Data Mining the Internet

Part B: HOW TO FIND MORE

C. Faloutsos

High-level Outline

• Part A - what we know about the Internet
• Part B - how to find more
 – B.I - Traditional Data Mining tools
 – B.II - Time series: analysis and forecasting
 – B.III - New Tools: SVD
 – B.IV - New Tools: Fractals & power laws

Table Overview

<table>
<thead>
<tr>
<th>Know</th>
<th>Don’t Know</th>
<th>How to learn more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>Powerlaws, jellyfish</td>
<td>Growth pattern, Compare graphs</td>
</tr>
<tr>
<td>Link</td>
<td>LRD, ON/OFF sources</td>
<td>Effect of topology and protocols</td>
</tr>
<tr>
<td>End-2-end</td>
<td>LRD loss and RTT</td>
<td>Troubleshoot, cluster and predict</td>
</tr>
<tr>
<td>Traffic Matrix</td>
<td>Skewness of location</td>
<td>Comprehensive model, troubleshoot</td>
</tr>
</tbody>
</table>

Table Overview

<table>
<thead>
<tr>
<th>Know</th>
<th>Don’t Know</th>
<th>How to learn more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>Powerlaws, jellyfish</td>
<td>Growth pattern, Compare graphs</td>
</tr>
<tr>
<td>Link</td>
<td>LRD, ON/OFF sources</td>
<td>Effect of topology and protocols</td>
</tr>
<tr>
<td>End-2-end</td>
<td>LRD loss and RTT</td>
<td>Troubleshoot, cluster and predict</td>
</tr>
<tr>
<td>Traffic Matrix</td>
<td>Skewness of location</td>
<td>Comprehensive model, troubleshoot</td>
</tr>
</tbody>
</table>

B.I - Traditional D.M. - Outline

• Motivating Problems
• Supervised learning: decision trees
• Unsupervised learning: clustering
• Unsupervised learning: association rules
• Conclusions - practitioner’s guide

Problem

Given: (multiple) data sources
Find: patterns (classifiers, rules, clusters, outliers, ...)

traffic(link-id, timestamp, #packets)

Link-info(link-id, bandwidth, ...)

???
Problem 1: classification

- Eg. Given profiles of ‘good’ and ‘bad’ customers (clients, links, …)
- Classify the current customer (client, link, …)

Problem 2: clustering

- Eg. Given profiles of several customers (clients, links, …)
- Group them into ‘natural’ groups

Problem 3: Association Rules

- Given a sequence of events (eg., ‘server-A comes up’, ‘server-B goes down’, …)
- Find events that occur together too often, eg.,
 - server-A-up, server-B-down -> server-C-down

Decision trees - Problem

<table>
<thead>
<tr>
<th>Avg packet size</th>
<th>Avg arrival rate</th>
<th>time</th>
<th>CLASSID</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>150</td>
<td>13:30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

??

Decision trees

- Pictorially, we have
 - num. attr#2 (eg., avg rate)
 - num. attr#1 (eg., ‘avg size’)

B.I - Traditional D.M. - Outline

- Motivating Problems
- Supervised learning: decision trees
- Unsupervised learning: clustering
- Unsupervised learning: association rules
- Conclusions - practitioner’s guide
Decision trees

- and we want to label ‘?’

num. attr#2 (eg., avg rate)

+ - + -

+ + + -

num. attr#1 (eg., ‘avg size’)

Decision trees

- so we build a decision tree:

num. attr#2 (eg., avg rate)

50

? + - + -

? + - + -

num. attr#1 (eg., ‘avg size’)

Decision trees

- so we build a decision tree:

avg size<50

avg rate 40

? + - + -

? + - + -

avg size<50

avg rate 40

? + - + -

? + - + -

Decision trees

- Goal: split address space in (almost) homogeneous regions

Conclusions -Practitioner’s guide:

- Many available implementations
 - eg. C4.5 (freeware), C5.0
 - Also, inside larger stat. packages
- They usually hide all the details from us:
 - training / testing / tree pruning
 - ‘boosting’
 - recent, scalable methods
- see [Han+Kamber] for details

High-level Outline

- Part A - what we know about the Internet
- Part B - how to find more
 - B.I - Traditional Data Mining tools
 - B.II - Time series: analysis and forecasting
 - B.III - New Tools: SVD
 - B.IV - New Tools: Fractals & power laws
B.I - Traditional D.M. - Outline

- Motivating Problems
- Supervised learning: decision trees
- Unsupervised learning: clustering
 - preliminaries
 - ‘sound’ methods
 - ‘iterative’ methods
- Unsupervised learning: association rules
- Conclusions - practitioner’s guide

Problem 2: clustering

- Eg. Given profiles of several customers (clients, links, …)
- group them into ‘natural’ groups
- (and, optionally, report misfits as ‘outliers’)

Cluster generation

- Problem:
 - given N points in D dimensions,
 - group them

Short version:

- There are *numerous* clustering algorithms, available in free / open / commercial systems (eg., Splus, ‘R’ system)
- BUT: most algorithms require # of clusters and/or don’t scale up for large datasets
 - except for recent solutions...

B.I - Traditional D.M. - Outline

- Motivating Problems
- Supervised learning: decision trees
- Unsupervised learning: clustering
 - preliminaries
 - ‘sound’ methods
 - ‘iterative’ methods
- Unsupervised learning: association rules
- Conclusions - practitioner’s guide
Cluster generation

A: *many-many* algorithms - in two groups [VanRijssbergen]:
- theoretically sound (O(N^2))
 - independent of the insertion order
- iterative (O(N), O(N log(N))

Cluster generation - ‘sound’ methods

- Approach#1: dendrograms - create a hierarchy (bottom up or top-down) - choose a cut-off (how?) and cut
 - iterative (O(N^2))

[Diagram: dendrogram with cut-off levels 0.8, 0.3, and 0.1]

• ucb.edu
• mit.edu
• ibm.com
• att.com

Cluster generation - ‘sound’ methods

- Approach#2: min. some statistical criterion (eg., sum of squares from cluster centers)
 - like ‘k-means’
 - but how to decide ‘k’?

Cluster generation - ‘sound’ methods

- Approach#3: Graph theoretic [Zahn]:
 - build MST;
 - delete edges longer than 2.5* std of the local average

[Diagram: graph with edges]

Cluster generation - ‘sound’ methods

• Result:
 - why ‘2.5’?
B.I - Traditional D.M. - Outline

- Motivating Problems
- Supervised learning: decision trees
- Unsupervised learning: clustering
 - preliminaries
 - ‘sound’ methods
 - ‘iterative’ methods
- Unsupervised learning: association rules
- Conclusions - practitioner’s guide

Cluster generation - ‘iterative’ methods

general outline:
- Choose ‘seeds’ (how?)
- assign each vector to its closest seed (possibly adjusting cluster centroid)
- possibly, re-assign some vectors to improve clusters
Fast and practical, but ‘unpredictable’

Cluster generation - ‘iterative’

Many, recent, fast methods [see book by Han+Kamber]:
- BIRCH
- CURE
- CHAMELEON
- WaveCluster
- ...

