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Roadmap 

•  Introduction – Motivation 
– Why study (big) graphs? 

•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 
•  Conclusions 

Tencent, 6/22 
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Graphs - why should we care? 

>$10B; ~1B users 

Tencent, 6/22 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

Tencent, 6/22 
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Graphs - why should we care? 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic and 

anomaly detection 
•  Recommendation systems 
•  Who-bought-from-whom (ebay, Alibaba) 
•  .... 

Many-to-many db relationship -> graph 
Tencent, 6/22 
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Motivating problems 
•  P1: patterns? Fraud detection? 

•  P2: patterns in time-evolving graphs / 
tensors 

Tencent, 6/22 (c) C. Faloutsos, 2017 7 
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Motivating problems 
•  P1: patterns? Fraud detection? 

•  P2: patterns in time-evolving graphs / 
tensors 

Tencent, 6/22 (c) C. Faloutsos, 2017 8 

time 

destination 

Patterns            anomalies 
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Roadmap 

•  Introduction – Motivation 
– Why study (big) graphs? 

•  Part#1: Patterns & fraud detection 
•  Part#2: time-evolving graphs; tensors 
•  Conclusions 

Tencent, 6/22 
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Part 1: 
Patterns, &  

fraud detection 
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Laws and patterns 
•  Q1: Are real graphs random? 

Tencent, 6/22 
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Laws and patterns 
•  Q1: Are real graphs random? 
•  A1: NO!! 

– Diameter (‘6 degrees’; ‘Kevin Bacon’) 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

Tencent, 6/22 
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Solution# S.1 
•  Power law in the degree distribution [Faloutsos x 3 

SIGCOMM99] 

log(rank) 

log(degree) 

internet domains 

att.com 

ibm.com 

Tencent, 6/22 
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Solution# S.1 
•  Power law in the degree distribution [Faloutsos x 3 

SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

Tencent, 6/22 
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S2: connected component sizes 
•  Connected Components – 4 observations: 

Size 

Count 

(c) C. Faloutsos, 2017 Tencent, 6/22 

1.4B nodes 
6B edges 
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S2: connected component sizes 
•  Connected Components 

Size 

Count 

(c) C. Faloutsos, 2017 Tencent, 6/22 

1) 10K x  
larger 
than next 
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S2: connected component sizes 
•  Connected Components 

Size 

Count 

(c) C. Faloutsos, 2017 Tencent, 6/22 

2) ~0.7B  
singleton 
 nodes 
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S2: connected component sizes 
•  Connected Components 

Size 

Count 

(c) C. Faloutsos, 2017 Tencent, 6/22 

3) SLOPE! 
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S2: connected component sizes 
•  Connected Components 

Size 

Count 
300-size 

cmpt 
X 500. 
Why? 1100-size cmpt 

X 65. 
Why? 

(c) C. Faloutsos, 2017 Tencent, 6/22 

4) Spikes! 
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S2: connected component sizes 
•  Connected Components 

Size 

Count 

suspicious 
financial-advice sites 

(not existing now) 

(c) C. Faloutsos, 2017 Tencent, 6/22 
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MORE Graph Patterns 

Tencent, 6/22 (c) C. Faloutsos, 2017 22 

✔ 

✔ 

RTG: A Recursive Realistic Graph Generator using Random 
Typing Leman Akoglu and Christos Faloutsos. PKDD’09.  
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MORE Graph Patterns 

Tencent, 6/22 (c) C. Faloutsos, 2017 23 

•  Mary McGlohon, Leman Akoglu, Christos 
Faloutsos. Statistical Properties of Social 
Networks. in "Social Network Data Analytics” (Ed.: 
Charu Aggarwal) 

•  Deepayan Chakrabarti and Christos Faloutsos, 
Graph Mining: Laws, Tools, and Case Studies Oct. 
2012, Morgan Claypool.  
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– P1.1: Patterns 
– P1.2: Anomaly / fraud detection 

•  No labels – spectral 
•  With labels: Belief Propagation 

•  Part#2: time-evolving graphs; tensors 
•  Conclusions 

Tencent, 6/22 

Patterns            anomalies 
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How to find ‘suspicious’ groups? 
•  ‘blocks’ are normal, right? 

