
A Symbolic Representation of Time Series Employing
Key-Sequences and a Hierarchical Approach

Qiang Wang1, Guo Li1, Vasileios Megalooikonomou1, Christos Faloutsos2

1Dept. of Computer and Information Sciences 2Dept. of Computer Science
Temple University Carnegie Mellon University

1805 N. Broad St., 5000 Forbes Avenue
Philadelphia, PA 19027 Pittsburgh, PA 15213-3891

{qwang,gli}@lucas.cis.temple.edu vasilis@cis.temple.edu christos@cs.cmu.edu

Abstract

Efficiently and accurately searching for similarities
among time series and discovering interesting patterns is
an important and non-trivial problem. There is a lot of
prior work e.g., F-index introduced by Agrawal et al, ST-
index proposed by Faloutsos et al, and PAA suggested by
Keogh et al. In this paper we suggest a new method:
HFVQA (Hierarchical Frequency-based Vector
Quantized Approximation), which is frequency-based and
uses a histogram model to calculate the similarity
between two time series.

The novelty of our method is that it keeps both local
and global information about the original time series in a
hierarchical mechanism, processing the original time
series at multiple resolutions. Moreover, the proposed
representation is symbolic employing key-sequences
potentially allowing the application of text-based
retrieval techniques into the similarity analysis of time
series. Our method is fast and scales linearly with the size
of database and the dimensionality. Contrary to the vast
majority in the literature that uses the Euclidean distance,
it is the first (or "among the few ones") that uses a multi-
resolution/hierarchical distance function. We
demonstrate the utility and efficiency of HFVQA on
multiple real and synthetic data.

1. Introduction

The problem of efficient retrieval of similar time series
has received a lot of attention due to its many applications
in different domains. Briefly, this problem can be stated
as follows:

Given a query sequence q, a database S of N sequences,
S1,S2,…,SN, a distance measure D and a tolerance
threshold ε, find the set of sequences R in S that are
within distance ε from q. More precisely find: R = {Si ∈
S | D(q,Si) ≤ ε }.

To compare two given time series, a suitable measure
of similarity should be given. Naive approaches for
comparing time sequences generally take polynomial time
in the length of the sequences, typically linear or
quadratic time. These approaches are not useful for large
time series databases. Promising techniques include those
that are based on the reduction of dimensionality of the
original sequences. In this case, the sequences can be
represented as multidimensional vectors and similar
sequences can be retrieved in sublinear time.

There may be several different criteria to evaluate a
method, but generally speaking, a good one should be

• fast and scalable
• accurate (according to some ground truth).

 In this paper, we introduce a new method which
satisfies these requirements. Our method is called
HFVQA: Hierarchical Piecewise Vector Quantized
Approximation, and it has the following characteristics:

1) it’s the first one (or one of the few) that uses time-
tested ‘vector quantization’ methods to discover a
‘vocabulary’ of sub-sequences;

2) It’s the first one (or one of the few) that takes
multiple resolution into account – this improves
both the speed and the accuracy;

3) It’s the first one (or one of the few) that utilizes
text-based techniques (tf / idf method) from
Information Retrieval, to weight down
uninteresting matches, thus improving the
accuracy.

As Agrawal et al [2] proposed, compared with
Euclidean distance, a more intuitive idea is that two series
should be considered similar if they have enough non-
overlapping time-ordered pairs of subsequences that are
similar. In this paper, instead of calculating the Euclidean
distance, we first extract key-subsequences utilizing the
Vector Quantization (VQ) [9] technique and encode each
time series based on the frequency of appearance of each
key-subsequence. We then apply a histogram model to
calculate the dissimilarities among time series. This
method can be very meaningful in many domains, for
example, when comparing two stocks during a long

 1

period, we may want to find out during how many months
the stocks have similar movements, though the same trend
may appear in different months for different stocks. This
application is similar to mining motifs in massive time
series databases [20].

While the histogram metric can record the local
information very well, it loses much global information of
the time series, since it doesn’t keep track of the order of
appearance of different key-subsequences. To deal with
this problem, we propose to apply a hierarchical
mechanism: Original time series are processed at several
different resolutions, and similarity analysis is performed
using a weighed distance metric combining all the
resolution levels. For example, given a time series
representing a stock price movement, we know that
subsequences of different length have different real
meanings. If the length is 5, the sub sequence stands for a
weekly trend of the stock, while we can find the monthly
trend when the length is 20 (5 * 4 weekdays).

The rest of this paper is organized as follows. Section
2 provides a survey of previous methods and related
background knowledge. Section 3 introduces the
framework of the new dimensionality reduction technique
we propose. Experiment results are presented in Section
4. Directions for future work and concluding remarks are
presented in Section 5 and Section 6.

2. Survey - Background

2.1 Related work

Considering the comparison between two given time

series, many approaches and techniques have been
suggested in the past decade [1, 2, 4, 6, 7, 10, 11, 13, 15,
16, 18, 19, 23, 27, 28].