Cluster generation- how many clusters?

- one way to estimate # of clusters k: X-means method [Moore+Pelleg]
- in general: AIC or BIC/MDL (= minimize not only error, but also model complexity, i.e.: $RMSE + C \cdot k$)
 - BIC: Bayesian Information Criterion
 - AIC: Akaike Inf. Criterion
 - MDL: minimum description language

Conclusions - Practitioner’s guide

- Many clustering methods
- Many available implementations (BIRCH is free; all stat. packages include several versions of clustering algorithms)
- Usually need a ‘magic number’ (e.g., # of clusters)

High-level Outline

- Part A - what we know about the Internet
- Part B - how to find more
 - B.I - Traditional Data Mining tools
 - B.II - Time series: analysis and forecasting
 - B.III - New Tools: SVD
 - B.IV - New Tools: Fractals & power laws
B.I - Traditional D.M. - Outline

- Motivating Problems
- Supervised learning: decision trees
- Unsupervised learning: clustering
- Unsupervised learning: association rules
- Conclusions - practitioner's guide

Problem 3: Association rules

[Mannila+97]
- Given a stream of telecommunication events
- Find rules of the form $A, A, B \rightarrow C$
 (within windows of $5'$)

Example:

- $A \rightarrow C$ with time
- $5'$

Association rules - idea

[Agrawal+SIGMOD93]
- Consider 'market basket' case:
 - (milk, bread)
 - (milk, bread, chocolate)
 - (milk, chocolate)
 - (milk, bread)
- Find 'interesting things', e.g., rules of the form:
 - milk, bread -> chocolate

Association rules - example

INPUT:

- Sample rule:
 - milk, bread -> chocolate
 - ('confidence': 33%, 'support': 25%)

- 'confidence': how often people by chocolate,
 given that they have bought milk and bread
- 'support': how often people buy bread, milk and chocolate

Association rules - problem dfn

Problem definition:
- given
 - a set of ‘market baskets’ (=binary matrix, of N rows/baskets and M columns/products)
 - min-support 's' and
 - min-confidence 'c'
- find
 - all the rules with higher support and confidence

Association rules

Association rules:
- Do NOT need the user to give 'hypotheses'
- because they discover automatically frequent items, pairs, triplets, ...
- They solve the problem, QUICKLY! (a few passes over the dataset)
 - 'A priori' algorithm of Agrawal+
 - faster algorithms (FP-trees - see Han+Kamberi)
Association rules - Conclusions

Association rules: a new tool to find patterns

- easy to understand its output
- fine-tuned algorithms exist
- Many available implementations
 - IBM (IntelligentMiner)
 - Stand-alone ones

Overall Conclusions

- Many, mature (and often, free!) tools for classification, clustering, and association rules

Table Overview

<table>
<thead>
<tr>
<th>Know</th>
<th>Don’t Know</th>
<th>How to learn more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link-2-end</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Matrix</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resources - software & urls

- Stat. Packages: SAS, Splus, ‘R’ (freeware!)
 - www.r-project.org/
 (all have SVD, ARIMA, clustering etc)
- Data Mining ‘central’: Software, datasets, conference announcements
 - www.kdnuggets.com/

Resources - Books

- Data mining: Jiawei Han and Micheline Kamber: *Data Mining: Concepts and Techniques*, Morgan Kaufmann, 2000.

Additional Reading

Additional Reading

Additional reading

Part B.II: Time series, Fourier, wavelets and forecasting

High-level Outline

- Part A - what we know about the Internet
- Part B - how to find more
 - B.I - Traditional Data Mining tools
 - B.II - Time series: analysis and forecasting
 - B.III - New Tools: SVD
 - B.IV - New Tools: Fractals & power laws

B.II - Time Series Analysis - Outline

- Motivating problems
- DFT
- DWT
- AR(IMA) and forecasting

Problem #1:

Goal: given a signal (eg., #packets over time)
Find: patterns, periodicities, and/or compress

 Lynx caught per year (packets per day; virus infections per month)
Problem #2: Forecast

Given x_1, x_2, \ldots, x_t, forecast x_{t+1}

Problem #3:

- Given: A set of correlated time sequences
- Forecast ‘Sent(t)’

B.II - Time Series Analysis - Outline

- DFT
 - Definition of DFT and properties
 - How to read the DFT spectrum
- DWT
- AR(IMA) and forecasting

Recall from Part A:

UCR>CMU RTTs showed periodicity!

Introduction - definitions

Goal: given a signal (e.g., packets over time)
Find: patterns and/or compress

- lynx caught per year
- (packets per day; virus infections per month)
- year

What does DFT do?

A: highlights the periodicities
DFT: definition

- **(n-point)** Discrete Fourier Transform:

\[
X_f = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \cdot \exp(-j2\pi f / n) \quad f = 0, \ldots, n-1
\]

\[
x_j = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} X_f \cdot \exp(j2\pi f / n)
\]

inverse DFT

DFT: definition

- **Good news:** Available in all symbolic math packages, e.g., in `mathematica`

\[
x = [1, 2, 1, 2];
X = \text{Fourier}[x];
\text{Plot}\left[\text{Abs}[X]\right];
\]

DFT: Amplitude spectrum

Amplitude:

\[
A_f = \Re^2(X_f) + \Im^2(X_f)
\]

DFT: examples

Low frequency sinusoid

DFT: examples

- **Sinusoid - symmetry property:**

\[
X_f = X_{-f}
\]
DFT: examples

- Higher freq. sinusoid

DFT: examples

examples

Ampl.

Freq.

B.II - Time Series Analysis - Outline

- DFT
 - Definition of DFT and properties
 - how to read the DFT spectrum
- DWT
- ARIMA and forecasting

DFT: Amplitude spectrum

Amplitude: \(A_f = \text{Re}^2(X_f) + \text{Im}^2(X_f) \)

DFT: Amplitude spectrum

count

Ampl.

Freq.

year

Freq.
DFT: Amplitude spectrum

- excellent approximation, with only 2 frequencies!
- so what?
- A1: **(lossy) compression**
- A2: pattern discovery
- A3: forecasting

DFT: Amplitude spectrum

- excellent approximation, with only 2 frequencies!
- so what?
- A1: **(lossy) compression**
- A2: pattern discovery
- A3: **pattern discovery**
- A3: forecasting

DFT: Amplitude spectrum

- excellent approximation, with only 2 frequencies!
- so what?
- A1: **(lossy) compression**
- A2: pattern discovery
- A3: forecasting

DFT - Conclusions

- It spots periodicities (with the ‘amplitude spectrum’)
- can be quickly computed (O(n log n)), thanks to the FFT algorithm.
- **standard** tool in signal processing (speech, image etc signals)
- (closely related to DCT and JPEG)
Problem #1':

Goal: given a signal (e.g., #packets over time)
Find: patterns, periodicities, and/or **compress**

![Graph](image)

Count lynx caught per year
(packets per day; virus infections per month)

<table>
<thead>
<tr>
<th>year</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outline

- DFT
 - Definition of DFT and properties
 - how to read the DFT spectrum
- DWT
 - Motivation - definitions
 - How to read the 'scalogram'
- ARIMA and forecasting

Wavelets - DWT

- DFT is great - but, how about compressing a spike?