Tencent, 6/22 (c) C. Faloutsos, 2017 25 

fans 

idols 
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Except that: 
•  ‘blocks’ are normal, right? 
•  ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14] 

Tencent, 6/22 (c) C. Faloutsos, 2017 26 
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Except that: 
•  ‘blocks’ are usually suspicious 
•  ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14] 

Tencent, 6/22 (c) C. Faloutsos, 2017 27 

Q: Can we spot blocks, easily? 
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Except that: 
•  ‘blocks’ are usually suspicious 
•  ‘hyperbolic’ communities are more realistic 

[Araujo+, PKDD’14] 

Tencent, 6/22 (c) C. Faloutsos, 2017 28 

Q: Can we spot blocks, easily? 
A: Silver bullet: SVD! 
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Crush intro to SVD 
•  Recall: (SVD) matrix factorization: finds 

blocks 

Tencent, 6/22 (c) C. Faloutsos, 2017 29 

N  
users 

M 
products 

‘meat-eaters’ 
‘steaks’ 

‘vegetarians’ 
‘plants’ 

‘kids’ 
‘cookies’ 

~ + + 

DETAILS 
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•  Recall: (SVD) matrix factorization: finds 

blocks 

Tencent, 6/22 (c) C. Faloutsos, 2017 30 

N  
fans 

M 
idols 

‘music lovers’ 
‘singers’ 

‘sports lovers’ 
‘athletes’ 

‘citizens’ 
‘politicians’ 

~ + + 

DETAILS 
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Crush intro to SVD 
•  Recall: (SVD) matrix factorization: finds 

blocks 

Tencent, 6/22 (c) C. Faloutsos, 2017 31 

N  
fans 

M 
idols 

‘music lovers’ 
‘singers’ 

‘sports lovers’ 
‘athletes’ 

‘citizens’ 
‘politicians’ 

~ + + 

DETAILS 
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Inferring Strange Behavior from 
Connectivity Pattern in Social Networks 

PAKDD’14  

Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua) 
Alex Beutel, Christos Faloutsos (CMU) 
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Lockstep and Spectral Subspace Plot 
•  Case #0: No lockstep behavior in random 

power law graph of 1M nodes, 3M edges 
•  Random             “Scatter” 

Adjacency Matrix Spectral Subspace Plot 

Tencent, 6/22 33 (c) C. Faloutsos, 2017 + + 
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Lockstep and Spectral Subspace Plot 
•  Case #1: non-overlapping lockstep 
•  “Blocks”            “Rays” 

Adjacency Matrix Spectral Subspace Plot 

Tencent, 6/22 34 (c) C. Faloutsos, 2017 
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Lockstep and Spectral Subspace Plot 
•  Case #2: non-overlapping lockstep 
•  “Blocks; low density”            Elongation 

Adjacency Matrix Spectral Subspace Plot 

Tencent, 6/22 35 (c) C. Faloutsos, 2017 
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Lockstep and Spectral Subspace Plot 
•  Case #3: non-overlapping lockstep 
•  “Camouflage” (or “Fame”)            Tilting 

“Rays” 
Adjacency Matrix Spectral Subspace Plot 

Tencent, 6/22 36 (c) C. Faloutsos, 2017 
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Lockstep and Spectral Subspace Plot 
•  Case #3: non-overlapping lockstep 
•  “Camouflage” (or “Fame”)            Tilting 

“Rays” 
Adjacency Matrix Spectral Subspace Plot 

Tencent, 6/22 37 (c) C. Faloutsos, 2017 
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Dataset 

•  Tencent Weibo 
•  117 million nodes (with profile and UGC 

data) 
•  3.33 billion directed edges 

Tencent, 6/22 40 (c) C. Faloutsos, 2017 
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Real Data 
“Rays”	 “Block”	

Tencent, 6/22 41 (c) C. Faloutsos, 2017 
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Real Data 
•  Spikes on the out-degree distribution 

