

鲑3 IT Bombay	Carnegie Mellon
Thanks	
- Deepayan Chakrabarti (CMU)	
- Michalis Faloutsos (UCR)	
- George Siganos (UCR)	
	${ }^{2}$

Outline
Part 1: Topology, `laws' and generators
Part 2: PageRank, HITS and eigenvalues Mellon
Part 3: Pairs, influence, communities
Motivating questions:
KDD04
©2004. S. Chakrabarti and. F.loutoss

Part 1: Topology and generators

- What do real graphs look like?
- What properties of nodes, edges are important to model?
- What local and global properties are important to measure?
- How to model and generate realistic graphs?

KDD04

Part 2: PageRank, HITS and eigenvalues

- How important is a node?
- Who is the best person/computer to immunize against a virus?
- Who is the best customer to advertise to?
- Who originated a raging rumor?

Part 3: Pairs, influence and communities

- How similar are two nodes?
- What does it mean to search for a node or a neighborhood?
- How do nodes influence their neighbors?
- Is "influence" a verb or a noun?

Outline

Part 1: Topology, 'laws' and generators

- What properties of nodes, edges are important to model?
- What local and global properties are important to measure?
- How to generate realistic graphs?

Part 3: Pairs, influence, communities

Why should we care?

- A1: extrapolations: how will the
Internet/Web look like next year?
- A2: algorithm design: what is a realistic
network topology,

- to try a new routing protocol?
- to study virus/rumor propagation, and
immunization?
KDDo4

		Carnegie Mellon
Outline		
Part 1: Topology, 'laws' and generators		
\square - 'Laws' and patterns		
- Generators		
- Tools		
Part 2: PageRank, HITS and eigenvalues		
Part 3: Pairs, influence, communities		
${ }^{\text {KDD }} 4$	-2004, S. Chakrabari ind C. Falousos	${ }^{17}$

 Why should we care? (cont'd)

Carnegie Mellon

- A3: Sampling: How to get a 'good' sample of a network?
- A4: Abnormalities: is this sub-graph / subcommunity / sub-network 'normal'? (what is normal?)

Laws and patterns

Real graphs are NOT random!!

- Diameter
- in- and out- degree distributions
- other (surprising) patterns

（eq）IIT Bombay
 Carnegie Mellon
 III．Eigenvalues

－Let A be the adjacency matrix of graph
－The eigenvalue λ is：
－$A \underline{v}=\lambda \underline{v}$ ，where \underline{v} some vector
－Eigenvalues are strongly related to graph topology

IV．The Node Neighborhood

－$N(h)=\#$ of pairs of nodes within h hops

IV．The Node Neighborhood

－ Q ：average degree $=3$－how many neighbors should I expect within $1,2, \ldots h$ hops？
－Potential answer：
1 hop－＞ 3 neighbors
2 hops $->3 * 3$

h hops -> 3^{h}

KDD04

III．Eigenvalues

MUCH more on eigenvalues：in Part 2

III．Power－law：eigen E

Eigenvalue

－Eigenvalues in decreasing order（first 20）
－［Mihail＋，02］：$R=2$＊E

IV．The Node Neighborhood

－ Q ：average degree $=3$－how many neighbors should I expect within $1,2, \ldots h$ hops？
－Potential answer
1 hop－＞ 3 neighbors
2 hops $->3$＊ 3

h hops－＞ $3^{\text {h }}$

Observation

－Q：Intuition behind＇hop exponent＇？
－A：‘intrinsic＝fractal dimensionality’ of the network

KDD04

But：

－Q1：How about graphs from other domains？
－Q2：How about temporal evolution？
 Pairs of nodes as a function of hops $N(h)=h^{H}$

	Carnegie Mellon

Part 1: Topology, 'laws' and generators

- 'Laws' and patterns
- Power laws for degree, eigenvalues, hop-plot
- ???
- Generators
- Tools

Part 2: PageRank, HITS and eigenvalues
Part 3: Pairs, influence, communities

KDD04
© 2004, S. Chakrabarti and C. Faloutsos
39
KDD04
© 2004. S. Chakrabarti and C. Faloutsos
Carnegie Mellon
Any other 'laws'?
Yes!

