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Abstract 
 

Efficiently and accurately searching for similarities 
among time series and discovering interesting patterns is 
an important and non-trivial problem. There is a lot of 
prior work e.g., F-index introduced by Agrawal et al, ST-
index proposed by Faloutsos et al, and PAA suggested by 
Keogh et al. In this paper we suggest a new method: 
HFVQA (Hierarchical Frequency-based Vector 
Quantized Approximation), which is frequency-based and 
uses a histogram model to calculate the similarity 
between two time series. 

The novelty of our method is that it keeps both local 
and global information about the original time series in a 
hierarchical mechanism, processing the original time 
series at multiple resolutions. Moreover, the proposed 
representation is symbolic employing key-sequences 
potentially allowing the application of text-based 
retrieval techniques into the similarity analysis of time 
series. Our method is fast and scales linearly with the size 
of database and the dimensionality. Contrary to the vast 
majority in the literature that uses the Euclidean distance, 
it is the first (or "among the few ones") that uses a multi-
resolution/hierarchical distance function. We 
demonstrate the utility and efficiency of HFVQA on 
multiple real and synthetic data. 
 
 
1. Introduction 
 

The problem of efficient retrieval of similar time series 
has received a lot of attention due to its many applications 
in different domains. Briefly, this problem can be stated 
as follows:  

Given a query sequence q, a database S of N sequences, 
S1,S2,…,SN, a distance measure D and a tolerance 
threshold ε, find the set of sequences R  in S that are 
within distance ε from q. More precisely find: R = {Si ∈  
S | D(q,Si) ≤ ε }. 

To compare two given time series, a suitable measure 
of similarity should be given. Naive approaches for 
comparing time sequences generally take polynomial time 
in the length of the sequences, typically linear or 
quadratic time. These approaches are not useful for large 
time series databases. Promising techniques include those 
that are based on the reduction of dimensionality of the 
original sequences. In this case, the sequences can be 
represented as multidimensional vectors and similar 
sequences can be retrieved in sublinear time. 

There may be several different criteria to evaluate a 
method, but generally speaking, a good one should be 

• fast and scalable 
• accurate (according to some ground truth). 

    In this paper, we introduce a new method which 
satisfies these requirements. Our method is called 
HFVQA: Hierarchical Piecewise Vector Quantized 
Approximation, and it has the following characteristics: 

1) it’s the first one (or one of the few) that uses time-
tested ‘vector quantization’ methods to discover a 
‘vocabulary’ of sub-sequences; 

2) It’s the first one (or one of the few) that takes 
multiple resolution into account – this improves 
both the speed and the accuracy; 

3) It’s the first one (or one of the few) that utilizes 
text-based techniques (tf / idf method) from 
Information Retrieval, to weight down 
uninteresting matches, thus improving the 
accuracy.  

As Agrawal et al [2] proposed, compared with 
Euclidean distance, a more intuitive idea is that two series 
should be considered similar if they have enough non-
overlapping time-ordered pairs of subsequences that are 
similar. In this paper, instead of calculating the Euclidean 
distance, we first extract key-subsequences utilizing the 
Vector Quantization (VQ) [9] technique and encode each 
time series based on the frequency of appearance of each 
key-subsequence. We then apply a histogram model to 
calculate the dissimilarities among time series. This 
method can be very meaningful in many domains, for 
example, when comparing two stocks during a long 
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period, we may want to find out during how many months 
the stocks have similar movements, though the same trend 
may appear in different months for different stocks. This 
application is similar to mining motifs in massive time 
series databases [20]. 

While the histogram metric can record the local 
information very well, it loses much global information of 
the time series, since it doesn’t keep track of the order of 
appearance of different key-subsequences. To deal with 
this problem, we propose to apply a hierarchical 
mechanism: Original time series are processed at several 
different resolutions, and similarity analysis is performed 
using a weighed distance metric combining all the 
resolution levels. For example, given a time series 
representing a stock price movement, we know that 
subsequences of different length have different real 
meanings. If the length is 5, the sub sequence stands for a 
weekly trend of the stock, while we can find the monthly 
trend when the length is 20 (5 * 4 weekdays).  