To deal with dimensionality reduction, the solution to
extract a signature from each sequence and to index the
signature space was originally proposed by Faloutsos et al
[6, 7]. To guarantee completeness (i.e., no false
dismissals) the admissibility criterion that the distance
function used in the signature space must underestimate
the true distance measure (bounding lemma) was also
proposed [7].

Obeying the admissibility criterion, many methods
have been suggested and proved useful in different fields,
such as F-index introduced by Agrawal et al [1], ST-
index proposed by Faloutsos et al [7], and PAA suggested
by Keogh et al [16, 19].

For these methods in which the distance metric lower
bounds the Euclidean distance, one of the most significant
characteristics is the avoidance of false dismissals, though
there may be a lot of false alarms. However, in some
cases, the existence of too many false alarms may

decrease the efficiency of retrieval. At the same time, as
many researchers have mentioned in their work [12,25],
the Euclidean distance is not always the optimal distance
measure. For example, in some time series, different parts
have different levels of significance in their meaning.
Also, Euclidean distance doesn’t allow shifting in time
axis, which is not unusual in real life applications.

In order to extract high-level features out of time
series, Nick Koudas et al. [24] formalized problems of
identifying various “representative” trends in time series
data.

2.2 Background

To make the presentation of the proposed work clear,
here, we give descriptions of various concepts and
definitions used in the paper. We start with the definition
for a time sequence and its subsequences.

Definition 1. Time Sequence: A sequence (ordered
collection) of real values. X = x1, x2,…, xn , where n can
be very large.

Definition 2. Subsequence: Given a time sequence X =
x1, x2,…, xn , of length n, a subsequence S of X is a
sampling of length m<n continuous positions from X, i.e.,
S=xk,xk+1,…,xk+m-1 ; 1≤k≤n-m+1.

In similarity analysis, we need to define a metric for the
similarity, that is, a measure of the distance between two
time series. The most popular metric used in various
applications is the Euclidean Distance.
Given two time sequences, X = x1, x2,…, xn, Y = y1, y2, …,
yn , their distance, D, is defined in general as

ppn

i
iip yxL

/1

1

−= ∑

=

 (1)

(For an Lp norm, when p=2, the distance L2 stands for
Euclidean distance).

Obviously, the simplest way of calculating the
similarity (or distance) among time series is to compute
the Euclidean distance directly, i.e., on the original series.
For a small dataset this may be feasible, however, for
large data sets the efficiency is a problem, since the time
complexity is O(N*n), where n is the number of features
that need to be represented for each time series and N is
the number of time series in the dataset. In order to
compute efficiently while keeping the accuracy not
significantly affected, many techniques of dimensionality
reduction have been suggested, such as the Discrete
Fourier Transform (DFT), the Discrete Wavelet
Transform (DWT), the Piecewise Aggregate
Approximation (PAA), etc.

Besides the computation complexity, we can’t always
be sure that the nearest neighbors in Euclidean space are
the most similar ones. This is because that the point-based

 2

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Koudas:Nick.html

information model (computing similarity based on every
point) contains only low-level features of the time series
and it is vulnerable to different kinds of shape
transformations, such as shifting and scaling. Under such
circumstances, it will be better if we can find some high-
level features and apply a more robust information
retrieval model for time series analysis.

Based on this idea, we introduce a key-sequence
framework (in analogy to key-blocks in image retrieval
[29]) to facilitate the retrieval of similar time series. This
framework consists of the following main components:

1) Codebook generation;
2) Time series encoding;
3) Time series feature representation and retrieval.
This framework is analogous to the keyblock

framework suggested by Aidong Zhang et al [29] for
information retrieval in image domain, which provides a
practical solution for content-based image retrieval.

For codebook generation in vector quantization the
Generalized Lloyd Algorithm (GLA) [21, 22] is usually
applied (this is done during a training phase). The main
structure of GLA is given in the flow chart in Figure 1.

Figure 1. The Generalized Lloyd Algorithm (GLA).

Starting with an initial codebook, the GLA algorithm
repeats the Lloyd iteration until the fractional drop of the
distortion becomes less than a given threshold. This
process is guaranteed to converge since from the
necessary conditions for optimality each application of
the Lloyd iteration must reduce or leave unchanged the
average distortion [9].

In VQ-based retrieval [29], two of the most popular
models that have been proposed are the Boolean Model
(BM) and the Vector Model (VM). The latter has a
special case, which is called Histogram Model (HM). We
present these models in the context of time series analysis:

1. Vector Model (VM): compute the similarity
between the frequency-based representations of 2
time series. Use the following formula:

∑∑

∑

==

==
s

i
qi

s

i
ti

s

i
qiti

vm

ff

ff
tqS

1

2
,

1

2
,

1
,,

*

*
),((2)

In the formula, means the frequency of

codeword in time series t.
tif ,

i

2. Boolean model (BM): compute the similarity of the
Boolean models of the codeword representation of 2
time series.

 00001111 **),(wnwntqSBM += (3)
where n11 is the number of identical indices and n00 is
the number of indices of the code words that do not
exist in both of the representations, while w11 and w00
are the weights assigned to these frequencies.