40

Any other 'laws'?

Yes!

- Small diameter (~ constant!) -
- six degrees of separation / 'Kevin Bacon' - small worlds [Watts and Strogatz]
- Bow-tie, for the web [Kumar+ '99]
- IN, SCC, OUT, 'tendrils'
- disconnected components

Part 1: Topology, 'laws' and generators

- 'Laws' and patterns
- Generators
- Tools

Part 2: PageRank, HITS and eigenvalues
Part 3: Pairs, influence, communities

	Carnegie Mellon

- Figure out the degree distribution (eg., ‘Zipf')
- Assign degrees to nodes
- Put edges, so that they match the original degree distribution
(O2004, s. Chakrabarti and C. Faloutsos

Process-based (cont'd)

- [Fabrikant+, '02]: H.O.T.: connect to closest, high connectivity neighbor
- [Pennock+, ‘02]: Winner does NOT take all

E-R model \& Phase transition

- vary avg degree D
- watch $\mathrm{Pc}=$ Prob(there is a giant connected component)
- How do you expect it to be?

Pc

Process-based

- Barabasi; Barabasi-Albert: Preferential attachment -> power-law tails!
- 'rich get richer'
- [Kumar+]: preferential attachment + mimick
- Create 'communities'

by construction:
- rich-get-richer for in-degree
- . \qquad for out-degree
- communities within communities and
- small diameter

綯发 IT Bombay		Mel
	Resources	
Generators： －RMAT（deepay＠cs．cmu．edu） －BRITE http：／／www．cs．bu．edu／brite／ －INET：http：／／topology．eecs．umich．edu／inet		
${ }_{\text {kDD }} 4$		${ }^{63}$

萄 IT Bombay		Mell
Outline		
Part 1：Topology，｀laws＇and generators －＇Laws＇and patterns －Generators －Tools		
Part 2：PageRank，HITS and eigenvalues Part 3：Pairs，influence，communities		


```
    Carnegie Mellon
```

Conclusions, cont ${ }^{\prime}$ d

Tools
－Power laws－rank／frequency plots
－Self－similarity／recursion／fractals
－＇correlation integral＇$=$ hop－plot

Other resources

Visualization－graph algo＇s：
－Graphviz：http：／／www．graphviz．org／
－pajek：http：／／vlado．fmf．uni－ lj．si／pub／networks／pajek／

Kevin Bacon web site： http：／／www．cs．virginia．edu／oracle／

On		
		Carnegie Mellon
	Outline	

Part 1：Topology，＇laws＇and generators
－＇Laws＇and patterns
－Generators
－Tools：power laws and fractals
－Why so many power laws？
－Self－similarity，power laws，fractal dimension

- Q1: Why so many?
- A1:
- Q2: Are they only in graph-related settings?
- A2:

A famous power law: Zipf's law

\log (rank)

KDD04

```
5鹳 IIT Bombay
    Carnegie Mellon
Power laws
```

- Q1: Why so many?
- A1: self-similarity; 'rich-get-richer'
- Q2: Are they only in graph-related settings?
- A2: NO!

5ing IIT Bombay

 Carnegie MellonPower laws, cont'ed

- length of file transfers [Bestavros+]
- web hit counts [Huberman]
- Click-stream data [Montgomery+01]

Observation \quad Carnegie Mellon
- Q: Intuition behind 'hop exponent'?
- A: 'intrinsic=fractal dimensionality' of the network

KDD04

Non-integer dimensionality??

- Q3: How is it possible?
- A3: Through recursion!
- Q4: What does it mean?
- A4: There are groups (quasi-cliques / communities) in every scale
For example: a famous set of points:

Non-integer dimensionality??