The rest of this paper is organized as follows. Section 
2 provides a survey of previous methods and related 
background knowledge. Section 3 introduces the 
framework of the new dimensionality reduction technique 
we propose. Experiment results are presented in Section 
4. Directions for future work and concluding remarks are 
presented in Section 5 and Section 6. 

 
 

2. Survey - Background 
 
2.1 Related work 

 
Considering the comparison between two given time 

series, many approaches and techniques have been 
suggested in the past decade [1, 2, 4, 6, 7, 10, 11, 13, 15, 
16, 18, 19, 23, 27, 28]. 

To deal with dimensionality reduction, the solution to 
extract a signature from each sequence and to index the 
signature space was originally proposed by Faloutsos et al 
[6, 7]. To guarantee completeness (i.e., no false 
dismissals) the admissibility criterion that the distance 
function used in the signature space must underestimate 
the true distance measure (bounding lemma) was also 
proposed [7].  

Obeying the admissibility criterion, many methods 
have been suggested and proved useful in different fields, 
such as F-index introduced by Agrawal et al [1], ST-
index proposed by Faloutsos et al [7], and PAA suggested 
by Keogh et al [16, 19]. 

For these methods in which the distance metric lower 
bounds the Euclidean distance, one of the most significant 
characteristics is the avoidance of false dismissals, though 
there may be a lot of false alarms. However, in some 
cases, the existence of too many false alarms may 

decrease the efficiency of retrieval. At the same time, as 
many researchers have mentioned in their work [12,25], 
the Euclidean distance is not always the optimal distance 
measure. For example, in some time series, different parts 
have different levels of significance in their meaning. 
Also, Euclidean distance doesn’t allow shifting in time 
axis, which is not unusual in real life applications.  

In order to extract high-level features out of time 
series, Nick Koudas et al. [24] formalized problems of 
identifying various “representative” trends in time series 
data. 
 
2.2 Background 
 

To make the presentation of the proposed work clear, 
here, we give descriptions of various concepts and 
definitions used in the paper. We start with the definition 
for a time sequence and its subsequences. 

Definition 1. Time Sequence: A sequence (ordered 
collection) of real values.   X = x1, x2,…, xn , where n can 
be very large. 

Definition 2. Subsequence: Given a time sequence X = 
x1, x2,…, xn , of length n, a subsequence S of X is a 
sampling of length m<n continuous positions from X, i.e., 
S=xk,xk+1,…,xk+m-1 ; 1≤k≤n-m+1.  

In similarity analysis, we need to define a metric for the 
similarity, that is, a measure of the distance between two 
time series. The most popular metric used in various 
applications is the Euclidean Distance. 
Given two time sequences, X = x1, x2,…, xn, Y = y1, y2, …, 
yn , their distance, D,  is defined in general as 
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(For an Lp norm, when p=2, the distance L2 stands for 
Euclidean distance). 

Obviously, the simplest way of calculating the 
similarity (or distance) among time series is to compute 
the Euclidean distance directly, i.e., on the original series. 
For a small dataset this may be feasible, however, for 
large data sets the efficiency is a problem, since the time 
complexity is O(N*n), where n is the number of features 
that need to be represented for each time series and N is 
the number of time series in the dataset. In order to 
compute efficiently while keeping the accuracy not 
significantly affected, many techniques of dimensionality 
reduction have been suggested, such as the Discrete 
Fourier Transform (DFT), the Discrete Wavelet 
Transform (DWT), the Piecewise Aggregate 
Approximation (PAA), etc.  

Besides the computation complexity, we can’t always 
be sure that the nearest neighbors in Euclidean space are 
the most similar ones. This is because that the point-based 
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information model (computing similarity based on every 
point) contains only low-level features of the time series 
and it is vulnerable to different kinds of shape 
transformations, such as shifting and scaling. Under such 
circumstances, it will be better if we can find some high-
level features and apply a more robust information 
retrieval model for time series analysis. 

Based on this idea, we introduce a key-sequence 
framework (in analogy to key-blocks in image retrieval 
[29]) to facilitate the retrieval of similar time series. This 
framework consists of the following main components: 

1) Codebook generation;  
2) Time series encoding; 
3) Time series feature representation and retrieval. 
This framework is analogous to the keyblock 

framework suggested by Aidong Zhang et al [29] for 
information retrieval in image domain, which provides a 
practical solution for content-based image retrieval.  

