Data Mining - future directions, and past lessons

C. Faloutsos
CMU + Amazon (sabbatical)

Outline

- Credit where credit is due (12 foils)
- Future directions
- Past lessons: Listen
- To the data
- To domain-experts
- Conclusions

Thank you!

Prof. Ee-Peng Lim

Prof. Takashi Washio

Steering Committee

- Ee-Peng Lim
- P. Krishna Reddy
- Joshua Z. Huang
- Longbing Cao
- Jian Pei
- Myra Spiliopoulou
- Vincent S. Tseng
- Tru Hoang Cao
- Gill Dobbie
- Kyuseok Shim

GC and PC

- Geoff Webb
- Bao Ho
- Dinh Phung
- Vincent Tseng

Family

- Parents Nikos \& Sophia

- Siblings Michalis, Petros, Maria

- Wife Christina

Academic 'parent'

- Christodoulakis, Stavros (T.U.C.)

Academic 'children'

- King-Ip (David) Lin
- Ibrahim Kamel
- Flip Korn
- • Byoung-Kee Yi
- Leejay Wu
- Deepayan Chakrabarti

Academic 'children'

- Jia-Yu (Tim) Pan
- Spiros Papadimitriou
- Jimeng Sun
_. Jure Leskovec
- Hanghang Tong

\longleftarrow

Academic 'children'

- Mary McGlohon
- Fan Guo
- Lei Li
- Leman Akoglu
- Dueng Horng (Polo) Chau
- Aditya Prakash
- U Kang

Academic 'children'

\author{

- Danai Koutra
 セ・ Alex Beutel
 - Vagelis Papalexakis
 - • Miguel Araujo
 - Neil Shah
}

Academic 'children'

- Bryan Hooi
- Hyun Ah Song
- Dhivya Eswaran
- Kijung Shin
- Namyong Park

Funding agencies/companies

- NSF (Maria Zemankova, Frank Olken, ++)
- DARPA, LLNL
- IBM, MS, HP, INTEL, Y!, Google, Symantec, Sony, Fujitsu, ...
- Amazon
amazon

Outline

- Credit where credit is due
\rightarrow - Future directions
- Past lessons: Listen
- To the data
- To domain-experts

(Great time for Data Science)

- Alexa/Siri/Cortana
- Self-driving cars
- Alpha-go

Future directions:

- Time evolving graphs/networks
- What has a DBN learned?
- Explain the output

- Visualization

Future directions:

- Time evolving graphs/networks
- What has a DBN learned?
- Explain the output

- Visualization

Future directions:

- Time evolving graphs/networks

- What has a DBN learned?
- Explain the output
- Visualization

Future directions:

- Time evolving graphs/networks
- What has a DBN learned?
- Explain the output

- Visualization
- [how the brain works]

Outline

- Credit where credit is due
- Future directions
- Past lessons: Listen
- To the data
- D1: Clean data: a myth
- D2: Surprises
- To domain-experts

D1.1. Data \& 'cleanliness'

- Taxis

D1.1. Data \& 'cleanliness'

- Taxis
- 0.1\%: in the ocean
- Longest taxi ride?

D1.1. Data \& 'cleanliness'

- Taxis
- 0.1\%: in the ocean
- Longest taxi ride?

-6,000miles

D1.2. Data \& 'cleanliness'

- Patients: 'mode' of age?

Rich Caruana

D1.2. Data \& 'cleanliness'

- Patients: 'mode’ of age?
- 99 (!)

Rich Caruana

D1.2. Data \& 'cleanliness'

- Patients: 'mode’ of age?
- 99 (!) and -99 (!!)

Rich Caruana

D1.2. Data \& 'cleanliness'

- Patients: 'mode’ of age?
- $(99$, or -99$)$ for age

- Similarly, age of customer: -1

D1.2. Data \& 'cleanliness'

- Patients: 'mode’ of age?
- $(99$, or -99$)$ for age

- Similarly, age of customer: -1
- Fixing it -> \$M in prediction accuracy

D1.3. Data \& 'cleanliness'

- Clicks, per hour of day
- NO periodicity

M3A: Model, MetaModel,..., Da-Cheng Juan, et al, https://arxiv.org/abs/1606.05978

D1.3. Data \& 'cleanliness'

- Clicks, per hour of day
- NO periodicity
- BUT: single user, 1 query/10sec
- after removing him/her/it:
- YES

