Data Mining – future directions, and past lessons

C. Faloutsos CMU + Amazon (sabbatical)

1

Outline

- Credit where credit is due (12 foils)
- Future directions
- Past lessons: Listen
 - To the data
 - To domain-experts
- Conclusions

Thank you!

Prof. Ee-Peng Lim

Prof. Takashi Washio

Steering Committee

- Ee-Peng Lim
- P. Krishna Reddy
- Joshua Z. Huang
- Longbing Cao
- Jian Pei

- Myra Spiliopoulou
- Vincent S. Tseng
- Tru Hoang Cao
- Gill Dobbie
- Kyuseok Shim

GC and PC

- Geoff Webb
- Bao Ho

- Dinh Phung
- Vincent Tseng

Family

• Parents Nikos & Sophia

• Siblings Michalis, Petros, Maria

• Wife Christina

Academic 'parent'

• Christodoulakis, Stavros (T.U.C.)

- King-Ip (David) Lin
- Ibrahim Kamel
 - Flip Korn
- Byoung-Kee Yi
 - Leejay Wu
 - Deepayan Chakrabarti

- Jia-Yu (Tim) Pan
- Spiros Papadimitriou
 - Jimeng Sun
- Jure Leskovec
 - Hanghang Tong

- Mary McGlohon
- —• Fan Guo
 - Lei Li
- —• Leman Akoglu
 - Dueng Horng (Polo) Chau
 - • Aditya Prakash
 - U Kang

- Danai Koutra
- • Alex Beutel
 - Vagelis Papalexakis
- Miguel Araujo
 - Neil Shah

- • Hyun Ah Song
 - Dhivya Eswaran
- Kijung Shin
 - Namyong Park

Funding agencies/companies

- NSF (Maria Zemankova, Frank Olken, ++)
- DARPA, LLNL
- IBM, MS, HP, INTEL, Y!, Google, Symantec, Sony, Fujitsu, ...
- Amazon

Outline

- Credit where credit is due
- Future directions
 - Past lessons: Listen
 - To the data
 - To domain-experts

(Great time for Data Science)

- Alexa/Siri/Cortana
- Self-driving cars
- Alpha-go

 Download from
 Image: Construction of the const

- Time evolving graphs/networks
- What has a DBN learned?
- Explain the output
- Visualization

- Time evolving graphs/networks
- What has a DBN learned?
- Explain the output
- Visualization

- Time evolving graphs/networks
- What has a DBN learned?
- Explain the output
- Visualization

- Time evolving graphs/networks
- What has a DBN learned?
- Explain the output
- Visualization
- [how the brain works]

Outline

- Credit where credit is due
- Future directions
- Past lessons: Listen
 - To the data
 - D1: Clean data: a myth
 - D2: Surprises
 - To domain-experts

• Taxis

- Taxis
 - -0.1%: in the ocean
 - Longest taxi ride?

- Taxis
 - -0.1%: in the ocean
 - Longest taxi ride?
 - 6,000miles

• Patients: 'mode' of age?

Rich Caruana

C. Faloutsos

Patients: 'mode' of age?
 - 99 (!)

Rich Caruana

Patients: 'mode' of age?
- 99 (!) and -99 (!!)

Rich Caruana

- Patients: 'mode' of age?
 - (99, or -99) for age

• Similarly, age of customer: -1

- Patients: 'mode' of age?
 - (99, or -99) for age

- Similarly, age of customer: -1
 - Fixing it -> \$M in prediction accuracy

- Clicks, per hour of day
 - NO periodicity

0h 24h

M3A: Model, MetaModel,..., Da-Cheng Juan, et al, https://arxiv.org/abs/1606.05978

- Clicks, per hour of day
 - NO periodicity
- BUT: single user, 1 query/10sec
 - after removing him/her/it:
 - YES 0h 24h

M3A: Model, MetaModel,..., Da-Cheng Juan, et al, https://arxiv.org/abs/1606.05978

Outline

- Credit where credit is due
- Future directions
- Past lessons: Listen
 - To the data
 - D1: Clean data: a myth
 - D2: Surprises
 - To domain-experts

D2.1 Growth of graph diameter

with Jure Leskovec (CMU -> Stanford)

and Jon Kleinberg (Cornell – sabb. @ CMU)

Jure Leskovec, Jon Kleinberg and Christos Faloutsos: Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005

D2.1 Growth of graph diameter

- Prior work on Power Law graphs hints at **slowly growing diameter**:
 - [diameter ~ $O(N^{1/3})$]
 - diameter $\sim O(\log N)$
 - diameter $\sim O(\log \log N)$
- What is happening in real data?

D2.1 Growth of graph diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
 - [diameter ~ $(N^{1/3})$]
 - diameter ~ O(N)
 - diameter ~ $O(\log \log N)$
- What is happening in real data?
- Diameter **shrinks** over time

D2.1. Diameter – "Patents"

- Patent citation network
- 25 years of data
- @1999

Carnegie Mellon

- 2.9 M nodes
- 16.5 M edges

C. Faloutsos

D2.2. How many clusters?

- Eg.: clustering k-means (or our favorite clustering algo)
- How many clusters are in the Sierpinski triangle?

PAKDD'18

PAKDD'18

K=3 clusters? K=9 clusters?

PAKDD'18

• Wrong question! ('How many line segments, to model a circle')

• But, does self-similarity appear in real life?

Outline

- Credit where credit is due
- Future directions
- Past lessons: Listen
 - To the data
 - To domain-experts
 - E1: fractals / self-similarity
 - E2: power-laws

2

B. Mandelbrot

The Fractal geometry of nature, 1982

- 2 pages of self-similar objects:
- Bark of trees
- Surface of mountains
- Human lungs
- Surface of mammalian brain

PAKDD'18

PAKDD'18

PAKDD'18

PAKDD'18

- the red is true
- origin: Norway
- but most other coastlines are 'self-similar', too!

E1.2. Disk traffic

- disk traces: self-similar:
- Mengzhi Wang, et. al., *Data Mining Meets Performance Evaluation: Fast Algorithms for Modeling Bursty Traffic*, ICDE, 2002.

C. Faloutsos

E1.3. Web traffic

• [Crovella, Bestavros, SIGMETRICS'96]

1000 sec; 100sec 10sec; 1sec

PAKDD'18

Outline

- Credit where credit is due
- Future directions
- Past lessons: Listen
 - To the data
 - To domain-experts
 - E1: fractals / self-similarity
 - E2: power-laws

Fractals <-> power laws, eg.:

Fractals <-> power laws, eg.:

E2.1. : 2x mass -> 2x food?

PAKDD'18

Metabolic

Experts say:

http://universe-review.ca /R10-35-metabolic.htm

Metabolic

Experts say:

Metabolic

Kleiberg's law:

http://universe-review.ca/R10-35-metabolic.htm

E2.2.: Triangle Patterns

• Real social networks have a lot of triangles

E2.2.: Triangle Patterns

- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?
 - 2x the friends, 2x the triangles ?

E2.2.: Triangle Patterns [Tsourakakis ICDM 2008]

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

64

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Summary

- Golden age of Data Science / Data Mining
- Data:
 - Never 'clean'
 - Often: surprises
- Domain experts cross-disciplinarity:
 Help us avoid surprises

Parting joke:

• Data scientists spend 80% of their time, cleaning data;

Parting joke:

- Data scientists spend 80% of their time, cleaning data;
- And the rest 20% complaining about it.

Thank you!

Listen to experts -> Reach out

Listen to data

PAKDD'18