For codebook generation in vector quantization the 
Generalized Lloyd Algorithm (GLA) [21, 22] is usually 
applied (this is done during a training phase). The main 
structure of GLA is given in the flow chart in Figure 1.  

 

 
 

Figure 1. The Generalized Lloyd Algorithm (GLA). 
 

Starting with an initial codebook, the GLA algorithm 
repeats the Lloyd iteration until the fractional drop of the 
distortion becomes less than a given threshold. This 
process is guaranteed to converge since from the 
necessary conditions for optimality each application of 
the Lloyd iteration must reduce or leave unchanged the 
average distortion [9].  

In VQ-based retrieval [29], two of the most popular 
models that have been proposed are the Boolean Model 
(BM) and the Vector Model (VM). The latter has a 
special case, which is called Histogram Model (HM). We 
present these models in the context of time series analysis: 
 

1. Vector Model (VM): compute the similarity 
between the frequency-based representations of 2 
time series. Use the following formula: 
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2. Boolean model (BM): compute the similarity of the 
Boolean models of the codeword representation of 2 
time series.  

      00001111 **),( wnwntqSBM +=            (3) 
where n11 is the number of identical indices and n00 is 
the number of indices of the code words that do not 
exist in both of the representations, while w11 and w00 
are the weights assigned to these frequencies. 

  
3. Histogram Model (HM): 
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3. Proposed method: FVQA,  HFVQA 
 

We propose to reduce the dimensionality in time series 
data by applying a piecewise approximation using VQ 
encoding at different resolutions. For each resolution, the 
proposed method called Frequency Vector Quantized 
Approximation (FVQA) allows a time series of arbitrary 
length n to be reduced to a much smaller dimension s (s 
<< n).  

With FVQA, a codebook with s codewords C={c1,c2, 
…, cs}  is created for a given dataset, and then each time 
series in the dataset is encoded according to the 
codebook. In the encoding process, each time series X is 
partitioned into many equal-size subsequences (the same 
size as the codeword) and for every subsequence the most 
similar codeword is found. By counting the appearance 
frequency for each codeword in the time series, we obtain 
a new representation of  X  as: X′=f′1,f′2,…,f′s. 

In FVQA, the length of the codewords is a very 
important parameter. Using different resolutions, we get 
totally different codebooks and different representations 
of the original time series, since each resolution level 
pays different attention to local and global information. In 
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order to keep both local and global information as much 
as possible, we suggest combining different resolution 
levels in similarity calculation, assigning appropriate 
weight to each of them. We call this new method 
Hierarchical Frequency-based Vector Quantization 
Approximation (HFVQA). Table 1 gives a brief 
description of the notation we use in the rest of this paper. 
In the following subsections, we introduce each of the 
components of our method. 
 

Table 1.  Symbol Table 
 

X Original time series,  X= x1,x2,…,xn  of 
length n 

X′ Encoded form of the original time series 
X′=f′1,f′2,…,f′s 

N Number of time series in the dataset 
n Length of original time series 
C Codebook: a set of codeword {c1,…,ck,…, 

cs} 
s Size of the codebook 
l Length of codeword  

 
 

3.1 Codebook Generation 
 

For each given dataset, a codebook is first generated 
with a clustering algorithm (such as GLA); each 
codeword in the codebook corresponds to a key-
subsequence. We apply the GLA algorithm to generate a 
codebook of size s based on the dataset T of time series.   
Each time series in T is partitioned into a number of 
segments each of length l and each segment forms a 
sample that is used to generate the codebook.  Each 
codeword in the codebook stands for a key-subsequence 
which is an approximation for a certain group of 
subsequences of length l. All the time series in the 
database are then encoded using the codebook.  

The version of GLA we use requires a partition split 
mechanism to solve the initial codebook generation 
problem. The algorithm starts with a codebook containing 
only one codeword, the centroid of the whole data set. In 
each repetition and before the application of the Lloyd 
iteration, it doubles the number of codewords (and cells) 
from the previous iteration by splitting the most populous 
cells. In Table 2 we present an example of a codebook (s 
= 16; l=20) of key-sequences. 