- Q3: How is it possible?
- A3:
- Q4: What does it mean?
- A4:
\log (\#pairs)

(in
Carnegie Mellon
Definitions (cont'd)
- Paradox: Infinite perimeter ; Zero area!
- 'dimensionality': between 1 and 2
- actually: $\log (3) / \log (2)=1.58 \ldots$

(2-d (Plane)

ETY IIT Bombay
Carnegie Mellon

Conclusions

- Real settings/graphs: skewed distributions
- 'mean' is meaningless
- slope of power law, instead

Conclusions: Tools:

- rank-frequency plot (a’la Zipf)
- NCDF, PDF in log-log
- Correlation integral (= neighborhood function)

KDD04

Conclusions (cont'd)

- Recursion/self-similarity
- May reveal non-obvious patterns (e.g., bow-ties within bow-ties within bow-ties) [Dill+, '01]

"To iterate is human, to recurse is divine"

References, COnt' d
- [Fabrikant+, '02] A. Fabrikant, E. Koutsoupias, and C.H.

Papadimitriou. Heuristically Optimized Trade-offs: A New
Paradigm for Power Laws in the Internet. ICALP, Malaga,
Spain, July 2002
-
[FFF, 99] M. Faloutsos, P. Faloutsos, and C. Faloutsos, "On
power-law relationships of the Internet topology," in
SIGCOMM, 1999.

© 2004, s. Chakrabarti and c. Faloutsos
References, COnt' d
• [Leland+, '94] W. E. Leland, M.S. Taqqu, W. Willinger,

D.V. Wilson, On the Self-Similar Nature of Ethernet
Traffic, IEEE Transactions on Networking, 2, 1, pp 1-15,
Feb. 1994.
[Mihail+, '02] Milena Mihail, Christos H. Papadimitriou:
On the Eigenvalue Power Law. RANDOM 2002: 254-262

© 2004, s. Chakrabarti and c. Faloutsos

5新即 IIT Bombay
 Carnegie Mellon
 References, cont'd

- [Chakrabarti+, ‘04] RMAT: A recursive graph generator, D. Chakrabarti, Y. Zhan, C. Faloutsos, SIAM-DM 2004
- [Dill+, '01] Stephen Dill, Ravi Kumar, Kevin S. McCurley, Sridhar Rajagopalan, D. Sivakumar, Andrew Tomkins: Selfsimilarity in the Web. VLDB 2001: 69-78

Carnegie Mellon

References, cont'd

- [Jovanovic+, '01] M. Jovanovic, F.S. Annexstein, and K.A. Berman. Modeling Peer-to-Peer Network Topologies through "Small-World" Models and Power Laws. In TELFOR, Belgrade, Yugoslavia, November, 2001
- [Kumar+ '99] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, Andrew Tomkins: Extracting Large-Scale Knowledge Bases from the Web. VLDB 1999: 639-650

References, cont'd

- [Milgram '67] Stanley Milgram: The Small World Problem, Psychology Today 1(1), 60-67 (1967)
- [Montgomery+, ‘01] Alan L. Montgomery, Christos Faloutsos: Identifying Web Browsing Trends and Patterns. IEEE Computer 34(7): 94-95 (2001)

[Palmer+, '01] Chris Palmer, Georgos Siganos, Michalis connectivity and fault-tolerance of the Internet topology (NRDM 2001), Santa Barbara, CA, May 25, 2001
[Pennock+, '02] David M. Pennock, Gary William Flake, take all: Characterizing the competition for links on the web Proc. Natl. Acad. Sci. USA 99(8): 5207-5211 (2002)

KDD04

References, cont'd

- [Siganos+, '03] G. Siganos, M. Faloutsos, P. Faloutsos, C Faloutsos Power-Laws and the AS-level Internet Topology, Transactions on Networking, August 2003.
- [Watts+ Strogatz, '98] D. J. Watts and S. H. Strogatz Collective dynamics of 'small-world' networks, Nature, 393:440-442 (1998)
- [Watts, '03] Duncan J. Watts Six Degrees: The Science of a Connected Age W.W. Norton \& Company; (February 2003)

KDD04

Part 2: PageRank, HITS and eigenvalues

- How important is a node?
- Who is the best person/computer to immunize against a virus?
- Who is the best customer to advertise to?
- Who originated a raging rumor?

Part 1: Topology, 'laws' and generators
\Rightarrow Part 2: PageRank, HITS and eigenvalues

- Eigenvalues and PageRank
- SVD and HITS
- Virus propagation

Part 3: Pairs, influence, communities

KDD04

Motivating problem

Given a graph, find its most interesting/central node

A node is important, if it is connected with important nodes (recursive, but OK!)