3. Histogram Model (HM):

2),(1
1),(

tqdis
tqSHM +

= (4)

 where ∑
= ++

−
=

s

i qiti

qiti

ff
ff

tqdis
1 ,,

,,

1
),(

3. Proposed method: FVQA, HFVQA

We propose to reduce the dimensionality in time series
data by applying a piecewise approximation using VQ
encoding at different resolutions. For each resolution, the
proposed method called Frequency Vector Quantized
Approximation (FVQA) allows a time series of arbitrary
length n to be reduced to a much smaller dimension s (s
<< n).

With FVQA, a codebook with s codewords C={c1,c2,
…, cs} is created for a given dataset, and then each time
series in the dataset is encoded according to the
codebook. In the encoding process, each time series X is
partitioned into many equal-size subsequences (the same
size as the codeword) and for every subsequence the most
similar codeword is found. By counting the appearance
frequency for each codeword in the time series, we obtain
a new representation of X as: X′=f′1,f′2,…,f′s.

In FVQA, the length of the codewords is a very
important parameter. Using different resolutions, we get
totally different codebooks and different representations
of the original time series, since each resolution level
pays different attention to local and global information. In

 3

order to keep both local and global information as much
as possible, we suggest combining different resolution
levels in similarity calculation, assigning appropriate
weight to each of them. We call this new method
Hierarchical Frequency-based Vector Quantization
Approximation (HFVQA). Table 1 gives a brief
description of the notation we use in the rest of this paper.
In the following subsections, we introduce each of the
components of our method.

Table 1. Symbol Table

X Original time series, X= x1,x2,…,xn of
length n

X′ Encoded form of the original time series
X′=f′1,f′2,…,f′s

N Number of time series in the dataset
n Length of original time series
C Codebook: a set of codeword {c1,…,ck,…,

cs}
s Size of the codebook
l Length of codeword

3.1 Codebook Generation

For each given dataset, a codebook is first generated
with a clustering algorithm (such as GLA); each
codeword in the codebook corresponds to a key-
subsequence. We apply the GLA algorithm to generate a
codebook of size s based on the dataset T of time series.
Each time series in T is partitioned into a number of
segments each of length l and each segment forms a
sample that is used to generate the codebook. Each
codeword in the codebook stands for a key-subsequence
which is an approximation for a certain group of
subsequences of length l. All the time series in the
database are then encoded using the codebook.

The version of GLA we use requires a partition split
mechanism to solve the initial codebook generation
problem. The algorithm starts with a codebook containing
only one codeword, the centroid of the whole data set. In
each repetition and before the application of the Lloyd
iteration, it doubles the number of codewords (and cells)
from the previous iteration by splitting the most populous
cells. In Table 2 we present an example of a codebook (s
= 16; l=20) of key-sequences.

3.2 Data Encoding

After a codebook is generated, we can acquire a new
representation of each time series in the dataset. In the
process of encoding, every series is decomposed into
subsequences of length l (length of the codeword). The

closest (based on a distance metric) entry, i.e., codeword,
in the codebook for each subsequence is then found and
the corresponding index is stored. After finding the
corresponding codeword index for each segment, the
appearance frequency of each codeword is counted. The
new representation of a time series will be a vector
(f1,f2,…fs) showing the appearance frequency of every
codeword.

By applying this new encoding form, we can easily
deal with time series with arbitrary large number of
points, since we can always reduce their dimensionality to
a rather small number which is the size of codebook (s).

Table 2. An example of a codebook of key-sequences

1

2

3

4

5

… …

16

3.3 Distance measures

Based on the frequency of appearance of key-sequences
within time series, the features of time series are extracted
and content-based information retrieval is carried out
accordingly. After encoding the time series using FVQA,
we get a new representation with a rather small
dimensionality, which records the frequency of
appearance of key-sequences within time series. We still
need a distance measure appropriate for this new
representation.

As introduced in Section 2.2, there are several
information retrieval models for VQ-based techniques.
We choose the Histogram Model as the distance metric in
FVQA, and all the experimental results presented in
Section 4 are based on it.

3.4 Applying a hierarchical mechanism

By applying the histogram model, it is not difficult to
identify the time series that are similar to a given query
(i.e., that have similar frequent patterns). However, using
only one codebook (analysis at a single resolution),
introduces some problems that cannot be ignored.

 4

First, although the local information of a time series is
kept after the encoding process, the new representation of
a time series is not recording the order among the indices
of different codewords. This implies that some important
global information of the time series is lost. This
correspondingly increases the number of false alarms
reducing the performance of the method. In Figure 2, we
see several different time series whose FVQA
representations are the same (2, 1, 1).