 ![Waveform](image)

- A: Terrible - all DFT coefficients needed!

Wavelets - DWT

- Similarly, DFT suffers on short-duration waves (eg., baritone, silence, soprano)

![Waveform](image)
Wavelets - DWT

- Solution#1: Short window Fourier transform (SWFT)
- But: how short should be the window?

freq

value

time

Haar Wavelets

- subtract sum of left half from right half
- repeat recursively for quarters, eightths, ...

Daubechies etc Wavelets

- Many more wavelets (Daubechies-4, -6 etc; Coifman; …)

Wavelets - DWT

- Answer: multiple window sizes! -> DWT

freq
dtime

DFT

SWFT

DWT

Haar wavelets - code

```
#!/usr/bin/perl

@vals = ( split );
@vals = @smooth;

my $half = int($len/2);

my $smooth[$i] = ($vals[2*$i] + $vals[2*$i + 1] )/ sqrt(2);
```

B.II - Time Series Analysis - Outline

- DFT
 - Definition of DFT and properties
 - how to read the DFT spectrum
- DWT
 - Motivation - definitions
 - How to read the 'scalogram'
- ARIMA and forecasting
Wavelets - Drill:

- Q: baritone/silence/soprano - DWT?

Wavelets - Drill:

- Q: baritone/soprano - DWT?

Wavelets - Drill:

- Q: spike - DWT?

Wavelets - Drill:

- Q: spike - DWT?

Wavelets - Drill#2:

- Q: weekly + daily periodicity, + spike - DWT?

Wavelets - Drill#2:

- Q: weekly + daily periodicity, + spike - DWT?
Wavelets - Drill#2:

- Q: weekly + daily periodicity, + spike - DWT?

Wavelets - Drill#2:

- Q: weekly + daily periodicity, + spike - DWT?

Wavelets - Drill#2:

- Q: weekly + daily periodicity, + spike - DWT?

Wavelets - Drill#2:

- Q: DFT?

Advantages of Wavelets

- Better compression (better RMSE with same number of coefficients - used in JPEG-2000)
- fast to compute (usually: O(n)!)
- very good for ‘spikes’
- (mammalian eye and ear: Gabor wavelets)
- suitable for self-similar/LRD signals

Advantages of Wavelets

- suitable for self-similar/LRD signals for fractional Gaussian Noise [Riedi+99]
 - \(\text{var}(W_{jk}) \sim 2^j(2H-1) \)
 - and ~ Gaussian

 \[
 j=2
 \]
 \[
 j=1
 \]
Advantages of Wavelets

- suitable for self-similar/LRD signals for fractional Gaussian Noise [Riedi+99]
 - \(\text{var}(W_{jk}) \sim 2^{j(2H-1)} \)
 - and ~ Gaussian
- H: Hurst exponent \((1/2 < H < 1)\)
- Fast generation of realistic LRD traffic

Overall Conclusions

- DFT (& DCT) spot periodicities
- DWT: multi-resolution - matches processing of mammalian ear/eye better; very suitable for self-similar traffic
- DWT: used for summarization of streams [Gilbert+01]

Overall Conclusions - cont’ed

- All three: powerful tools for compression, pattern detection in real signals
- All three: included in math packages (matlab, mathematica, ... - DFT: even in spreadsheets!)

B.II - Time Series Analysis - Outline

- Motivating problems
- DFT
- DWT
 - AR(IMA) and forecasting

Forecasting

"Prediction is very difficult, especially about the future." - Nils Bohr

http://www.hfac.uh.edu/MediaFutures/thoughts.html

ARIMA - Outline

- Auto-regression: Least Squares; recursive least squares
- Co-evolving time sequences
- Examples
- Conclusions
Problem: Forecast

- Example: give x_i, x_{i+1}, ..., forecast x_{i+t}

![Graph](image_url)

Problem: Forecast

- Solution: try to express x_i as a linear function of the past: x_i, x_{i+1}, x_{i+2}, ..., (up to a window of w)

Formally:

$$x_i = a_1 x_{i-1} + \ldots + a_w x_{i-w} + \text{noise}$$

![Graph](image_url)

(Problem: Back-cast; interpolate)

- Solution - interpolate: try to express x_i as a linear function of the past AND the future:

 $$x_{i+1}, x_{i+2}, \ldots, x_{j-1}, x_{j}, \ldots, x_{i+w}$$

 (up to windows of w_{past}, w_{future})

- EXACTLY the same algo’s

![Graph](image_url)

Linear Regression: idea

- express what we don’t know (= ‘dependent variable’)
- as a linear function of what we know (= ‘indep. variable(s)’)

<table>
<thead>
<tr>
<th>packet</th>
<th>weight</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>54</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>N</td>
<td>72</td>
<td>(sum)</td>
</tr>
</tbody>
</table>

![Graph](image_url)

Linear Auto Regression:

<table>
<thead>
<tr>
<th>Time</th>
<th>Packets sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>N</td>
<td>??</td>
</tr>
</tbody>
</table>

![Graph](image_url)

- lag $w=1$
- Dependent variable = # of packets sent ($S(t)$)
- Independent variable = # of packets sent ($S(t-1)$)
B.II - Time Series Analysis - Outline

- Auto-regression
- Least Squares; recursive least squares
- Co-evolving time sequences
- Examples
- Conclusions

More details:

- Q1: Can it work with window \(w > 1 \)?
- A1: YES!

The problem becomes:

\[
X_{[N \times w]} \times a_{[w \times 1]} = y_{[N \times 1]}
\]

OVER-CONSTRAINED

- \(a \) is the vector of the regression coefficients
- \(X \) has the \(N \) values of the \(w \) indep. variables
- \(y \) has the \(N \) values of the dependent variable

More details:

- Q1: Can it work with window \(w > 1 \)?
- A1: YES! (we’ll fit a hyper-plane, then!)
More details:

- \(\mathbf{X}_{[N \times w]} \times \mathbf{a}_{[w \times 1]} = \mathbf{y}_{[N \times 1]} \)

\[
\begin{bmatrix}
X_{11}, X_{12}, \ldots, X_{1w} \\
X_{21}, X_{22}, \ldots, X_{2w} \\
\vdots \\
X_{N1}, X_{N2}, \ldots, X_{Nw}
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
\vdots \\
a_w
\end{bmatrix} =
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_N
\end{bmatrix}
\]

Q2: How to estimate \(a_1, a_2, \ldots, a_w = \mathbf{a} \)?