 
3.2 Data Encoding 
 

After a codebook is generated, we can acquire a new 
representation of each time series in the dataset. In the 
process of encoding, every series is decomposed into 
subsequences of length l (length of the codeword). The 

closest (based on a distance metric) entry, i.e., codeword, 
in the codebook for each subsequence is then found and 
the corresponding index is stored. After finding the 
corresponding codeword index for each segment, the 
appearance frequency of each codeword is counted. The 
new representation of a time series will be a vector 
(f1,f2,…fs) showing the appearance frequency of every 
codeword.  

By applying this new encoding form, we can easily 
deal with time series with arbitrary large number of 
points, since we can always reduce their dimensionality to 
a rather small number which is the size of codebook (s). 

 
Table 2.  An example of a codebook of key-sequences 

 

1 
 

2 
 

3  

4 
 

5 
 

… … 

16   
 
 
3.3 Distance measures 
 

Based on the frequency of appearance of key-sequences 
within time series, the features of time series are extracted 
and content-based information retrieval is carried out 
accordingly. After encoding the time series using FVQA, 
we get a new representation with a rather small 
dimensionality, which records the frequency of 
appearance of key-sequences within time series. We still 
need a distance measure appropriate for this new 
representation. 

As introduced in Section 2.2, there are several 
information retrieval models for VQ-based techniques. 
We choose the Histogram Model as the distance metric in 
FVQA, and all the experimental results presented in 
Section 4 are based on it. 
 
3.4 Applying a hierarchical mechanism 
 

By applying the histogram model, it is not difficult to 
identify the time series that are similar to a given query 
(i.e., that have similar frequent patterns). However, using 
only one codebook (analysis at a single resolution), 
introduces some problems that cannot be ignored.  
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First, although the local information of a time series is 
kept after the encoding process, the new representation of 
a time series is not recording the order among the indices 
of different codewords. This implies that some important 
global information of the time series is lost. This 
correspondingly increases the number of false alarms 
reducing the performance of the method. In Figure 2, we 
see several different time series whose FVQA 
representations are the same (2, 1, 1). 

 

 
Figure 2. Different series with the same FVQA 

representation 
 

Reconstructed
from cdbk:
32(s)*16(l)
Reconstructed
from cdbk:
32(s)*32(l)
Reconstructed
from cdbk:
32(s)*128(l)
Original TS

 
Figure 3.  Reconstruction of time series using different 

resolutions  
 
On the other hand, in real applications, it is not always 

easy to find a suitable resolution (correspondingly, a 
suitable codeword length). Moreover, an inappropriate 
codeword length may reduce the efficiency. 

In order to solve these potential problems with FVQA, 
we suggest HFVQA (Hierarchical FVQA), which 
improves FVQA by involving different resolutions for 
encoding. While the encoding form of higher resolution 
pays more attention to the detail of local information, that 
of lower resolution has more global information. Figure 3 
shows a time series and its reconstruction series using 
different resolutions. (For different resolution levels, the 

sizes of codebooks are the same, 32, and the lengths of 
codewords are 128, 32, 16, respectively.) 

By assigning reasonable weights to different 
resolutions, we define a new weighted similarity metric: 
Hierarchical Histogram Model: 

SHHM (q,dj)=      (5) ∑
=

c

1i
jHMii )d(q,S * w

where c is the number of resolution levels. 
Experiments show that HFVQA brings much higher 

accuracy than FVQA at single resolution. The only price 
for this improvement is slightly more computation, since 
we have to calculate the similarity on each resolution 
level before we can finally compute SHHM. In the 
following experimental analysis we study the behavior of 
the hierarchical approach with different weights assigned 
to each resolution level. Using equal weights for all 
resolutions provides better results in most of the 
experiments we performed. The selection of the weights 
could also depend on the particular application. The 
proposed method provides the ability to include some 
prior knowledge about the domain in the selection of the 
weights. 
 
 
4. Experiments 
 

In time series similarity analysis, best matches retrieval 
and clustering are two of the most common and important 
applications.  We performed experiments to analyze the 
ability and efficiency of our method in these two 
applications, and also address the following issues: 
 How accurate is our method. 
 How it compares to alternatives. 
 How fast and scalable it is. 

