth ref doesn’ t exist
• Algorithm:

Drop page p w/ max Backward K-distance bt(p,K)
• Ambiguous when infinite (use subsidiary policy, e.g.,

LRU)
• LRU-2 Is better that LRU-1 – Why? (Ip)

15-721 C. Faloutsos 16

CMU SCS

But:

• There are subtle problems:

15-721 C. Faloutsos 17

CMU SCS

Realistic problems
• P1: Early page replacement

– Page bt(p,K) is infinite, so drop
– But what if it is a rare but “bursty” case?

• P2: Page reference retained information
– For K>1- page may be gone / its information still

around

15-721 C. Faloutsos 18

CMU SCS

P1: Early page replacement

• Should we worry about it?

4

15-721 C. Faloutsos 19

CMU SCS

P1: Early page replacement

• Should we worry about it?
• A: yes - correlated references! Examples?

15-721 C. Faloutsos 20

CMU SCS

Correlated References
• (1) Intra-transaction

– E.g., read tuple/update tuple)

• (2) Transaction/Retry
– Rolled back and restarted

• (3) Intra-process
– A process references page via 2 transactions
– E.g., update RIDs 1-10, commit, update RIDs 11-20

• (4) Inter-process
– Two processes reference the same page independently

15-721 C. Faloutsos 21

CMU SCS

Outline of LRU-K

• Motivation
• Limitations of previous approaches
• Basic concepts
• Addressing realistic problems

– P1: Early page replacement
– P2: reference retained information

• Algorithm

15-721 C. Faloutsos 22

CMU SCS

Addressing Correlation
• Problem: For example, assume (1) – read/update

– Algorithm sees p (read)
– Drops it (infinite bt(p,K)) (wrong)
– Sees it again (update)
– Keeps it around (wrong again)

• Should take into account only non-correlated refs
• But how do we know?

15-721 C. Faloutsos 23

CMU SCS

Addressing Correlation (cont.)
• Solution: “Correlated Reference Period” by

process
– No penalty or credit for refs within CRP
– Ip: interval from end of one CRP to begin of the next

Ip

CRP

15-721 C. Faloutsos 24

CMU SCS

Outline of LRU-K

• Motivation
• Limitations of previous approaches
• Basic concepts
• Addressing realistic problems

– P1: Early page replacement
– P2: reference retained information

• Algorithm

5

15-721 C. Faloutsos 25

CMU SCS

P2: Reference Retained
Information

• Algorithm needs to keep info for pages that may
not be resident anymore, e.g.,

p is referenced and comes in for the first time
bt(p.2) = infinity, p is dropped
p is referenced again
if no info on p is retained, p may be dropped again

15-721 C. Faloutsos 26

CMU SCS

Reference Retained Information
(cont’ d)

• “Retained Information Period”
– Period after which we drop information about

page p
– “Five minute rule” suggests RIP

• Page history information HIST(p) with <=2
refs to p

15-721 C. Faloutsos 27

CMU SCS

Data Structures for LRU-K

HIST(p) – history control block of page p
=Times of K more recent references to p) –

(correlated)

LAST(p) – time of most recent ref to page p
correlated references OK

• Maintained for all pages p: Bt(p,K) < RIP
• Purged asynchronously

15-721 C. Faloutsos 28

CMU SCS

Outline of LRU-K

• Motivation
• Limitations of previous approaches
• Basic concepts
• Addressing realistic problems

– P1: Early page replacement
– P2: reference retained information

• Algorithm

15-721 C. Faloutsos 29

CMU SCS

LRU-K Algorithm
If p is in the buffer { // update history of p

if (t-LAST(p)) > CRP { // uncorrelated reference
// close correlated period and start new
for i=K-1 to 1
 move HIST(p,i) into slot HIST(p,i+1)
HIST(p,1)=t

}
LAST(p)=t

}
15-721 C. Faloutsos 30

CMU SCS

LRU-K Algorithm (cont.)
else { // select replacement victim

min=t
for all pages q in buffer {

if t-LAST(q)>CRP // eligible for replacement
and HIST(q,K)<min) { // max Backward-K

 victim=q
 min=HIST(q,K)
}

if victim dirty write back before dropping

6

15-721 C. Faloutsos 31

CMU SCS

LRU-K Algorithm (cont.)
fetch p into the victim’ s buffer

if no HIST(p) exists {
allocate HIST(p)
for i=2 to K HIST(p,i)=0

} else {
for i=2 to K HIST(p,i)= HIST(p,i-1)