A2: with Least Squares fit:

\[
a = \left(\mathbf{X}^T \times \mathbf{X} \right)^{-1} \times \left(\mathbf{X}^T \times \mathbf{y} \right)
\]

(Moore-Penrose pseudo-inverse)

\(\mathbf{a} \) is the vector that minimizes the RMSE from \(\mathbf{y} \)

Even more details:

- Q3: Can we estimate \(\mathbf{a} \) incrementally?
- A3: Yes, with the brilliant, classic method of ‘Recursive Least Squares’ (RLS) (see, e.g., [Yi+00], for details) - pictorially:

Even more details:

- Given:

Even more details:

RLS: quickly compute new best fit
Even more details

- Q4: can we ‘forget’ the older samples?
- A4: Yes - RLS can easily handle that [Yi+00]:

Adaptability - ‘forgetting’

- RLS: can ‘trivially’ handle ‘forgetting’

B.II - Time Series Analysis - Outline

- Auto-regression
- Least Squares; recursive least squares
- Co-evolving time sequences
 - Examples
 - Conclusions

Co-Evolving Time Sequences

- Given: A set of **correlated** time sequences
- Forecast ‘Repeated(t)’
Solution: Q: what should we do?

Solution: Least Squares, with
- Dep. Variable: Repeated(t)
- Indep. Variables: Sent(t-1) … Sent(t-w); Lost(t-1) …Lost(t-w); Repeated(t-1), ...
- (named: ‘MUSCLES’ [Yi+00])

B.II - Time Series Analysis
Outline
- Auto-regression
- Least Squares; recursive least squares
- Co-evolving time sequences
- Examples
- Conclusions

Examples - Experiments
- Datasets
 - Modem pool traffic (14 modems, 1500 time-ticks; #packets per time unit)
 - AT&T WorldNet internet usage (several data streams; 980 time-ticks)
- Measures of success
 - Accuracy: Root Mean Square Error (RMSE)

Accuracy - “Modem”
MUSCLES outperforms AR & “yesterday”

Accuracy - “Internet”
MUSCLES consistently outperforms AR & “yesterday”
B.II - Time Series Analysis - Outline

- Auto-regression
- Least Squares; recursive least squares
- Co-evolving time sequences
- Examples
 - Conclusions

Conclusions - Practitioner’s guide

- AR(IMA) methodology: prevailing method for linear forecasting
- Brilliant method of Recursive Least Squares for fast, incremental estimation.
- See [Box-Jenkins]

Just a moment

Q: ARIMA - how about ‘I’ and ‘MA’?
A1: ‘I’ - Integration (actually, differentiation - apply AR to Δx₂ (\(= x_2 - x_1\))
A2: ‘MA’: Moving Average (see book by Box-Jenkins - also: ARFIMA for ‘F’ractional integration, GARFIMA etc)

Table Overview

<table>
<thead>
<tr>
<th>Know</th>
<th>Don’t Know</th>
<th>How to learn more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>Powerlaws, jellyfish</td>
<td>Growth pattern, Compare graphs</td>
</tr>
<tr>
<td>Link</td>
<td>LRD, ON/OFF sources</td>
<td>Effect of topology and protocols</td>
</tr>
<tr>
<td>End-2-end</td>
<td>LRD loss and RTT</td>
<td>ARIMA, wavelets, ARIMA, wavelets</td>
</tr>
<tr>
<td>Traffic Matrix</td>
<td>Skewness of location</td>
<td>Comprehensive model, troubleshoot</td>
</tr>
</tbody>
</table>

Resources - software and urls

- http://www.relisoft.com/freeware/freq.html: voice frequency analyzer (needs microphone)

Resources: software and urls

- xwpl: open source wavelet package from Yale, with excellent GUI
- http://monet.me.ic.ac.uk/people/gavin/java/waveletDemos.html: wavelets and scalograms
- MUSCLES (christos@cs.cmu.edu)
Books

Additional Reading

- [Yi+00] Byoung-Kee Yi et al.: *Online Data Mining for Co-Evolving Time Sequences*, ICDE 2000. (Describes MUSCLES and Recursive Least Squares)

Time for a break!

Part B: HOW TO FIND MORE

C. Faloutsos

Part B - III and IV new tools: SVD and fractals

High-level Outline

- Part A - what we know about the Internet
- Part B - how to find more
 - B.I - Traditional Data Mining tools
 - B.II - Time series: analysis and forecasting
 - B.III - New Tools: SVD
 - B.IV - New Tools: Fractals & power laws
B.III - SVD - outline

- Introduction - motivating problems
- Definition - properties
- Interpretation / Intuition
- Solutions to posed problems
- Conclusions

SVD - Motivation

- problem #1: find patterns in a matrix
 - (e.g., traffic patterns from several IP-sources)
 - compression; dim. reduction
- problem #2: find most ‘interesting’ node in a graph (google/Kleinberg-style)

Problem #1

- ~10**6 rows; ~10**3 columns; no updates;
- Compress / find patterns

SVD - in short:

It gives the best hyperplane to project on
B.III - SVD - outline

- Introduction - motivating problems
- Definition - properties
- Interpretation / Intuition
- Solutions to posed problems
- Conclusions

SVD - Definition

- \(A = U \Lambda V^T \) - example:

\[
\begin{pmatrix}
A \\
U \\
\Lambda \\
V^T
\end{pmatrix}
\]

SVD - notation

Conventions:
- bold capitals -> matrix (eg. \(A, U, \Lambda, V \))
- bold lower-case -> column vector (eg., \(x, v_1, u_3 \))
- regular lower-case -> scalars (eg., \(\lambda_1, \lambda_2 \))

SVD - Properties

THEOREM [Press+92]: always possible to decompose matrix \(A \) into \(A = U \Lambda V^T \), where
- \(U, \Lambda, V \): unique (*)
- \(U, V \): column orthonormal (ie., columns are unit vectors, orthogonal to each other)
 - \(U^T U = I \), \(V^T V = I \) (I: identity matrix)
- \(\Lambda \): eigenvalues are positive, and sorted in decreasing order

SVD - example

- Customers; days; #packets

<table>
<thead>
<tr>
<th>Comm</th>
<th>Res</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC CA</td>
<td>1</td>
</tr>
<tr>
<td>DEF Inc.</td>
<td>2</td>
</tr>
<tr>
<td>XYZ Corp.</td>
<td>3</td>
</tr>
<tr>
<td>Total Packets</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>
SVD - Example

• \(A = U \Lambda V^T \) - example:

\[
\begin{bmatrix}
1 & 1 & 1 \\
2 & 2 & 0 \\
1 & 1 & 1 \\
5 & 5 & 0 \\
0 & 0 & 2 \\
0 & 0 & 3 \\
0 & 0 & 1 \\
\end{bmatrix}
= \begin{bmatrix}
0.18 & 0.36 & 0.18 & 0.90 \\
0.53 & 0.80 & 0.27 & 0.58 & 0.58 & 0.58 & 0.71 & 0.71 \\
\end{bmatrix}
\times \begin{bmatrix}
9.64 & 0 & 5.29 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

SVD - Interpretation #1

• ‘customers’, ‘days’ and ‘concepts’
• \(U \): customer-to-concept similarity matrix
• \(V \): day-to-concept sim. matrix
• \(A \): its diagonal elements: ‘strength’ of each concept