×	

Tencent, 6/22 42 (c) C. Faloutsos, 2017 
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Summary of Part#1 
•  *many* patterns in real graphs 

– Power-laws everywhere 
– Long (and growing) list of tools for anomaly/

fraud detection 

Tencent, 6/22 (c) C. Faloutsos, 2017 43 

Patterns            anomalies 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs 

– P2.1: tools/tensors 
– P2.2: other patterns 

•  Conclusions 

Tencent, 6/22 
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Part 2: 
Time evolving  

graphs; tensors 
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Graphs over time -> tensors! 
•  Problem #2.1: 

– Given who calls whom, and when 
– Find patterns / anomalies 

Tencent, 6/22 (c) C. Faloutsos, 2017 46 

smith 
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Graphs over time -> tensors! 
•  Problem #2.1: 

– Given who calls whom, and when 
– Find patterns / anomalies 

Tencent, 6/22 (c) C. Faloutsos, 2017 47 
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Graphs over time -> tensors! 
•  Problem #2.1: 

– Given who calls whom, and when 
– Find patterns / anomalies 

Tencent, 6/22 (c) C. Faloutsos, 2017 48 

Mon 
Tue 
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Graphs over time -> tensors! 
•  Problem #2.1: 

– Given who calls whom, and when 
– Find patterns / anomalies 

Tencent, 6/22 (c) C. Faloutsos, 2017 49 
callee 

caller 
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Answer : tensor factorization 
•  Recall: (SVD) matrix factorization: finds 

blocks 

Tencent, 6/22 (c) C. Faloutsos, 2017 50 

N  
users 

M 
products 

‘meat-eaters’ 
‘steaks’ 

‘vegetarians’ 
‘plants’ 

‘kids’ 
‘cookies’ 

~ + + 
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Answer: tensor factorization 
•  PARAFAC decomposition 

Tencent, 6/22 (c) C. Faloutsos, 2017 51 

= + + users 

products 

Meat-eaters vegetarians kids 
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Answer: tensor factorization 
•  PARAFAC decomposition 

Tencent, 6/22 (c) C. Faloutsos, 2017 52 

= + + users 

products 

user-model#1 
User-model#2 

User-model#3 
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Answer: tensor factorization 
•  PARAFAC decomposition 
•  Results for who-calls-whom-when 

–  4M x 15 days 

Tencent, 6/22 (c) C. Faloutsos, 2017 54 

= + + caller 

callee 

?? ?? ?? 
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Anomaly detection in time-

evolving graphs 

•  Anomalous communities in phone call data: 
– European country, 4M clients, data over 2 weeks 

~200 calls to EACH receiver on EACH day! 

1 caller 5 receivers 4 days of activity 

Tencent, 6/22 55 (c) C. Faloutsos, 2017 

= 
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Anomaly detection in time-

evolving graphs 

•  Anomalous communities in phone call data: 
– European country, 4M clients, data over 2 weeks 

~200 calls to EACH receiver on EACH day! 

1 caller 5 receivers 4 days of activity 

Tencent, 6/22 56 (c) C. Faloutsos, 2017 

= 
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Anomaly detection in time-

evolving graphs 

•  Anomalous communities in phone call data: 
– European country, 4M clients, data over 2 weeks 

~200 calls to EACH receiver on EACH day! 

1 caller 5 receivers 4 days of activity 

Tencent, 6/22 57 (c) C. Faloutsos, 2017 
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Anomaly detection in time-

evolving graphs 

•  Anomalous communities in phone call data: 
– European country, 4M clients, data over 2 weeks 

~200 calls to EACH receiver on EACH day! 
Tencent, 6/22 58 (c) C. Faloutsos, 2017 

= 

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, 
Christos Faloutsos, Prithwish Basu, Ananthram Swami, 
 Evangelos Papalexakis, Danai Koutra.  Com2: Fast 
Automatic Discovery of Temporal (Comet) Communities. 
PAKDD 2014, Tainan, Taiwan. 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs 

– P2.1: tools/tensors 
– P2.2: other patterns  

•   inter-arrival time 
•  Network growth 
•  Group evolution 

•  Conclusions 
Tencent, 6/22 



Beyond Sigmoids: the NetTide 
Model for Social Network 

Growth and its Applications 

Chengxi Zang 臧承熙,   Peng Cui,     CF 

69 



PROBLEM: n(t) and e(t), over time? 