0h 24h
M3A: Model, MetaModel,..., Da-Cheng Juan, et al, https://arxiv.org/abs/1606.05978

Outline

- Credit where credit is due
- Future directions
- Past lessons: Listen
- To the data
- D1: Clean data: a myth
- D2: Surprises
- To domain-experts

D2.1 Growth of graph diameter

 with Jure Leskovec (CMU -> Stanford)

and Jon Kleinberg (Cornell sabb. @ CMU)

Jure Leskovec, Jon Kleinberg and Christos Faloutsos: Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005

D2.1 Growth of graph diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- [diameter $\sim \mathrm{O}\left(\mathrm{N}^{1 / 3}\right)$]

- diameter $\sim \mathrm{O}(\log \log \mathrm{N})$

- diameter $\sim \mathrm{O}(\log \mathrm{N})$

- What is happening in real data?

diameter

D2.1 Growth of graph diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- [diameter $\left.\sim \mathrm{N}^{1 / 3}\right)$]
- diameter $\sim \mathrm{O}(\mathrm{n}, \mathrm{N})$
- diameter $\sim \mathrm{O}(\log \log \mathrm{N})$

- What is happening in real data?
- Diameter shrinks over time

D2.1. Diameter - "Patents"

- Patent citation network
- 25 years of data
- @1999
- 2.9 M nodes
- 16.5 M edges

D2.2. How many clusters?

- Eg.: clustering - k-means (or our favorite clustering algo)
- How many clusters are in the Sierpinski triangle?

D2.2. How many clusters?

C. Faloutsos

D2.2. How many clusters?

D2.2. How many clusters?

$\mathrm{K}=3$ clusters?
$\mathrm{K}=9$ clusters?

D2.2. How many clusters?

- Wrong question! ('How many line segments, to model a circle')

D2.2. How many clusters?

- But, does self-similarity appear in real life?

Outline

- Credit where credit is due
- Future directions
- Past lessons: Listen
- To the data
- To domain-experts
- E1: fractals / self-similarity
- E2: power-laws

B. Mandelbrot

The Fractal geometry of nature, 1982

2 pages of self-similar objects:

- Bark of trees
- Surface of mountains
- Human lungs
- Surface of mammalian brain

E1.1. Real, self similar dataset

- the red is true
- origin: Norway
- but most other coastlines are 'self-similar', too!

E1.2. Disk traffic

- disk traces: self-similar:
- Mengzhi Wang, et. al.,Data Mining Meets Performance Evaluation: Fast Algorithms for Modeling Bursty Traffic, ICDE, 2002.
\#bytes

E1.3. Web traffic

- [Crovella, Bestavros, SIGMETRICS'96]
$1000 \mathrm{sec} ; 100 \mathrm{sec}$
10 sec ; 1 sec

Outline

- Credit where credit is due
- Future directions
- Past lessons: Listen
- To the data
- To domain-experts
- E1: fractals / self-similarity
- E2: power-laws

Fractals <-> power laws, eg.:

\#neighbors
(log)

$$
\mathrm{N}(\mathrm{r})=\mathrm{r}^{\log (3) / \log (2)}=\mathrm{r}^{1.58}
$$

Fractals <-> power laws, eg.:

\#neighbors
(log)

Radius (log)
C. Faloutsos

E2.1. : 2 x mass -> 2 x food?

Metabolic

Experts say:

 rate
http://universe-review.ca /R10-35-metabolic.htm

Metabolic

Experts say:

 rate
mass
http://universe-review.ca /R10-35-metabolic.htm

Metabolic

Kleiberg's law:

 rate (10.0http://universe-review.ca /R10-35-metabolic.htm

E2.2.: Triangle Patterns

- Real social networks have a lot of triangles

E2.2.: Triangle Patterns

- Real social networks have a lot of triangles
- Friends of friends are friends
- Any patterns?
- 2 x the friends, 2 x the triangles?

E2.2.: Triangle Patterns [Tsourakakis ICDM 2008]

X-axis: degree
Y-axis: mean \# triangles n friends $->\sim n^{1.6}$ triangles

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Summary

- Golden age of Data Science / Data Mining
- Data:
- Never ‘clean’
- Often: surprises
- Domain experts - cross-disciplinarity:
- Help us avoid surprises

Parting joke:

- Data scientists spend 80% of their time, cleaning data;

Parting joke:

- Data scientists spend 80% of their time, cleaning data;
- And the rest 20% complaining about it.

Thank you!

Listen to experts -> Reach out

Listen to data