SVD - Interpretation #1

• \(A = U \Lambda V^T \) - example:

\[
\begin{bmatrix}
1 & 1 & 1 \\
2 & 2 & 0 \\
1 & 1 & 1 \\
5 & 5 & 0 \\
0 & 0 & 2 \\
0 & 0 & 3 \\
0 & 0 & 1 \\
\end{bmatrix}
= \begin{bmatrix}
0.18 & 0.36 & 0.18 & 0.90 \\
0.53 & 0.80 & 0.27 & 0.58 & 0.58 & 0.58 & 0.71 & 0.71 \\
\end{bmatrix}
\times \begin{bmatrix}
9.64 & 0 & 5.29 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

B.III - SVD - outline

• Introduction - motivating problems
• Definition - properties
• Interpretation / Intuition
 – #1: customers, days, concepts
 – #2: best projection - dimensionality reduction
 – #3: fixed point
• Solutions to posed problems
• Conclusions

SVD - Interpretation #1

• \(A = U \Lambda V^T \) - example:

\[
\begin{bmatrix}
1 & 1 & 1 \\
2 & 2 & 0 \\
1 & 1 & 1 \\
5 & 5 & 0 \\
0 & 0 & 2 \\
0 & 0 & 3 \\
0 & 0 & 1 \\
\end{bmatrix}
= \begin{bmatrix}
0.18 & 0.36 & 0.18 & 0.90 \\
0.53 & 0.80 & 0.27 & 0.58 & 0.58 & 0.58 & 0.71 & 0.71 \\
\end{bmatrix}
\times \begin{bmatrix}
9.64 & 0 & 5.29 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

SVD - Interpretation #1

• \(A = U \Lambda V^T \) - example:

\[
\begin{bmatrix}
1 & 1 & 1 \\
2 & 2 & 0 \\
1 & 1 & 1 \\
5 & 5 & 0 \\
0 & 0 & 2 \\
0 & 0 & 3 \\
0 & 0 & 1 \\
\end{bmatrix}
= \begin{bmatrix}
0.18 & 0.36 & 0.18 & 0.90 \\
0.53 & 0.80 & 0.27 & 0.58 & 0.58 & 0.58 & 0.71 & 0.71 \\
\end{bmatrix}
\times \begin{bmatrix}
9.64 & 0 & 5.29 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

(reminder)

• Customers; days; #packets

\[
\begin{array}{cccccccc}
\text{Com.} & \text{Mon.} & \text{Tue.} & \text{Wed.} & \text{Thu.} & \text{Fri.} & \text{Sat.} & \text{Sun.} \\
\text{Res.} & \text{Mon.} & \text{Tue.} & \text{Wed.} & \text{Thu.} & \text{Fri.} & \text{Sat.} & \text{Sun.} \\
\hline
\text{Day 1} & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\text{Day 2} & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\text{Day 3} & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\
\end{array}
\]
SVD - Interpretation #1
• A = U \Lambda V^T - example: U: customer-to-concept similarity matrix
 weekday-concept
 Fr
 We
 Th
 Sa
 Su
 W/end-concept
 1 2 1 0 0
 1 1 1 0 0
 5 5 5 5 0
 0 0 0 2 2
 0 0 3 3
 0 0 1 1
 \begin{bmatrix}
 0.180 & 0.360 & 0.530 & 0.800 & 0.270 & 0.580 & 0.580 & 0.580 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.710 & 0.710
\end{bmatrix}

SVD - Interpretation #1
• A = U \Lambda V^T - example: U: Customer to concept similarity matrix
 weekday-concept
 Fr
 We
 Th
 Sa
 Su
 W/end-concept
 1 2 1 0 0
 1 1 1 0 0
 5 5 5 5 0
 0 0 0 2 2
 0 0 3 3
 0 0 1 1
 \begin{bmatrix}
 0.180 & 0.360 & 0.530 & 0.800 & 0.270 & 0.580 & 0.580 & 0.580 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.710 & 0.710
\end{bmatrix}

SVD - Interpretation #1
• A = U \Lambda V^T - example: unit
 weekday-concept
 Fr
 We
 Th
 Sa
 Su
 \begin{bmatrix}
 0.180 & 0.360 & 0.900 & 0.530 & 0.800 & 0.270 & 0.580 & 0.580 & 0.580 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.710 & 0.710
\end{bmatrix}

SVD - Interpretation #1
• A = U \Lambda V^T - example: weekday-concept
 Fr
 We
 Th
 Sa
 Su
 \begin{bmatrix}
 0.180 & 0.360 & 0.900 & 0.530 & 0.800 & 0.270 & 0.580 & 0.580 & 0.580 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.710 & 0.710
\end{bmatrix}

SVD - Interpretation #1
• A = U \Lambda V^T - example:
 weekday-concept
 Fr
 We
 Th
 Sa
 Su
 \begin{bmatrix}
 0.180 & 0.360 & 0.900 & 0.530 & 0.800 & 0.270 & 0.580 & 0.580 & 0.580 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.710 & 0.710
\end{bmatrix}

SVD - Interpretation #1
• A = U \Lambda V^T - example:
 weekday-concept
 Fr
 We
 Th
 Sa
 Su
 \begin{bmatrix}
 0.180 & 0.360 & 0.900 & 0.530 & 0.800 & 0.270 & 0.580 & 0.580 & 0.580 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.710 & 0.710
\end{bmatrix}

B.III - SVD - outline
• Introduction - motivating problems
• Definition - properties
• Interpretation / Intuition
 – #1: customers, days, concepts
 – #2: best projection - dimensionality reduction
 – #3: fixed point
• Solutions to posed problems
• Conclusions
SVD - Interpretation #2

- best axis to project on: ('best' = min sum of squares of projection errors)

SVD - Interpretation #2

- minimum RMS error

\[A = U \Lambda V^T \] - example:

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}
\times
\begin{bmatrix}
0.18 & 0 & 0.36 & 0 & 0.18 & 0 & 0.90 & 0 & 0.53 & 0 & 0.80 & 0 & 0.27 \\
\end{bmatrix}
\times
\begin{bmatrix}
9.64 & 0 & 0 & 5.29 & 0 & 0 & 0.58 & 0.58 & 0.58 & 0 & 0 & 0.71 & 0.71
\end{bmatrix}
\times
\begin{bmatrix}
v1
\end{bmatrix}
\]

SVD - interpretation #2

- SVD: gives best axis to project

SVD - Interpretation #2

- variance ('spread') on the v1 axis

\[A = U \Lambda V^T \] - example:

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}
\times
\begin{bmatrix}
0.18 & 0 & 0.36 & 0 & 0.18 & 0 & 0.90 & 0 & 0.53 & 0 & 0.80 & 0 & 0.27 \\
\end{bmatrix}
\times
\begin{bmatrix}
9.64 & 0 & 0 & 5.29 & 0 & 0 & 0.58 & 0.58 & 0.58 & 0 & 0 & 0.71 & 0.71
\end{bmatrix}
\times
\begin{bmatrix}
v1
\end{bmatrix}
\]
SVD - interpretation #2

SVD: gives best axis to project

- minimum RMS error

SVD, PCA and the v vectors

- how to ‘read’ the v vectors (= principal components)

SVD

- Recall: \(A = U \Lambda V^T \) - example:

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
0.18 & 0 & 0.36 & 0 & 0.18 & 0 & 0.90 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
9.64 & 0 & 0 & 0 & 5.29 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.58 & 0.58 & 0.58 & 0.58 \\
0 & 0 & 0 & 0 & 0.71 & 0.71 & 0.71 & 0.71
\end{bmatrix} \begin{bmatrix}
\end{bmatrix}
\]

SVD

- First Principal component
 \(\mathbf{v}_1 \rightarrow \) weekdays are correlated positively
 \- similarly for \(\mathbf{v}_2 \)
- (we’ll see negative correlations later)

\[
\begin{bmatrix}
\mathbf{v}_1 \\
\mathbf{v}_2
\end{bmatrix} = \begin{bmatrix}
0.58 & 0 \\
0.58 & 0 \\
0.58 & 0 \\
0 & 0.71 \\
0 & 0.71
\end{bmatrix}
\]

B.III - SVD - outline

- Introduction - motivating problems
- Definition - properties
- Interpretation / Intuition
 \- #1: customers, days, concepts
 \- #2: best projection - dimensionality reduction
 \- #3: fixed point
- Solutions to posed problems
- Conclusions

SVD - Interpretation #3

If \(A \) is symmetric, \(x \) is an eigenvector of \(A \) if

\[
A \mathbf{x} = \lambda \mathbf{x}
\]
SVD - Interpretation #3

• A as vector transformation (assume A is symmetric)

\[\begin{bmatrix} 2 \\ 1 \end{bmatrix} = A \begin{bmatrix} x' \\ 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x' \\ 1 \end{bmatrix} \]

SVD - Interpretation #3

• For a symmetric A, by defn. its eigenvectors remain parallel to themselves ("fixed points")

\[\lambda_1 = 3.62, \quad v_1 = \begin{bmatrix} 0.52 \\ 0.85 \end{bmatrix} \]

SVD - Interpretation #3

• If A is not symmetric, then \(A^T A \) always is (= ‘day-to-day’ similarity matrix)

SVD - Complexity

• \(O(n^2 m) \) or \(O(n^2 n^2 m) \) (whichever is less)
• less work, if we just want eigenvalues
• ... or if we want first k eigenvectors
• ... or if the matrix is sparse [Berry]
• Implemented: in any linear algebra package (LINPACK, matlab, Splus, mathematica ...)

SVD - conclusions so far

• SVD: \(A = U \Lambda V^T \): unique (*)
• U: row-to-concept similarities
• V: column-to-concept similarities
• \(\Lambda \): strength of each concept

(*) see [Press+92]

SVD - conclusions so far

• dim. reduction: keep the first few strongest eigenvalues (80-90% of ‘energy’ [Fukunaga])
• SVD: picks up linear correlations
• \(v_1 \): fixed point (→ steady-state prob.)
B.III - SVD - outline

- Introduction - motivating problems
- Definition - properties
- Interpretation / Intuition
- Solutions to posed problems
 - P1: patterns in a matrix; compression
 - P2: most ‘important’ node in a graph
- Conclusions

Problem #1 - specs

- ~10^4 rows; ~10^3 columns; no updates;
- random access to any cell(s); small error: OK
- compress; find patterns / rules

SVD to the rescue

- space savings: 2:1
- minimum RMS error

Idea

Compression - Performance

- 3 pass algo (-> scalability)
- random cell(s) reconstruction
- 10:1 compression with < 2% error
- [Korn+, 97]

Performance - scaleup
B.III - SVD - outline

- Introduction - motivating problems
- Definition - properties
- Interpretation / Intuition
- Solutions to posed problems
 - P1: patterns in a matrix; compression
 - P2: most ‘important’ node in a graph
- Conclusions

SVD & visualization:

- Visualization for free!
 - Time-plots are not enough:

SVD & visualization:

- SVD: project 365-d vectors to best 2 dimensions, and plot:
 - no Gaussian clusters;
 - Zipf-like distribution

SVD and visualization

NBA dataset
~500 players;
~30 attributes
(#games, #points, #rebounds, …)

SVD and visualization

could be network
dataset:
- N IP sources
- k attributes
 (#http bytes, #http packets)
Moreover, PCA/rule for free!

- SVD ~ PCA = Principal component analysis
- PCA: get eigenvectors v_1, v_2, ...
- Ignore entries with small abs. value
- Try to interpret the rest

PCA & Rules

NBA dataset - V matrix (term to ‘concept’ similarities)

v1

<table>
<thead>
<tr>
<th>field</th>
<th>R_{v1}</th>
<th>R_{v2}</th>
<th>R_{v3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>minutes played</td>
<td>0.06</td>
<td>-0.42</td>
<td>-0.92</td>
</tr>
<tr>
<td>field goals</td>
<td>0.15</td>
<td>-0.49</td>
<td>-0.96</td>
</tr>
<tr>
<td>goal attempts</td>
<td>0.15</td>
<td>-0.49</td>
<td>-0.96</td>
</tr>
<tr>
<td>points</td>
<td>-0.49</td>
<td>0.15</td>
<td>0.10</td>
</tr>
<tr>
<td>total rebounds</td>
<td>-0.92</td>
<td>-0.92</td>
<td>-0.42</td>
</tr>
<tr>
<td>steals</td>
<td>-0.96</td>
<td>-0.96</td>
<td>-0.92</td>
</tr>
</tbody>
</table>

PCA & Rules

- (Ratio) Rule#1: minutes:points = 2:1
- Corresponding concept?

PCA & Rules

- RR1: minutes:points = 2:1
- Corresponding concept?
- A: ‘goodness’ of player
- (in a networks setting, could be ‘volume of traffic’ generated by this IP address)

PCA & Rules

- RR2: points:rebounds negatively correlated(!)

<table>
<thead>
<tr>
<th>field</th>
<th>R_{v2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>minutes played</td>
<td>-0.40</td>
</tr>
<tr>
<td>field goals</td>
<td>0.15</td>
</tr>
<tr>
<td>goal attempts</td>
<td>0.15</td>
</tr>
<tr>
<td>points</td>
<td>-0.49</td>
</tr>
<tr>
<td>total rebounds</td>
<td>-0.49</td>
</tr>
<tr>
<td>steals</td>
<td>-0.49</td>
</tr>
</tbody>
</table>
PCA & Rules

- RR2: points: rebounds negatively correlated(!) - concept?
- A: position: offensive/defensive
- (in a network setting, could be e-mailers versus gnutella-users)

Problem#2

Given a graph, find its most interesting/central node

Google/pagerank algorithm

- Let A be the transition matrix (= adjacency matrix); let A^T become column-normalized \Rightarrow then

\[
\begin{bmatrix}
A^T & \vdots \\
\end{bmatrix} \rightarrow \begin{bmatrix}
A^T \cdot p = p
\end{bmatrix}
\]

B.III - SVD - outline

- Introduction - motivating problems
- Definition - properties
- Interpretation / Intuition
- Solutions to posed problems
 - P1: patterns in a matrix; compression
 - P2: most ‘important’ node in a graph
- Conclusions

Problem#2

Given a graph, find its most interesting/central node

Proposed solution: Random walk; spot most ‘popular’ node \Rightarrow steady state prob.
google/page-rank algorithm