•  n(t): the number of nodes. 
•  e(t): the number of edges. 
•  E.g.: 

–  How many members will           have next month? 
–  How many friendship links will          have next year? 

C 

C/2 

0 

•  Linear? 
•  Exponential? 
•  Sigmoid? 



Datasets 
•  WeChat  2011/1-2013/1   300M nodes, 4.75B links 
•  ArXiv      1992/3-2002/3      17k nodes,      2.4M links 

•  Enron     1998/1-2002/7      86K nodes,      600K links   

•  Weibo    2006                       165K nodes， 331K links 



A: Power Law Growth 

Cumulative growth（Log-Log scale） 



Proposed: NetTide Model 

•  Nodes n(t) 

•  Links e(t) 

Details 



NetTide-Node Model 

•  Intuition: 
•  Rich-get-richer 
•  Limitation 
•  Fizzling nature 

74 

Details 

= SI; ~Bass 

#nodes(t) 
Total population 

dn(t)

dt
=

�

t✓
n(t) (N � n(t))
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Details 

= SI; ~Bass 

#nodes(t) 
Total population 

dn(t)
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NetTide-Node Model 

•  Intuition: 
•  Rich-get-richer 
•  Limitation 
•  Fizzling nature 

76 

Details 

= SI; ~Bass 

#nodes(t) 
Total population 

dn(t)

dt
=

�

t✓
n(t) (N � n(t))



Results: Accuracy 



Results: Accuracy 
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79 



Results: Accuracy 
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Results: Accuracy 

81 



Results: Forecast 
WeChat from 100 million 

to 300 million 730 days ahead 

82 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs 

– P2.1: tools/tensors 
– P2.2: other patterns  

•   inter-arrival time 
•  Network growth 
•  Group evolution 

•  Conclusions 
Tencent, 6/22 



Tianyang Zhang, Peng Cui, Christos Faloutsos 
Yunfei Lu, Hao Ye, Wenwu Zhu, Shiqiang Yang 

Come-and-Go Patterns of Group Evolution:  
A Dynamic Model	

8
4 

KDD’16, San Francisco, CA 
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Social Group Dynamics – An open problem 

!   Will it grow larger or decline? 
!   Forecast group size after one month? 

1 hour 
N = 5	

3 days 
N = 77	

3 weeks 
N = 98	

2 months 
N = 83	

Tencent, 6/22 (c) C. Faloutsos, 2017 
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Group Evolution Process	

86 

Our Problem: Group Evolution Process 

"  Goals: 

!  G1: Discover Patterns 

!  G2: Reveal Mechanisms 

!  G3: Model Evolution Process 

# members 

Tencent, 6/22 (c) C. Faloutsos, 2017 
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G1: Discover Patterns 

"  Wechat Group dataset 

!  Largest social network in China 
!  Sample 100K social groups 
!  42 days since established 
!  15M records  

!  Join / Quit log 
!  Temporal information 

Tencent, 6/22 (c) C. Faloutsos, 2017 
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G1: Discover Patterns 
"  Recurring Patterns 

continuous increase	

come and go	rise and stay	

rocket increase	
Tencent, 6/22 (c) C. Faloutsos, 2017 
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G2: Reveal Mechanisms 

" Join/quit logs 

Join Process	

Quit process	

Group evolution process	

COMENGO	
Tencent, 6/22 (c) C. Faloutsos, 2017 

J(t) 

Q(t) 
I(t) 
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G2: Reveal Mechanisms 

Tencent, 6/22 (c) C. Faloutsos, 2017 

•  Q: Can we find (simple) equations, that can 
fit all these patterns (J(t), Q(t))? 
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G2: Reveal Mechanisms 

Tencent, 6/22 (c) C. Faloutsos, 2017 

•  Q: Can we find (simple) equations, that can 
fit all these patterns (J(t), Q(t))? 