 
 
4.1 Best Match Searching 
 
4.1.1 Experiment design. Many time series applications 
involve the best match searching. That is, given a query 
sequence, find the best k matches in the database (i.e., 
having the lowest dissimilarity with the query) or find all 
the time series whose dissimilarity with the query is 
below some predefined threshold. 

In order to evaluate the performance of different 
approaches in best match searching, we need an 
evaluation metric.  

Definition 3. For a given query, the set of time series 
which are actually within the same class as the query 
(given our prior knowledge) is taken as the standard set 
(std_set(q)), and the results found by different approaches 
(knn(q)) are compared with this set. The matching 
accuracy is defined as: 
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 |std_set(q) knn(q)| Accu ×
∩

=    (6) 

In the definition above, knn(q), is the k nearest 
neighbors for the query found by a certain method, while 
std_set(q) is the prior knowledge about the dataset. In our 
experiments, every time series in the dataset is treated as a 
query, and the best k matches (k nearest neighbors) are 
sought within the whole dataset. The average accuracy 
(Accu) of a certain method is then calculated based on the 
matching results taking each time series as a query. The 
actual value of k we use depends on the number of time 
series within the same class. 

Since we apply a hierarchical mechanism in our 
approach, an important parameter is the number of 
hierarchical levels.  As shown in experiments, using too 
many levels does not bring much improvement, therefore 
we keep this number reasonably small (in our 
experiments, this number is 5). Based on this number and 
the length of time series in the dataset, the length of key-
subsequences (or codewords) in different codebooks can 
be decided accordingly. 

As for the sizes (the number of codewords) of different 
codebooks, there are two ways to make choices. One way 
is to decide the sizes of codebooks with the help of some 
prior knowledge, and another way is just to use an 
arbitrary small number as the number of key-sequences in 
all hierarchical levels. 

In order to avoid the effects of scaling and shifting in 
analysis, Golding and Kanellakis [5] formalized an  
intuitive notions of exact and approximate similarity 
between time series patterns where the variance of time 
series is involved. In our work, before we actually 
perform any experiment, we preprocess the datasets with 
zero-mean normalization. That is, each time series X was 

normalized as: 
)(
)(

X
XX

σ
−

=X  where X  is the mean value 

of X and )(Xσ is the standard deviation of X. 
In our experiments, the value of k can vary, but for the 

purpose of demonstration, we just show the results when 
k is set to the number of time series within the same class. 

 
4.1.2 Experiments on a synthetic dataset. In this 
section, we show the results of the experiments performed 
on SYNDATA dataset. 
    SYNDATA is a synthetic dataset which is 
downloadable from the UCI KDD archive [26]. This 
dataset contains 600 examples of control charts (each has 
60 points) synthetically generated by the process in 
Alcock and Manolopoulos [3]. The time series belong to 
six different classes of control charts: Normal, Cyclic, 
Increasing trend, Decreasing trend, Upward shift, and 
Downward shift, with each class having 100 time series. 

In the first half of the experiments, we considered prior 
knowledge about the dataset, i.e., that the number of 

clusters is 6, and the size of the codebook corresponding 
to a higher resolution is larger (since there are more 
training samples available for that resolution). For the 
second half we did not take any prior knowledge into 
account and kept all the sizes of different codebooks the 
same small number (32 in this case). The important 
experiment parameters are listed in Table 3. 

In addition to the above parameters, we need to assign 
appropriate weight to each hierarchical level in the 
dissimilarity calculation. In our experiments we tried 
several typical weight vectors. 

 
Table 3. Experiment parameters for SYNDATA 

 
 HFVQA with prior 

knowledge 
HFVQA without 
prior knowledge 

Level l s l s 
1 60 6 60 32 
2 30 16 30 32 
3 20 32 20 32 
4 10 64 10 32 
5 5 128 5 32 

 
The experimental results on SYNDATA are shown in 

Table 4. The first element in the weight vector represents 
the weight assigned to the first level, the second element 
the weight assigned to the second level, and so on (e.g., 
with a weight vector [1 0 0 0 0], only the first level is 
involved in distance calculation). Accu1 is the matching 
accuracy (see Eq.(6)) when we apply some prior 
knowledge in training process, and Accu2 is the matching 
accuracy when no prior knowledge is involved. 