}
HIST(p,1)=t // last non-correlated reference
LAST(p)=t // last reference

}
15-721 C. Faloutsos 32

CMU SCS

Two-pool Experiment
• Two disk page pools, N1=100 / N2=10,000 pages
• Models alternating index/record references
• Results

– LRU-1 needs 2-3 times bigger BP to reach LRU-2 hit
rate

– LRU-2 really close to LRU-3 and optimal

15-721 C. Faloutsos 33

CMU SCS

Single-pool / Random Access
• One disk page pool, N=1000 pages
• Zipf(a,b) distribution of reference frequences

(fraction a of references accesses fraction b of pages)

• Results
– LRU-2 still wins, although not by as much (milder

skew)

15-721 C. Faloutsos 34

CMU SCS

Real OLTP Workload
• Traces from bank OLTP Xtion references
• 470,000 page references, 20GB database
• Compared to LFU as well
• Results

– LRU-2 beats LRU-1
– LRU-2 also beats LFU (why?)

15-721 C. Faloutsos 35

CMU SCS

Conclusions
• LRU not good enough
• LFU has limitations
• Other algorithms

– too complex
– can’ t cope with change/multiple users

• LRU-K works well
• Really, LRU-2 is most beneficial
• Today: use simple algorithms, e.g., Oracle
http://www.dbatoolbox.com/WP2001/tuning/multiple_buffer

_pools.pdf
15-721 C. Faloutsos 36

CMU SCS

Addendum: 2Q

[Theodore Johnson, Dennis Shasha : 2Q: A Low
Overhead High Performance Buffer Management
Replacement Algorithm. VLDB 1994 : 439-450]

(It has an excellent description of LRU-K!)

7

15-721 C. Faloutsos 37

CMU SCS

2Q - Idea

• Simpler record-keeping/tuning (CPR, RIP)
• Heart of the idea?

15-721 C. Faloutsos 38

CMU SCS

2Q - Idea

• Simpler record-keeping/tuning (CPR, RIP)
• Heart of the idea: Instead of keeping

statistics for LRU-2, use two queues
– Am: one LRU for ‘hot’ pages
– A1: one FIFO for ‘not-yet-proven-hot’ pages
– if a page from A1 is re-referenced, move to Am

• Like LRU-2: ‘scan resistant’

15-721 C. Faloutsos 39

CMU SCS

2Q - subtleties

• Scan: each page is referenced once; goes in
and out of the A1 queue, FIFO style

• But: there is still an issue - which one?

15-721 C. Faloutsos 40

CMU SCS

2Q - subtleties

• How to choose the relative sizes of A1 and
Am queues

• (fixed division works fine for synthetic data,
but NOT for real workloads, where the hot-
set size changes dynamically)

• How to resolve the issue?

15-721 C. Faloutsos 41

CMU SCS

2Q - final method

• Idea#1: 3 queues:
– Am: for ‘hot’ pages
– A1in: for pages of potentially correlated

accesses
– A1out: for pages that have been accessed once

• Idea#2:
– A1out consists of page-ids only - not pages-

slots!

15-721 C. Faloutsos 42

CMU SCS

2Q - final method

A1in A1out

requested
swapped out

Am

‘unknown’

requested

requested
requested

swapped out

swapped out

8

15-721 C. Faloutsos 43

CMU SCS

2Q - drill

• is 2Q ‘scan resistant’ ?
• r1, r2, r3, r4, … , r1000 - how do its queues

behave?

15-721 C. Faloutsos 44

CMU SCS

2Q - drill

• is 2Q ‘scan resistant’ ?
• r1, r2, r3, r4, … , r1000 - how do its queues

behave?
• A:

– Am will be empty (-> available to others)
– A1in will have the latest pages (ri, r(i-1), …)
– A1out will have pointers for (most of) the rest

15-721 C. Faloutsos 45

CMU SCS

Conclusion: it works as well as
LRU-2

– with less record keeping
– faster list processing and
– fewer parameters to tune:

• 25% of buffers to Ain;
• A1out should have enough pointers for 50% of

buffers

