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Outline

• Credit where credit is due (12 foils)
• Future directions
• Past lessons: Listen

– To the data
– To domain-experts 

• Conclusions
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Funding agencies/companies

• NSF (Maria Zemankova, Frank Olken, ++)
• DARPA, LLNL
• IBM, MS, HP, INTEL, Y!, Google, 

Symantec, Sony, Fujitsu, …
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(Great time for Data Science)

• Alexa/Siri/Cortana
• Self-driving cars
• Alpha-go
• …
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Future directions:

• Time evolving graphs/networks

• What has a DBN learned?
• Explain the output
• Visualization
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Future directions:

• Time evolving graphs/networks

• What has a DBN learned?
• Explain the output
• Visualization

• [how the brain works]
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• Credit where credit is due
• Future directions
• Past lessons: Listen

– To the data
• D1: Clean data: a myth
• D2: Surprises

– To domain-experts
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D1.1. Data & ‘cleanliness’

• Taxis
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• Taxis
– 0.1%:  in the ocean
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D1.1. Data & ‘cleanliness’

• Taxis
– 0.1%:  in the ocean
– Longest taxi ride?

• 6,000miles
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2500mi

23



D1.2. Data & ‘cleanliness’

• Patients: ‘mode’ of age?
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D1.2. Data & ‘cleanliness’

• Patients: ‘mode’ of age?
– 99 (!) and -99 (!!)
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D1.2. Data & ‘cleanliness’

• Patients: ‘mode’ of age?
- (99, or -99) for age

• Similarly, age of customer: -1
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D1.2. Data & ‘cleanliness’

• Patients: ‘mode’ of age?
- (99, or -99) for age

• Similarly, age of customer: -1
- Fixing it -> $M in prediction accuracy
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D1.3. Data & ‘cleanliness’

• Clicks, per hour of day
• NO periodicity

PAKDD'18 C. Faloutsos

0h 24h
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M3A: Model, MetaModel,…, Da-Cheng Juan, et al, 
https://arxiv.org/abs/1606.05978



D1.3. Data & ‘cleanliness’

• Clicks, per hour of day
• NO periodicity

• BUT: single user, 1 query/10sec
• after removing him/her/it:
• YES
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0h 24h
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M3A: Model, MetaModel,…, Da-Cheng Juan, et al, 
https://arxiv.org/abs/1606.05978
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CMU SCS

D2.1 Growth of graph diameter
with Jure Leskovec (CMU -> 
Stanford)

and Jon Kleinberg (Cornell –
sabb. @ CMU)
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Jure Leskovec, Jon Kleinberg and Christos Faloutsos: Graphs over 
Time: Densification Laws, Shrinking Diameters and Possible 
Explanations, KDD 2005
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D2.1 Growth of graph diameter
• Prior work on Power Law graphs hints 

at slowly growing diameter:
• [diameter ~ O( N1/3)]
• diameter ~ O(log N)
• diameter ~ O(log log N)

• What is happening in real data?

diameter
33
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PAKDD'18 C. Faloutsos

D2.1 Growth of graph diameter
• Prior work on Power Law graphs hints 

at slowly growing diameter:
• [diameter ~ O( N1/3)]
• diameter ~ O(log N)
• diameter ~ O(log log N)

• What is happening in real data?
• Diameter shrinks over time
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D2.1. Diameter – “Patents”

• Patent citation 
network

• 25 years of data
• @1999
• 2.9 M nodes
• 16.5 M edges

time [years]

diameter
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D2.2. How many clusters?

• Eg.: clustering – k-means (or our favorite 
clustering algo)

• How many clusters are in the Sierpinski 
triangle?

PAKDD'18 C. Faloutsos

…

36



D2.2. How many clusters?
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D2.2. How many clusters?
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K=3 clusters?
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D2.2. How many clusters?
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K=3 clusters?
K=9 clusters?
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D2.2. How many clusters?

PAKDD'18 C. Faloutsos

• Wrong question! (‘How many line 
segments, to model a circle’)
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D2.2. How many clusters?

PAKDD'18 C. Faloutsos

• But, does self-similarity appear in real life?
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• Credit where credit is due
• Future directions
• Past lessons: Listen

– To the data
– To domain-experts

• E1: fractals / self-similarity
• E2: power-laws
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B. Mandelbrot

2 pages of self-similar objects:
• Bark of trees
• Surface of mountains
• Human lungs
• Surface of mammalian brain
• ...

The Fractal geometry 
of nature, 1982
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E1.1. Real, self similar dataset
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E1.1. Real, self similar dataset
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E1.1. Real, self similar dataset
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• the red is true
• origin: Norway
• but most other coastlines
are ‘self-similar’, too!
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CMU SCS
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E1.2. Disk traffic
• disk traces: self-similar:
• Mengzhi Wang, et. al.,Data Mining Meets Performance Evaluation: Fast 

Algorithms for Modeling Bursty Traffic, ICDE, 2002.

time

#bytes
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E1.3. Web traffic

• [Crovella, Bestavros, SIGMETRICS’96]

1000 sec; 100sec
10sec; 1sec
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• E1: fractals / self-similarity
• E2: power-laws
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Fractals <-> power laws, eg.:
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Radius (log)

#neighbors
(log)

N ( r ) = r log(3)/log(2) =  r 1.58

y=xa

a =1.58
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E2.1. : 2x mass -> 2x food?
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E2.1. : 2x mass -> 2x food?
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Metabolic
rate

3/4

mass

Experts say:

http://universe-review.ca /R10-35-metabolic.htm
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Experts say:

http://universe-review.ca /R10-35-metabolic.htm
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Metabolic
rate

3/4

mass

Kleiberg’s law:

http://universe-review.ca /R10-35-metabolic.htm
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E2.2.: Triangle Patterns

• Real social networks have a lot of triangles 
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CMU SCS

E2.2.: Triangle Patterns

• Real social networks have a lot of triangles
• Friends of friends are friends 

• Any patterns?
• 2x the friends, 2x the triangles ?
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E2.2.: Triangle Patterns
[Tsourakakis ICDM 2008]

SNReuters

Epinions X-axis: degree
Y-axis: mean # triangles
n friends -> ~n1.6 triangles
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
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Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
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Summary
• Golden age of Data Science / Data Mining
• Data:

– Never ‘clean’
– Often: surprises

• Domain experts – cross-disciplinarity:
– Help us avoid surprises
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Parting joke:

• Data scientists spend 80% of their time, 
cleaning data; 
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Parting joke:

• Data scientists spend 80% of their time, 
cleaning data; 

• And the rest 20% complaining about it.
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Thank you!
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Listen to data
Listen to experts ->
Reach out