The experimental results clearly demonstrate the effect 
of using a hierarchical mechanism: when more levels are 
involved, the retrieval accuracy improves. Also, with 
some prior knowledge about the dataset, we can extract 
more accurate feature information, and correspondingly, 
improve the matching accuracy. However, even without 
the prior knowledge, we can get reasonably good results. 
The hierarchical mechanism clearly helps in both cases. 
 

Table 4. Experiment results on SYNDATA 
 

HFVQA 
Weight Vector 

 
Accu1 

 
Accu2 

[1 0 0 0 0] 0.5531 0.4135 
[0 1 0 0 0] 0.7025 0.6072 
[0 0 1 0 0] 0.5177 0.5117 
[0 0 0 1 0] 0.4468 0.4807 
[0 0 0 0 1] 0.3907 0.4564 
[1 1 1 1 1] 0.8250 0.7461 
[1 2 4 8 16] 0.7868 0.6964 
[16 8 4 2 1] 0.8228 0.7187 
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Using the Naïve method over the same dataset, which 

directly use Euclidean Distance as the dissimilarity 
metric, we get an average accuracy of only 0.5112. 
Comparing with the results in Table 4, we can conclude 
that: for this dataset, the Naïve method did worse even 
than a single level FVQA, and HFVQA provides a much 
better matching accuracy besides the dimensionality 
reduction.  
 
4.1.3 Experiments on GENE data. The GENE dataset is 
a subset of the NCI60 gene expression data from the 
National Cancer Institute. This dataset can be 
downloaded from [30]. 

Each series in this dataset consists of the gene 
expression values of 1375 genes. From the cell lines that 
are available we considered 41 cancer cell lines of 6 kinds 
of cancers: 6 central nervous system, 7 colon, 6 leukemia, 
8 melanoma, 6 ovarian and 8 renal cancer cell lines. The 
ground truth is available for this data. 

We performed similar experiments as with SYNDATA 
dataset. The experiment parameters and results are shown 
in Tables 5 and 6 respectively. 

Table 5. Experiment parameters for GENE data 
 HFVQA With 

prior knowledge 
HFVQA Without 
prior knowledge 

Level l s l S 
1 1375 6 1375 32 
2 275 16 275 32 
3 55 32 55 32 
4 25 64 25 32 
5 5 128 5 32 

 
Table 6. Experiment results on GENE data 

Weight 
Vector 

Accu1 Accu2 

[1 0 0 0 0] 0.5894 0.3252 
[0 1 0 0 0] 0.8049 0.7317 
[0 0 1 0 0] 0.6789 0.6781 
[0 0 0 1 0] 0.7602 0.5813 
[0 0 0 0 1] 0.5569 0.5285 
[1 1 1 1 1] 0.8049 0.7805 
[1 2 4 8 16] 0.8293 0.7480 
[16 8 4 2 1] 0.7927 0.7764 

 
From Table 6, it is clear that for this GENE dataset, the 

hierarchical mechanism also helps to improve the 
accuracy and HFVQA results in much better results than 
a single level FVQA. 

Comparing with the average accuracy of Naïve 
method, which is 0.8455, the retrieval accuracy of 
HFVQA is a little worse, but still acceptable, especially 
considering that the retrieval efficiency has been 

significantly improved because of the reduced 
dimensionality. 
 
4.2 Comparing with other methods 
   In order to compare the efficiency and accuracy of 
HFVQA in similarity searches we considered other 
alternative methods including the Discrete Fourier 
Transform (DFT), straight Euclidean (Naïve), Dynamic 
Time Warping (DTW) and symbolic PAA [20]. 
    For evaluation and comparison, every time series in the 
dataset is taken as a query, and the precision and recall 
pairs corresponding to the top 1,2,3…k retrieved time 
series are calculated. Then the average value of precision 
and recall are computed for the whole dataset. The actual 
k value is different for different methods.  
   For DFT, symbolic PAA and HFVQA, some parameters 
need to be set up for the experiments. For DFT, we take 
the first 6 non-zero coefficient; for symbolic PAA, 
codebook size is 16 and number of segments is 6; and for 
HFVQA we take the codebook size as 16 for each of the 
5 resolution levels and use [1 1 1 1 1] as the weight 
vector.     
 