Figure 2. Different series with the same FVQA

representation

Reconstructed
from cdbk:
32(s)*16(l)
Reconstructed
from cdbk:
32(s)*32(l)
Reconstructed
from cdbk:
32(s)*128(l)
Original TS

Figure 3. Reconstruction of time series using different

resolutions

On the other hand, in real applications, it is not always

easy to find a suitable resolution (correspondingly, a
suitable codeword length). Moreover, an inappropriate
codeword length may reduce the efficiency.

In order to solve these potential problems with FVQA,
we suggest HFVQA (Hierarchical FVQA), which
improves FVQA by involving different resolutions for
encoding. While the encoding form of higher resolution
pays more attention to the detail of local information, that
of lower resolution has more global information. Figure 3
shows a time series and its reconstruction series using
different resolutions. (For different resolution levels, the

sizes of codebooks are the same, 32, and the lengths of
codewords are 128, 32, 16, respectively.)

By assigning reasonable weights to different
resolutions, we define a new weighted similarity metric:
Hierarchical Histogram Model:

SHHM (q,dj)= (5) ∑
=

c

1i
jHMii)d(q,S * w

where c is the number of resolution levels.
Experiments show that HFVQA brings much higher

accuracy than FVQA at single resolution. The only price
for this improvement is slightly more computation, since
we have to calculate the similarity on each resolution
level before we can finally compute SHHM. In the
following experimental analysis we study the behavior of
the hierarchical approach with different weights assigned
to each resolution level. Using equal weights for all
resolutions provides better results in most of the
experiments we performed. The selection of the weights
could also depend on the particular application. The
proposed method provides the ability to include some
prior knowledge about the domain in the selection of the
weights.

4. Experiments

In time series similarity analysis, best matches retrieval
and clustering are two of the most common and important
applications. We performed experiments to analyze the
ability and efficiency of our method in these two
applications, and also address the following issues:
 How accurate is our method.
 How it compares to alternatives.
 How fast and scalable it is.

4.1 Best Match Searching

4.1.1 Experiment design. Many time series applications
involve the best match searching. That is, given a query
sequence, find the best k matches in the database (i.e.,
having the lowest dissimilarity with the query) or find all
the time series whose dissimilarity with the query is
below some predefined threshold.

In order to evaluate the performance of different
approaches in best match searching, we need an
evaluation metric.

Definition 3. For a given query, the set of time series
which are actually within the same class as the query
(given our prior knowledge) is taken as the standard set
(std_set(q)), and the results found by different approaches
(knn(q)) are compared with this set. The matching
accuracy is defined as:

 5

100%
k

 |std_set(q) knn(q)| Accu ×
∩

= (6)

In the definition above, knn(q), is the k nearest
neighbors for the query found by a certain method, while
std_set(q) is the prior knowledge about the dataset. In our
experiments, every time series in the dataset is treated as a
query, and the best k matches (k nearest neighbors) are
sought within the whole dataset. The average accuracy
(Accu) of a certain method is then calculated based on the
matching results taking each time series as a query. The
actual value of k we use depends on the number of time
series within the same class.

Since we apply a hierarchical mechanism in our
approach, an important parameter is the number of
hierarchical levels. As shown in experiments, using too
many levels does not bring much improvement, therefore
we keep this number reasonably small (in our
experiments, this number is 5). Based on this number and
the length of time series in the dataset, the length of key-
subsequences (or codewords) in different codebooks can
be decided accordingly.

As for the sizes (the number of codewords) of different
codebooks, there are two ways to make choices. One way
is to decide the sizes of codebooks with the help of some
prior knowledge, and another way is just to use an
arbitrary small number as the number of key-sequences in
all hierarchical levels.

In order to avoid the effects of scaling and shifting in
analysis, Golding and Kanellakis [5] formalized an
intuitive notions of exact and approximate similarity
between time series patterns where the variance of time
series is involved. In our work, before we actually
perform any experiment, we preprocess the datasets with
zero-mean normalization. That is, each time series X was

normalized as:
)(
)(

X
XX

σ
−

=X where X is the mean value

of X and)(Xσ is the standard deviation of X.
In our experiments, the value of k can vary, but for the

purpose of demonstration, we just show the results when
k is set to the number of time series within the same class.

4.1.2 Experiments on a synthetic dataset. In this
section, we show the results of the experiments performed
on SYNDATA dataset.
 SYNDATA is a synthetic dataset which is
downloadable from the UCI KDD archive [26]. This
dataset contains 600 examples of control charts (each has
60 points) synthetically generated by the process in
Alcock and Manolopoulos [3]. The time series belong to
six different classes of control charts: Normal, Cyclic,
Increasing trend, Decreasing trend, Upward shift, and
Downward shift, with each class having 100 time series.

In the first half of the experiments, we considered prior
knowledge about the dataset, i.e., that the number of

clusters is 6, and the size of the codebook corresponding
to a higher resolution is larger (since there are more
training samples available for that resolution). For the
second half we did not take any prior knowledge into
account and kept all the sizes of different codebooks the
same small number (32 in this case). The important
experiment parameters are listed in Table 3.