- $A^T p = 1 \cdot p$
- thus, p is the eigenvector that corresponds to the highest eigenvalue ($=1$, since the matrix is column-normalized)

In short: imagine a particle randomly moving along the edges (*).
- compute its steady-state probabilities

(*) with occasional random jumps and back-tracks

Kleinberg’s algorithm

- Kleinberg’s algorithm of ‘hubs’ and ‘authorities’: closely related [Kleinberg’98]
- (and still based on SVD of the adjacency matrix)

Kleinberg’s algorithm - results

Eg., for the query ‘java’:
- 0.328 www.gamelan.com
- 0.251 java.sun.com
- 0.190 www.digitalfocus.com (“the java developer”)

B.III - SVD - outline

- Introduction - motivating problems
- Definition - properties
- Interpretation / Intuition
- Solutions to posed problems
 - P1: patterns in a matrix; compression
 - P2: most ‘important’ node in a graph
- Conclusions

SVD - conclusions

SVD: a valuable tool, whenever we have a matrix, e.g.
- many time sequences
- many feature vectors
- graph (→ adjacency matrix)
SVD - conclusions

SVD: a **valuable** tool, whenever we have a matrix, e.g.
- many time sequences
 - SVD finds groups
 - principal components
 - dim. reduction

<table>
<thead>
<tr>
<th>Source router</th>
<th>Dest. router2</th>
<th>Dest. router3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address1</td>
<td>1 1 1 0 0</td>
<td></td>
</tr>
<tr>
<td>IP address2</td>
<td>1 2 2 0 0</td>
<td></td>
</tr>
<tr>
<td>IP address3</td>
<td>1 1 1 0 0</td>
<td>5 5 5 0 0</td>
</tr>
<tr>
<td>Source router1</td>
<td></td>
<td>0 0 0 2 2</td>
</tr>
<tr>
<td>Source router2</td>
<td></td>
<td>0 0 0 3 3</td>
</tr>
<tr>
<td>Source router3</td>
<td></td>
<td>0 0 0 1 1</td>
</tr>
</tbody>
</table>

SVD - conclusions - cont’d

Has been used/re-invented **many times**:
- LSI (Latent Semantic Indexing) [Foltz+92]
- PCA (Principal Component Analysis) [Jolliffe86]
- KL (Karhunen-Loeve Transform)
- Mahalanobis distance
 - ...

Table Overview

<table>
<thead>
<tr>
<th>Topology</th>
<th>Link</th>
<th>End-2-end</th>
<th>Traffic Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powerlaws, jellyfish</td>
<td>LRD, ON/OFF sources</td>
<td>LRD loss and RTT</td>
<td>Skewness of location</td>
</tr>
<tr>
<td>Growth pattern, Compare graphs</td>
<td>Effect of topology and protocols</td>
<td>Troubleshoot, cluster and predict</td>
<td>Comprehensive model, troubleshoot</td>
</tr>
</tbody>
</table>

Resources: Software and urls

- SVD packages: in **many** systems (matlab, mathematica, LINPACK, LAPACK)
- stand-alone, free code: SVD pack from Michael Berry

Books

Additional Reading

- Berry, Michael: http://www.cs.utk.edu/~lsi/

Books

Additional Reading

Additional Reading

Additional Reading

Part B - IV
fractals

High-level Outline

- Part A - what we know about the Internet
- Part B - how to find more
 - B.I - Traditional Data Mining tools
 - B.II - Time series: analysis and forecasting
 - B.III - New Tools: SVD
 - B.IV - New Tools: Fractals & power laws

B.IV - Fractals - outline

- Motivation – 3 problems / case studies
- Definition of fractals and power laws
- Fast Estimation of fractal dimension
- Solutions to posed problems
- More examples and tools
- Conclusions – practitioner’s guide

Problem #0: GIS - points

Road end-points of Montgomery county:
- Q1: # neighbors(r)?
- Q2: distribution?
 - not uniform
 - not Gaussian
 - no rules??

Problem #0: GIS - points
(could be: geo-locations of IP addresses launching DDoS attack)

Problem #1: traffic

- disk trace (from HP - J. Wilkes); Web traffic - fit a model
 - #bytes
 - how many explosions to expect?
 - queue length distr.?
Problem #1: traffic
- Kb per unit time (requests on a web server)
 http://repository.cs.vt.edu/lbl-conn-7.tar.Z

Problem #2 - topology
How does the Internet look like?

Problem #3 - spatial d.m.
Galaxies (Sloan Digital Sky Survey w/ B. Nichol)
- ‘spiral’ and ‘elliptical’ galaxies
- patterns?
- attraction/repulsion?
- separable?

Problem #3 - spatial d.m.
Avg packet rate
- ‘good’ and ‘bad’ IP addresses
- can we separate them?

Problem #3 - spatial d.m.
Avg packet size

Problem #3 - spatial d.m.
Avg ‘off’ duration
- ‘good’ and ‘bad’ customers / flows
- can we separate them?

Common answer:
Fractals / self-similarities / power laws
B.IV - Fractals - outline

- Motivation – 3 problems / case studies
- Definition of fractals and power laws
- Fast Estimation of fractal dimension
- Solutions to posed problems
- More examples and tools
- Conclusions – practitioner’s guide

What is a fractal?

A self-similar point set, e.g., Sierpinski triangle:

![Sierpinski triangle](image)

zero area; infinite length!

Definitions (cont’d)

- Paradox: Infinite perimeter ; Zero area!
- ‘Dimensionality’: between 1 and 2
- actually: Log(3)/Log(2) = 1.58...

Dfn of fd:

ONLY for a perfectly self-similar point set:

![Self-similar set](image)

= log(n)/log(f) = log(3)/log(2) = 1.58

Intrinsic (‘fractal’) dimension

- Q: fractal dimension of a line?
- A: 1 (= log(2)/log(2))!

Intrinsic (‘fractal’) dimension

- Q: fractal dimension of a line?
- A: 1 (= log(2)/log(2))!
Intrinsic (‘fractal’) dimension

- Q: dfn for a given set of points?

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Intrinsic (‘fractal’) dimension

- Q: fractal dimension of a line?
- A: \(nn(\leq r) \sim r^{d_1} \) (‘power law’: \(y=x^{d_1} \))

Intrinsic (‘fractal’) dimension

- Q: fd of a plane?
- A: \(nn(\leq r) \sim r^{d_2} \)
 \(d_2 = \) slope of \(\log(nn) \) vs \(\log(r) \)

Sierpinsky triangle

\[\log(\#\text{pairs within } \leq r) \]

\[\log(\#\text{pairs within } \leq r) \sim r^{d} \]

\[d = \text{correlation integral} \]

\[= \text{CDF of pairwise distances} \]

Intrinsic (‘fractal’) dimension

- Algorithm, to estimate it?
- Notice
- \(\text{avg } nn(\leq r) \) is exactly
 \(\text{tot\#pairs}(\leq r)/N \)

Observations:

- Euclidean objects have integer fractal dimensions
 - point: 0
 - lines and smooth curves: 1
 - smooth surfaces: 2
- fractal dimension -> roughness of the periphery

B.IV - Fractals - outline

- Motivation – 3 problems / case studies
- Definition of fractals and power laws
- Fast Estimation of fractal dimension
- Solutions to posed problems
- More examples and tools
- Conclusions – practitioner’s guide
Fast estimation

- Bad news: There are more than one fractal dimensions
 - Minkowski fd; Hausdorff fd; Correlation fd; Information fd
- Great news:
 - they can all be computed fast! (O(N); O(N logN))
 - Code is on the web (www.cs.cmu.edu/~christos)
 - they usually have nearby values

Fast estimation of fd(s):
- How, for the (correlation) fractal dimension?
- A: Box-counting plot:

\[\log(\text{sum}(p^2)) \]

\[\log(r) \]

B.IV - Fractals - outline

- Motivation – 3 problems / case studies
- Definition of fractals and power laws
- Fast Estimation of fractal dimension
- Solutions to posed problems: P#0 - points
- More examples and tools
- Conclusions – practitioner’s guide

Problem #0: GIS points

Montgomery county:
*any rules?