KDD04

部 ${ }^{3}$ ITT Bombay Carnegie Mellon Motivating problem

Given a graph, find its most interesting/central node

Notational conventions

- bold capitals -> matrix (eg. A, $\mathbf{U}, \Lambda, \mathbf{V}$)
- bold lower-case -> column vector (eg., $\mathbf{x}, \mathbf{v}_{1}$, \mathbf{u}_{3})
- regular lower-case -> scalars (eg., $\lambda_{1}, \lambda_{\mathrm{r}}$)
(Simplified) PageRank algorithm
- Let \mathbf{A} be the transition matrix (= adjacency matrix); let \mathbf{A}^{T} become column-normalized - then

- $\mathbf{A}^{\mathrm{T}} \mathbf{p}=1 * \mathbf{p}$
- thus, \mathbf{p} is the eigenvector that corresponds to the highest eigenvalue $(=1$, since the matrix is column-normalized)

Formal definition

If \mathbf{A} is a (nxn) square matrix
(λ, \mathbf{x}) is an eigenvalue/eigenvector pair of \mathbf{A} if

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

Full version of algo: with occasional random jumps - see later

Outline

Part 1: Topology, 'laws' and generators
Part 2: PageRank, HITS and eigenvalues

- Eigenvalues and PageRank
$\square . \quad$ SVD and HITS
- Virus propagation

Part 3: Pairs, influence, communities

部发 IIT Bombay
Convergence

- Usually, fast:

Our wish list:
\checkmark How important is a node?

- Who is the best person/computer to immunize against a virus?
\checkmark Who is the best customer to advertise to?
- Who originated a raging rumor?
ssp values answer these questions
KDD04
O 2004, S. Chakrabarti and C. Faloutsos
124

Kleinberg's algorithm

- Problem dfn: given the web and a query
- find the most 'authoritative' web pages for this query

Step 0: find all pages containing the query terms Step 1: expand by one move forward and backward

KDD04

Kleinberg's algorithm

- give high score (= 'authorities') to nodes that many important nodes point to
- give high importance score ('hubs') to nodes that point to good 'authorities')

hubs

KDD04

Kleinberg's algorithm

Let \mathbf{A} be the adjacency matrix:
the (i, j) entry is 1 if the edge from i to j exists
Let \mathbf{h} and \mathbf{a} be [$\mathrm{n} \times 1$] vectors with the 'hubness' and 'authoritativiness' scores.
Then:

```
&in
```

Carnegie Mellon

Kleinberg's algorithm

- Step 1: expand by one move forward and backward

Kleinberg's algorithm

Observations

- recursive definition!
- each node (say, ' i '-th node) has both an authoritativeness score a_{i} and a hubness score h_{i}

Kleinberg's algorithm

Then:

$$
a_{i}=h_{k}+h_{l}+h_{m}
$$

that is
$a_{i}=\operatorname{Sum}\left(h_{j}\right) \quad$ over all j that (j, i) edge exists
or
$\mathbf{a}=\mathbf{A}^{\mathrm{T}} \mathbf{h}$

Kleinberg's algorithm - results		
Eg., for the query 'java':		
0.328 www.gamelan.com		
0.251 java.sun.com		
0.190 www.digitalfocus.com ("the java developer")		
${ }_{\text {kDD }} 4$		${ }^{137}$

(1), IIT Bombay
 Carnegie Mellon

Kleinberg's algorithm

In conclusion, we want vectors h and a such that:

$$
\begin{aligned}
\mathbf{h} & =\mathbf{A} \mathbf{a} \\
\mathbf{a} & =\mathbf{A}^{\mathrm{T}} \mathbf{h}
\end{aligned}
$$

That is:

$$
\mathbf{a}=\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{a}
$$

KDD04

Kleinberg's algorithm

(Q: to which of all the eigenvectors? why?)
A: to the one of the strongest eigenvalue

SVD: formal definitions

- Let \mathbf{A} be a matrix (eg., adjacency matrix of a graph)

SVD	Carnegie Mellon	
	SVD other uses:	