In addition to the above parameters, we need to assign
appropriate weight to each hierarchical level in the
dissimilarity calculation. In our experiments we tried
several typical weight vectors.

Table 3. Experiment parameters for SYNDATA

 HFVQA with prior

knowledge
HFVQA without
prior knowledge

Level l s l s
1 60 6 60 32
2 30 16 30 32
3 20 32 20 32
4 10 64 10 32
5 5 128 5 32

The experimental results on SYNDATA are shown in

Table 4. The first element in the weight vector represents
the weight assigned to the first level, the second element
the weight assigned to the second level, and so on (e.g.,
with a weight vector [1 0 0 0 0], only the first level is
involved in distance calculation). Accu1 is the matching
accuracy (see Eq.(6)) when we apply some prior
knowledge in training process, and Accu2 is the matching
accuracy when no prior knowledge is involved.

The experimental results clearly demonstrate the effect
of using a hierarchical mechanism: when more levels are
involved, the retrieval accuracy improves. Also, with
some prior knowledge about the dataset, we can extract
more accurate feature information, and correspondingly,
improve the matching accuracy. However, even without
the prior knowledge, we can get reasonably good results.
The hierarchical mechanism clearly helps in both cases.

Table 4. Experiment results on SYNDATA

HFVQA
Weight Vector

Accu1

Accu2

[1 0 0 0 0] 0.5531 0.4135
[0 1 0 0 0] 0.7025 0.6072
[0 0 1 0 0] 0.5177 0.5117
[0 0 0 1 0] 0.4468 0.4807
[0 0 0 0 1] 0.3907 0.4564
[1 1 1 1 1] 0.8250 0.7461
[1 2 4 8 16] 0.7868 0.6964
[16 8 4 2 1] 0.8228 0.7187

 6

Using the Naïve method over the same dataset, which

directly use Euclidean Distance as the dissimilarity
metric, we get an average accuracy of only 0.5112.
Comparing with the results in Table 4, we can conclude
that: for this dataset, the Naïve method did worse even
than a single level FVQA, and HFVQA provides a much
better matching accuracy besides the dimensionality
reduction.

4.1.3 Experiments on GENE data. The GENE dataset is
a subset of the NCI60 gene expression data from the
National Cancer Institute. This dataset can be
downloaded from [30].

Each series in this dataset consists of the gene
expression values of 1375 genes. From the cell lines that
are available we considered 41 cancer cell lines of 6 kinds
of cancers: 6 central nervous system, 7 colon, 6 leukemia,
8 melanoma, 6 ovarian and 8 renal cancer cell lines. The
ground truth is available for this data.

We performed similar experiments as with SYNDATA
dataset. The experiment parameters and results are shown
in Tables 5 and 6 respectively.

Table 5. Experiment parameters for GENE data
 HFVQA With

prior knowledge
HFVQA Without
prior knowledge

Level l s l S
1 1375 6 1375 32
2 275 16 275 32
3 55 32 55 32
4 25 64 25 32
5 5 128 5 32

Table 6. Experiment results on GENE data

Weight
Vector

Accu1 Accu2

[1 0 0 0 0] 0.5894 0.3252
[0 1 0 0 0] 0.8049 0.7317
[0 0 1 0 0] 0.6789 0.6781
[0 0 0 1 0] 0.7602 0.5813
[0 0 0 0 1] 0.5569 0.5285
[1 1 1 1 1] 0.8049 0.7805
[1 2 4 8 16] 0.8293 0.7480
[16 8 4 2 1] 0.7927 0.7764

From Table 6, it is clear that for this GENE dataset, the

hierarchical mechanism also helps to improve the
accuracy and HFVQA results in much better results than
a single level FVQA.

Comparing with the average accuracy of Naïve
method, which is 0.8455, the retrieval accuracy of
HFVQA is a little worse, but still acceptable, especially
considering that the retrieval efficiency has been

significantly improved because of the reduced
dimensionality.

4.2 Comparing with other methods
 In order to compare the efficiency and accuracy of
HFVQA in similarity searches we considered other
alternative methods including the Discrete Fourier
Transform (DFT), straight Euclidean (Naïve), Dynamic
Time Warping (DTW) and symbolic PAA [20].
 For evaluation and comparison, every time series in the
dataset is taken as a query, and the precision and recall
pairs corresponding to the top 1,2,3…k retrieved time
series are calculated. Then the average value of precision
and recall are computed for the whole dataset. The actual
k value is different for different methods.
 For DFT, symbolic PAA and HFVQA, some parameters
need to be set up for the experiments. For DFT, we take
the first 6 non-zero coefficient; for symbolic PAA,
codebook size is 16 and number of segments is 6; and for
HFVQA we take the codebook size as 16 for each of the
5 resolution levels and use [1 1 1 1 1] as the weight
vector.