 
(a) 

 
(b) 

Figure 4.  Precision-recall for different methods 
(a) On SYNDATA dataset  (b) On GENE dataset 
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       Figure 4(a),(b) shows the results on SYNDATA and 
GENE dataset respectively. Notice that for a fixed recall 
ratio, the fewer time series are retrieved the better, and 
subsequently the higher the precision is. Figure 4 shows 
that for the SYNDATA and GENE datasets the Naïve 
method and DTW have nearly the same performance 
while the DFT and symbolic PAA, two dimensionality 
reduction methods based on Euclidean distance, 
demonstrate performance worse than that of the Naïve 
method. As a frequency-based dimensionality reduction 
method, HFVQA achieves the best performance on 
SYNDATA and it is comparable to the Naïve and DTW 
methods on GENE data. 
    Besides accuracy, other considerations for a good 
method should include speed and scalability. In the 
application of information retrieval, for a given query, we 
need to scan the whole dataset and calculate the distance 
between the query and each of the time series in the 
dataset before the best matches are located. Depending on 
the method, an extra step of encoding the query may be 
required.  
    Figure 5 shows the processing time of different 
methods on datasets with various sizes. The experiment 
settings for different methods are the same as before. 
 

 
 

Figure 5. Processing time and scalability 
 
In Figure 5, DFT shows the best processing efficiency 
with the shortest time, but considering the poor accuracy 
result shown in figure 4, it should not be taken as a good 
candidate.  
   In comparison to the other methods we considered here, 
although the encoding of the query consumes some time, 
HFVQA outperforms them all in speed when the database 
size is not too small. 
    
 
4.3 Clustering experiments  

 
4.3.1 Experiment design. For time series clustering, we 
conducted experiments on both synthetic and real datasets. 
The PAM (Partitioning Around Medoids) clustering 
algorithm was used to cluster the original time-series in 
every dataset. Different approaches applied in distance 
calculation will result in different distance matrix of the 
time series, and subsequently different clustering results. 

In order to evaluate the clustering accuracy and quality 
of our approach, a cluster similarity metric was used. 
Given two clusterings G=G1/,G2,…,GK  (the true clusters), 
and A = A1,A2,…Ak (clustering result by a certain method), 
the clustering accuracy is evaluated with the cluster 
similarity defined as 

k
AGSim

i ji∑=
),(max

A)Sim(G, j     (7) 

where       
|A|  |G|
|AG|2

  Aj)
ji

ji

+

∩
=Sim(Gi, .  

This metric was introduced in [8] to evaluate clustering 
results and was also used in [14]. The metric value ranges 
between 0 and 1, and it takes the maximal, i.e. 1, when 
the clustering result is perfect. 

For each dataset, we took the same experiment 
parameters as what we used in section 4.1. In the first half 
of the experiments, prior knowledge about the dataset, 
i.e., the number of clusters is involved, while in the 
second half no such knowledge is applied. Considering 
the stochastic nature of the PAM algorithm, given a set of 
parameters, the experiment was repeated 10 times, and 
the average result was reported. For the purpose of 
comparison, clustering results with other methods are also 
provided. 
 
4.3.2 Experiments on SYNDATA dataset. Taking the 
same parameters as shown in table 3, experiments of 
clustering were performed on SYNDATA dataset. The 
experiment results are listed in Table 7. Table 8 also 
shows the clustering results of some other methods. 
 
Table 7. Clustering results of HFVQA on SYNDATA  

 HFVQA With 
prior knowledge 

HFVQA Without 
prior knowledge 

Weight Mean Std Mean Std 
[1 0 0 0 0] 0.6953 0.0183 0.4707 0.0255 
[0 1 0 0 0] 0.7035 0.0605 0.5800 0.0365 
[0 0 1 0 0] 0.5030 0.0377 0.5092 0.0446 
[0 0 0 1 0] 0.4318 0.0315 0.5345 0.0500 
[0 0 0 0 1] 0.3954 0.0500 0.5133 0.0619 
[1 1 1 1 1] 0.7940 0.0331 0.7543 0.0549 
[1 2 4 8 16] 0.7655 0.0599 0.7480 0.0473 
[16 8 4 2 1] 0.7886 0.0383 0.6726 0.0350 
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Table 8. Clustering results on SYNDATA  
  DFT PAA HFVQA NAÏVE 
Ave 0.2469 0.6507 0.7940 0.5536 

 
It is clear that for this dataset, we cannot achieve 
satisfying performance using the Euclidean Distance as 
the distance metric, while the frequency-based method is 
very promising. The performance achieved by several 
single resolution levels is better that that of the Naïve 
method. By combining different resolution levels, the 
clustering result is further improved. 
 