- LSI (Latent Semantic Indexing) [Deerwester+]
- PCA (Principal Component Analysis) [Jolliffe]
- Karhunen-Loeve transform [Fukunaga], [Duda+Hart]
- Low-rank approximation, dim. Reduction
- Over- and under-constraint linear systems

- $\mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\mathrm{T}}$ - example:

ul: hubness scores

THEOREM [Press+92]: always possible to decompose matrix \mathbf{A} into $\mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\mathrm{T}}$, where

- $\mathbf{U}, \Lambda, \mathbf{V}$: unique (${ }^{*}$)
- \mathbf{U}, \mathbf{V} : column orthonormal (ie., columns are unit vectors, orthogonal to each other)
$-\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{I} ; \mathbf{V}^{\mathrm{T}} \mathbf{V}=\mathbf{I}$ (I: identity matrix)
- Λ : singular values are positive, and sorted in decreasing order

Carnegie Mellon
 Outline

Part 1: Topology, 'laws' and generators
Part 2: PageRank, HITS and eigenvalues

- Eigenvalues and PageRank
- SVD and HITS
\Rightarrow. Virus propagation
Part 3: Pairs, influence, communities

5

The model

- (virus) Birth rate β : probability than an infected neighbor attacks
- (virus) Death rate δ : probability that an infected node heals

Carnegie Mellon

Epidemic threshold τ

of a graph, defined as the value of τ, such that
if strength $s=\beta / \delta<\tau$
an epidemic can not happen
Thus,

- given a graph
- compute its epidemic threshold

KDD04
© 2004, S. Chakrabarti and C. Faloutsos
154

- [Theorem] We have no epidemic, if

Proof: [Wang+03]
KDD04
© 2004, S. Chakrabarti and C. Faloutsos

Our wish list:

\checkmark How important is a node?

- Who is the best person/computer to immunize against a virus?
\checkmark Who is the best customer to advertise to?
- Who originated a raging rumor?
ssp values answer these questions
KDD04
© 2004, S. Chakrabarti and C. Faloutsos

Conclusions
eigenvalues/eigenvectors: vital for

- PageRank,
- virus propagation,
- (graph partitioning)

造发 ITT Bombay	Carnegie Mellon	
	Our wish list:	
\checkmark How important is a node?		
Who is the best person/computer to immunize against a virus? Highest diff in $\lambda 1$		
\checkmark Who is the best customer to advertise to?		
\checkmark Who originated a raging rumor?		
Virus prop. helps answer the rest		
${ }_{\text {kDDo4 }}$	-2004, S. Chakrabari and. F. Floutus	${ }^{160}$

Conclusions, cont'd

SVD

- closely related: HITS/Kleinberg
- (and also LSI, KLT, PCA, Least squares, ...)

Both are extremely useful, well understood tools for graphs / matrices.

IIT Bombay
 Carnegie Mellon
 Resources: Software and urls

- SVD packages: in many systems (matlab, mathematica, LINPACK, LAPACK)
- stand-alone, free code: SVDPACK from Michael Berry http://www.cs.utk.edu/~berry/projects.html

卦多 IIT Bombay
 Carnegie Mellon Books

- Faloutsos, C. (1996). Searching Multimedia Databases by Content, Kluwer Academic Inc
- Jolliffe, I. T. (1986). Principal Component Analysis, Springer Verlag.
- [Press+92] William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery: Numerical Recipes in C, Cambridge University Press, 1992, 2nd Edition. (Great description, intuition and code for SVD)

- Berry, Michael: http://www.cs.utk.edu/~1si/
- Brin, S. and L. Page (1998). Anatomy of a LargeScale Hypertextual Web Search Engine. 7th Intl World Wide Web Conf.

References (cont'd)

- Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, Academic Press.
- Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.
References (cont'd)
- [Wang+03] Yang Wang, Deepayan Chakrabarti, Mellon

Chenxi Wang and Christos Faloutsos: Epidemic
Spreading in Real Networks: an Eigenvalue Viewpoint, SRDS 2003, Florence, Italy.
©2004, s. Chakrabarti and C. Falousos

KDD04 $\quad 169$