(a)

(b)

Figure 4. Precision-recall for different methods
(a) On SYNDATA dataset (b) On GENE dataset

 7

 Figure 4(a),(b) shows the results on SYNDATA and
GENE dataset respectively. Notice that for a fixed recall
ratio, the fewer time series are retrieved the better, and
subsequently the higher the precision is. Figure 4 shows
that for the SYNDATA and GENE datasets the Naïve
method and DTW have nearly the same performance
while the DFT and symbolic PAA, two dimensionality
reduction methods based on Euclidean distance,
demonstrate performance worse than that of the Naïve
method. As a frequency-based dimensionality reduction
method, HFVQA achieves the best performance on
SYNDATA and it is comparable to the Naïve and DTW
methods on GENE data.
 Besides accuracy, other considerations for a good
method should include speed and scalability. In the
application of information retrieval, for a given query, we
need to scan the whole dataset and calculate the distance
between the query and each of the time series in the
dataset before the best matches are located. Depending on
the method, an extra step of encoding the query may be
required.
 Figure 5 shows the processing time of different
methods on datasets with various sizes. The experiment
settings for different methods are the same as before.

Figure 5. Processing time and scalability

In Figure 5, DFT shows the best processing efficiency
with the shortest time, but considering the poor accuracy
result shown in figure 4, it should not be taken as a good
candidate.
 In comparison to the other methods we considered here,
although the encoding of the query consumes some time,
HFVQA outperforms them all in speed when the database
size is not too small.

4.3 Clustering experiments

4.3.1 Experiment design. For time series clustering, we
conducted experiments on both synthetic and real datasets.
The PAM (Partitioning Around Medoids) clustering
algorithm was used to cluster the original time-series in
every dataset. Different approaches applied in distance
calculation will result in different distance matrix of the
time series, and subsequently different clustering results.

In order to evaluate the clustering accuracy and quality
of our approach, a cluster similarity metric was used.
Given two clusterings G=G1/,G2,…,GK (the true clusters),
and A = A1,A2,…Ak (clustering result by a certain method),
the clustering accuracy is evaluated with the cluster
similarity defined as

k
AGSim

i ji∑=
),(max

A)Sim(G, j (7)

where
|A| |G|
|AG|2

 Aj)
ji

ji

+

∩
=Sim(Gi, .

This metric was introduced in [8] to evaluate clustering
results and was also used in [14]. The metric value ranges
between 0 and 1, and it takes the maximal, i.e. 1, when
the clustering result is perfect.

For each dataset, we took the same experiment
parameters as what we used in section 4.1. In the first half
of the experiments, prior knowledge about the dataset,
i.e., the number of clusters is involved, while in the
second half no such knowledge is applied. Considering
the stochastic nature of the PAM algorithm, given a set of
parameters, the experiment was repeated 10 times, and
the average result was reported. For the purpose of
comparison, clustering results with other methods are also
provided.

4.3.2 Experiments on SYNDATA dataset. Taking the
same parameters as shown in table 3, experiments of
clustering were performed on SYNDATA dataset. The
experiment results are listed in Table 7. Table 8 also
shows the clustering results of some other methods.

Table 7. Clustering results of HFVQA on SYNDATA

 HFVQA With
prior knowledge

HFVQA Without
prior knowledge

Weight Mean Std Mean Std
[1 0 0 0 0] 0.6953 0.0183 0.4707 0.0255
[0 1 0 0 0] 0.7035 0.0605 0.5800 0.0365
[0 0 1 0 0] 0.5030 0.0377 0.5092 0.0446
[0 0 0 1 0] 0.4318 0.0315 0.5345 0.0500
[0 0 0 0 1] 0.3954 0.0500 0.5133 0.0619
[1 1 1 1 1] 0.7940 0.0331 0.7543 0.0549
[1 2 4 8 16] 0.7655 0.0599 0.7480 0.0473
[16 8 4 2 1] 0.7886 0.0383 0.6726 0.0350

 8

Table 8. Clustering results on SYNDATA
 DFT PAA HFVQA NAÏVE
Ave 0.2469 0.6507 0.7940 0.5536

It is clear that for this dataset, we cannot achieve
satisfying performance using the Euclidean Distance as
the distance metric, while the frequency-based method is
very promising. The performance achieved by several
single resolution levels is better that that of the Naïve
method. By combining different resolution levels, the
clustering result is further improved.

4.3.3 Experiments on GENE dataset. Similarly to the
previous experiments, we used the same parameters as
shown in Table 5 and carried out experiments on the
GENE dataset. The results are shown in Table 9.
Clustering results with different methods are also
provided in Table 10.