Solution #0

\[\log(\#\text{pairs(within } \leq r)) \]

A: self-similarity ->
- \(\implies \) fractals
- \(\implies \) scale-free
- \(\implies \) power-laws
 \(y=x^a, F=C x^{a-2}) \)

Examples: LB county

- Long Beach county of CA (road end-points)
Example: traffic

- Kb per unit time (requests on a web server)

Slopes: \(-0.7\) [Wang+02]

Solution #1: traffic

- disk traces: self-similar (also: [Leland+94])
- How to generate such traffic?

Solution #1: traffic

- disk traces (80-20 ‘law’ = ‘multifractal’) [Riedi+99], [Wang+02]

Problem #2: Internet topology

- How does the internet look like?

Problem#2: Internet topology

- How does the internet look like?
- Internet routers: how many neighbors within h hops?

Reachability function: number of neighbors within r hops, vs r (log-log).

Mbone routers, 1995

Problem#2: Internet topology

- Internet routers: how many neighbors within h hops? (= correlation integral)

Q: How to compute it within r hops?
A: [Palmer+01]

B.IV - Fractals - outline

- Motivation – 3 problems / case studies
- Definition of fractals and power laws
- Fast Estimation of fractal dimension
- Solutions to posed problems: P#3: spatial d.m.
- More examples and tools
- Conclusions – practitioner’s guide

Solution#3: spatial d.m.

Galaxies (‘BOPS’ plot - [sigmod2000])

Reachability function: number of neighbors within r hops

Problem#2: Internet topology

- Internet routers: how many neighbors within h hops?

Reachability function: number of neighbors within r hops

Q: How to compute it quickly?
A: [Palmer+01]

Solution#3: spatial d.m.

Reachability function: number of neighbors within r hops, vs r (log-log).

Mbone routers, 1995

Solution#3: spatial d.m.

Reachability function: number of neighbors within r hops, vs r (log-log).

Mbone routers, 1995

Solution#3: spatial d.m.

Reachability function: number of neighbors within r hops, vs r (log-log).

Mbone routers, 1995
Fractals and power laws

Recall that they are related concepts:
- fractals \iff
- self-similarity \iff
- scale-free \iff
- power laws ($y = x^a$)

- 1.8 slope
- plateau!
- repulsion!

A famous power law: Zipf’s law

- Bible - rank \iff frequency (log-log)

- $\log(r)$
- spatial d.m.
Power laws, cont’d

- In- and out-degree distribution of web sites [Barabasi, IBM-CLEVER]
- Length of file transfers [Bestavros+]
- Click-stream data [Montgomery+01]
- Web hit counts [Huberman]

More power laws

- Duration of UNIX jobs; of UNIX file sizes
- Energy of earthquakes (Gutenberg-Richter law) [simscience.org]

Even more power laws:

- Income distribution (Pareto’s law)
- Publication counts (Lotka’s law)

Olympic medals (Sidney):

- Energy of earthquakes (Gutenberg-Richter law) [simscience.org]

Fractals

Let’s see some fractals, in real settings:

- Oct-trees; brain-scans

Fractals: Brain scans
Fractals: Medical images

[Burdett et al, SPIE ‘93]:
- benign tumors: fd ~ 2.37
- malignant: fd ~ 2.56

More fractals:

- cardiovascular system: 3 (!)
- stock prices (LYCOS) - random walks: 1.5
 1 year 2 years
- Coastlines: 1.2-1.58 (Norway!)

B.IV - Fractals - outline

- Motivation – 3 problems / case studies
- Definition of fractals and power laws
- Fast Estimation of fractal dimension
- Solutions to posed problems
- More examples and tools
- Conclusions – practitioner’s guide

Conclusions

- Real data often disobey textbook assumptions (Gaussian, Poisson, uniformity, independence)
 - avoid ‘mean’ - use median, or even better, use:
- fractals, self-similarity, and power laws, to find patterns

Practitioner’s guide:

- Fractals: help characterize a (non-uniform) set of points
- Detect non-homogeneous regions (eg., legal login time-stamps may have different fd than intruders’)

© M. & C. Faloutsos (2003)
Practitioner’s guide

- **tool#1**: (for points) ‘correlation integral’: (#pairs within \(\leq r \)) vs (distance \(r \))
- **tool#2**: (for categorical values) rank-frequency plot (a’la Zipf)

High-level Outline

- Part A - what we know about the Internet
 - B.1 - Traditional Data Mining tools
 - B.2 - Time series: analysis and forecasting
 - B.3 - New Tools: SVD
 - B.4 - New Tools: Fractals & power laws

‘Take-home’ messages:

Table Overview

<table>
<thead>
<tr>
<th>Know</th>
<th>Don’t Know</th>
<th>How to learn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>Powerlaws, jellyfish</td>
<td>SVD, fractals</td>
</tr>
<tr>
<td>Link</td>
<td>LRD, ON/OFF sources</td>
<td>ARIMA, wavelets, 80-20</td>
</tr>
<tr>
<td>End-2-end</td>
<td>LRD loss and RTT</td>
<td>ARIMA, wavelets, 80-20</td>
</tr>
<tr>
<td>Traffic Matrix</td>
<td>Skewness of location</td>
<td>Power-laws, multifractals, clustering</td>
</tr>
</tbody>
</table>

Table Overview

<table>
<thead>
<tr>
<th>Problems</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>Classified, clustering, ARIMA, wavelets, SVD</td>
</tr>
<tr>
<td>Link</td>
<td></td>
</tr>
<tr>
<td>End-2-end</td>
<td></td>
</tr>
<tr>
<td>Traffic Matrix</td>
<td></td>
</tr>
</tbody>
</table>

© M. & C. Faloutsos (2003) II-297
OVERALL CONCLUSIONS

• WEALTH of powerful, scalable tools in data mining (classification, clustering, SVD, fractals)
• traditional assumptions (uniformity, iid, Gaussian, Poisson) are often violated, when fractals/self-similarity/power-laws deliver.

Resources: Software & urls

• Fractal dimensions: Software
 - www.cs.cmu.edu/~christos

Books

Further reading:

Further reading:

Further reading