4.3.3 Experiments on GENE dataset. Similarly to the 
previous experiments, we used the same parameters as 
shown in Table 5 and carried out experiments on the 
GENE dataset. The results are shown in Table 9. 
Clustering results with different methods are also 
provided in Table 10. 

Table 9. Clustering results of HFVQA on GENE  
 HFVQA with 

prior knowledge 
HFVQA without 
prior knowledge 

Weight Mean Std Mean std 
[1 0 0 0 0] 0.6908 0.0456 0.3607 0.0485 
[0 1 0 0 0] 0.7265 0.0594 0,6619 0.0344 
[0 0 1 0 0] 0.6691 0.0510 0.6632 0.0551 
[0 0 0 1 0] 0.7131 0.0535 0.6928 0.0440 
[0 0 0 0 1] 0.5560 0.0574 0.5775 0.0394 
[1 1 1 1 1] 0.8089 0.0411 0.7483 0.0449 
[1 2 4 8 16] 0.8122 0.0396 0.7351 0.0493 
[16 8 4 2 1] 0.7881 0.0345 0.7282 0.0474 

 
Table 10. Clustering results on GENE  

 
  DFT PAA HFVQA NAÏVE 
Ave 0.2974 0.6548 0.8122 0.8202 

 
For this dataset, even though the performance of the 

frequency-based method is slightly worse than that of the 
Naïve, it is still very satisfying. Note the obvious 
improvement when applying the hierarchical mechanism 
over the different resolution levels. 
 
5. Discussion 

The HFVQA approach that we proposed for reducing 
the high dimensionality in time series data to make their 
analysis more efficient is a natural extension of the 
piecewise constant approximation schemes proposed 
earlier. By applying Vector Quantization technique to 
extract high-level feature of the data and involving a 
hierarchical mechanism we were able to improve 

performance and efficiency in time series similarity 
retrieval, especially in some domains where we could not 
get a good result using the Euclidean distance as the 
similarity metric. Here, we briefly present some directions 
in which our work can be extended. 

First of all, even though under most circumstances, the 
involvement of hierarchical mechanism brings a better 
performance, it doesn’t always do. So it will be 
interesting to go further to find out under what 
circumstance we can’t involve hierarchical mechanism. 
Also, the assignment of weights to different resolution 
levels is very important, and it is a very interesting topic 
to figure out a more theoretical way to define the optimal 
weight assignment. Another interesting problem is related 
to the size of the codebook. When we train the dataset to 
generate the codebooks at different resolutions, what 
should be the appropriate number of codewords 
(codebook size)? 

 
6. Conclusion 

In this paper we introduced a new dimensionality 
reduction method, FVQA and its extension, HFVQA, for 
time series similarity analysis. By partitioning a sequence 
into equal-length segments and using vector quantization 
to represent each sequence by appearance frequencies of 
key-sequences, FVQA provides a more meaningful 
similarity metric for many domains, besides the 
improvement in efficiency because of the dimensionality 
reduction. Inheriting the benefits of FVQA, HFVQA 
involves a hierarchical mechanism to record both the 
local and global information of the original time series. 
Even though it requires a little more calculation than 
FVQA on single resolution level, HFVQA improves the 
retrieval and clustering accuracy a lot. Experiments we 
performed on both real and simulated datasets show that 
HFVQA brings much improvement to the single level 
FVQA. The proposed transformation on time series is 
very fast to process long time series, since the length of 
new representation is only related to the size of codebook. 
While the experiment results presented here mainly focus 
on similarity analysis and clustering, our approach can 
also be easily adjusted to some other applications, such as 
frequent pattern retrieval (i.e., motif discovery), 
association rule mining, and other data mining 
applications. 
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