Table 9. Clustering results of HFVQA on GENE
 HFVQA with

prior knowledge
HFVQA without
prior knowledge

Weight Mean Std Mean std
[1 0 0 0 0] 0.6908 0.0456 0.3607 0.0485
[0 1 0 0 0] 0.7265 0.0594 0,6619 0.0344
[0 0 1 0 0] 0.6691 0.0510 0.6632 0.0551
[0 0 0 1 0] 0.7131 0.0535 0.6928 0.0440
[0 0 0 0 1] 0.5560 0.0574 0.5775 0.0394
[1 1 1 1 1] 0.8089 0.0411 0.7483 0.0449
[1 2 4 8 16] 0.8122 0.0396 0.7351 0.0493
[16 8 4 2 1] 0.7881 0.0345 0.7282 0.0474

Table 10. Clustering results on GENE

 DFT PAA HFVQA NAÏVE
Ave 0.2974 0.6548 0.8122 0.8202

For this dataset, even though the performance of the

frequency-based method is slightly worse than that of the
Naïve, it is still very satisfying. Note the obvious
improvement when applying the hierarchical mechanism
over the different resolution levels.

5. Discussion

The HFVQA approach that we proposed for reducing
the high dimensionality in time series data to make their
analysis more efficient is a natural extension of the
piecewise constant approximation schemes proposed
earlier. By applying Vector Quantization technique to
extract high-level feature of the data and involving a
hierarchical mechanism we were able to improve

performance and efficiency in time series similarity
retrieval, especially in some domains where we could not
get a good result using the Euclidean distance as the
similarity metric. Here, we briefly present some directions
in which our work can be extended.

First of all, even though under most circumstances, the
involvement of hierarchical mechanism brings a better
performance, it doesn’t always do. So it will be
interesting to go further to find out under what
circumstance we can’t involve hierarchical mechanism.
Also, the assignment of weights to different resolution
levels is very important, and it is a very interesting topic
to figure out a more theoretical way to define the optimal
weight assignment. Another interesting problem is related
to the size of the codebook. When we train the dataset to
generate the codebooks at different resolutions, what
should be the appropriate number of codewords
(codebook size)?

6. Conclusion

In this paper we introduced a new dimensionality
reduction method, FVQA and its extension, HFVQA, for
time series similarity analysis. By partitioning a sequence
into equal-length segments and using vector quantization
to represent each sequence by appearance frequencies of
key-sequences, FVQA provides a more meaningful
similarity metric for many domains, besides the
improvement in efficiency because of the dimensionality
reduction. Inheriting the benefits of FVQA, HFVQA
involves a hierarchical mechanism to record both the
local and global information of the original time series.
Even though it requires a little more calculation than
FVQA on single resolution level, HFVQA improves the
retrieval and clustering accuracy a lot. Experiments we
performed on both real and simulated datasets show that
HFVQA brings much improvement to the single level
FVQA. The proposed transformation on time series is
very fast to process long time series, since the length of
new representation is only related to the size of codebook.
While the experiment results presented here mainly focus
on similarity analysis and clustering, our approach can
also be easily adjusted to some other applications, such as
frequent pattern retrieval (i.e., motif discovery),
association rule mining, and other data mining
applications.

Acknowledgements

The authors would like to thank Eamonn J. Keogh for
providing several datasets and source code through the
UCR Time Series Data Mining Archive [17] as well as
for encouraging us on this work. This work was
supported in part by the Pennsylvania Department of

 9

Health. The funding party specifically disclaims
responsibility for any analyses, interpretations and
conclusions.

References

[1] Agrawal, R., Faloutsos, C. & Swami, A. (1993). Efficient
similarity search in sequence databases. Proceedings of the
4th Int'l Conference on Foundations of Data Organization
and Algorithms. Chicago, IL, Oct 13-15. pp. 69-84.

[2] Agrawal, R., Lin, K. I., Sawhney, H. S. & Shim, K. (1995).
Fast similarity search in the presence of noise, scaling, and
translation in time-series databases. Proceedings of the 21st
Int'l Conference on Very Large Databases. Zurich,
Switzerland, Sept. pp. 490-501.

[3] Alcock R.J. & Manolopoulos Y. (1999). "Time-Series
Similarity Queries Employing a Feature-Based Approach",
Proceedings 7th Hellenic Conference on Informatics.
Ioannina, Greece, Aug. 27-29. pp.III.1-9.

[4] Baeza-Yates, R.A. & Gonnet, GH. (1999). A fast algorithm
on average for all-against-all sequence matching.
Proceedings of the String Processing and Information
Retrieval Symposium, pp. 16-23.

[5] D.Q. Goldin, and P.C. Kanellakis. On similarity
queries for time-series data: Constraint specification
and implementation. In Proceedings of Constraint
Programming 95.Marseilles, France, 1995.

[6] Faloutsos, C., Jagadish, H., Mendelzon, A. & Milo, T.
(1997). A signature technique for similarity-based queries.
Proceedings of the Int'l Conference on Compression and
Complexity of Sequences. Positano-Salerno, Italy, Jun 11-
13.

[7] Faloutsos, C., Ranganathan, M. & Manolopoulos, Y.
(1994). Fast subsequence matching in time-series
databases. Proceedings of the ACM SIGMOD Int'l
Conference on Management of Data. Minneapolis, MN,
May 25-27. pp. 419-429.

[8] Gavrilov, M., Anguelov, D., Indyk, P. & Motwani, R.
(2000). Mining the stock market: Which measure is best?
Proceedings of the International Conference on Data
Mining and Knowledge Discovery (KDD ‘00), pp. 487-
496.

[9] Gersho, A. & Gray R. M. (1992). Vector Quantization and
Signal Compression. Kluwer Academic Publishers.

[10] Gusfield, D. (1997). Algorithms on Strings, Trees and
Sequences. Cambridge University Press.

[11] Hetlad, M. L. (2002). A survey of recent methods for
efficient retrieval of similar time sequences.
http://www.hetland.org/research/

[12] Höppner, F. (2001). Discovery of temporal patterns –
learning rules about the qualitative behavior of time series.
In Proceedings of the 5th European Conference on
Principles and Practice of Knowledge Discovery in
Databases, Freiburg, Germany, pp. 192-203.

[13] Huhtala, Y., Kärkkäinen, J. & Toivonen, H. (1999). Mining
for similarities in aligned time series using wavelets. Data
Mining and Knowledge Discovery: Theory, Tools, and
Technology, SPIE Proceedings Series, Vol. 3695. Orlando,
FL, Apr. pp. 150-160.

[14] Kalpakis, K., Gara, D. & Puttagunta, V.(2001). Distance
Measures for Effective Clustering of ARIMA Time-Series.
Proceedings of the 2001 IEEE International Conference on
Data Mining, San Jose, CA, Nov 29-Dec 2. pp. 273-280

[15] Keogh, E., Chakrabarti, K., Pazzani, M. & Mehrotra, S.
(2001). Locally adaptive dimensionality reduction for
indexing large time series databases. Proceedings of ACM
SIGMOD Conference on Management of Data. Santa
Barbara, CA, May 21-24. pp 151-162.

[16] Keogh, E., Chakrabarti, K., Pazzani, M. & Mehrotra, S.
(2000). Dimensionality Reduction for Fast Similarity
Search in Large Time Series Databases. Journal of
Knowledge and Information Systems.

[17] Keogh, E. & Folias, T. (2002). The UCR Time Series Data
Mining Archive
http://www.cs.ucr.edu/~eamonn/TSDMA/index.html.
Riverside CA. University of California - Computer Science
& Engineering Department

[18] Keogh, E. & Pazzani, M. (1998). An enhanced
representation of time series which allows fast and accurate
classification, clustering and relevance feedback.
Proceedings of the 4th Int'l Conference on Knowledge
Discovery and Data Mining. New York, NY, Aug 27-31.
pp. 239-241.

[19] Keogh, E. & Pazzani, M. (2000). A simple dimensionality
reduction technique for fast similarity research in large
time series databases. Proceedings of the Fourth Pacific-
Asia Conference on Knowledge Discovery and Data
Mining, Kyoto, Japan.

[20] Lin, J., Keogh, E., Patel, P. & Lonardi, S. (2002). Finding
motifs in time series. The 2nd Workshop on Temporal Data
Mining, at the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. July 23 - 26.
Edmonton, Alberta, Canada.

[21] Linde, S., Buzo, A. & Gray, A. (1980). An algorithm for
vector quantizer design, IEEE Transactions on
Communications, vol. 28, pp. 84-95.

[22] Lloyd, S. P. (1982). Least squares quantization in PCM.
IEEE Transactions on Information Theory, IT(28), pp. 127-
135.

[23] Park, S., Chu, W.W., Yoon, J. & Hsu, C. (2000). Efficient
search for similar subsequences of different lengths in
sequence databases. Proceedings of the ICDE, pp. 23-32.

[24] Piotr Indyk, Nick Koudas, S. Muthukrishnan: Identifying
Representative Trends in Massive Time Series Data Sets
Using Sketches. VLDB 2000: 363-372

[25] Rafiei, D. (1999). On similarity-based queries for time
series data. In Proceedings of the 15th International
Conference on Data Engineering (ICDE), Sydney,
Australia, pp. 410-417.

 10

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Muthukrishnan:S=.html

[26] UCI KDD Archive. http://kdd.ics.uci.edu

[27] Wu, Y., Agrawal, D. & El Abbadi, A. (2000). A
comparison of DFT and DWT based similarity search in
time-series databases. Proceedings of the 9th ACM CIKM
Int'l Conference on Information and Knowledge
Management. McLean, VA, Nov 6-11. pp. 488-495.

[28] Yi, B-K & Faloutsos, C. (2000). Fast Time Sequence
Indexing for Arbitrary Lp Norms. Proceedings of the
VLDB, Cairo, Egypt, Sept..

[29] Zhu, L., Rao, A. & Zhang A. (2002). Theory of Keyblock-
based Image Retrieval. ACM Transactions on Information
Systems, 20(2), pp. 224-257.

[30] http://genome-www.stanford.edu/nci60

 11

	Table 1. Symbol Table
	Figure 4. Precision-recall for different methods
	Table 8. Clustering results on SYNDATA
	Table 10. Clustering results on GENE