•  A: Yes! 



CMU SCS 

92 

G3-1: Dynamic Model – Join 

• Join process 

diffusion growth	 bursty growth	

attractiveness	

population	 time of external shock	

effect strength 	
group size	

Tencent, 6/22 (c) C. Faloutsos, 2017 

Details 
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G2-2: Reveal Mechanisms – Quit     

Stabilizing	 declining	

Tencent, 6/22 (c) C. Faloutsos, 2017 

Details 
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G2-2: Reveal Mechanisms – Quit 

Tencent, 6/22 (c) C. Faloutsos, 2017 

Q: Quitting: exponential (‘half life’ == SIR) ? 

Details 
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G2-2: Reveal Mechanisms – Quit Process 

high quit rate	

low quit rate	

constant quit rate -> 
Exponential decay	

Gradually stable	 Continuous decline	
85% of all groups: 

Decay over holding time	
15% of all groups: 
Constant quit rate 

Tencent, 6/22 (c) C. Faloutsos, 2017 

Details 
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G3-2: Dynamic Model – Quit Process 

"  Quit process – Quit rate: 

α=0, exact exponential distribution 
0< α<1, exponential like distribution 

α>1, power-law distribution 

Tencent, 6/22 (c) C. Faloutsos, 2017 

Details 
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 Quit Rate	

97 

G3-2: Dynamic Model – Quit Process 

"  Quit process 
!  Quit rate may decrease over holding time τ  
!  Power-law or Exponential distributed holding time  

!  γ0: short time satisfaction degree 
!  α: long time dependence 

α=0, exact exponential distribution 
0< α<1, exponential like distribution 

α>1, power-law distribution 

 p.d.f of holding time τ	

Tencent, 6/22 (c) C. Faloutsos, 2017 

Details 
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G3: Dynamic Model - COMENGO 

group size:	

join process:	

quit process:	

holding time:	

Tencent, 6/22 (c) C. Faloutsos, 2017 

J(t) =?    Q(t) =? 
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G3: Dynamic Model - COMENGO 

group size:	

join process:	

quit process:	

holding time:	

Tencent, 6/22 (c) C. Faloutsos, 2017 
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Experiment – Fitting Accuracy   

"  Fits all different patterns 
"  Fit both join & quit process 

Tencent, 6/22 (c) C. Faloutsos, 2017 
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"  Size prediction 
!  Given early stage data, predict the group size in future 	

Experiment – Predicting Power   

Tencent, 6/22 (c) C. Faloutsos, 2017 

Fit 
Fit 
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"  Trend prediction 
!  Given early stage data, predict whether the group will grow 
! 14.3% better accuracy 

Experiment – Predicting Power   

Tencent, 6/22 (c) C. Faloutsos, 2017 
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# G1: Discover patterns 
#  G2: Reveal mechanisms 
#  G3:  Novel unifying model 

# Better accuracy 
# predictive power 

103 

Conclusions 

Tencent, 6/22 (c) C. Faloutsos, 2017 

Tianyang Zhang 
zhangty09@foxmail.com 
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Part 2: Conclusions 
•  Time-evolving / heterogeneous graphs -> 

tensors 
•  PARAFAC finds patterns 
•  Surprising temporal patterns (P.L. growth, 

comeNgo group evolution) 

Tencent, 6/22 104 (c) C. Faloutsos, 2017 

= 
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Roadmap 

•  Introduction – Motivation 
– Why study (big) graphs? 

•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 
•  Acknowledgements and Conclusions 

Tencent, 6/22 
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Thanks 

Tencent, 6/22 

Thanks to: NSF IIS-0705359, IIS-0534205,  
CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, 
Google, INTEL, HP, iLab 

Disclaimer: All opinions are mine; not necessarily reflecting 
the opinions of the funding agencies 
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CONCLUSION#1 – Big data 
•  Patterns          Anomalies 

•  Large datasets reveal patterns/outliers that 
are invisible otherwise 

Tencent, 6/22 
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CONCLUSION#2 – tensors 

•  powerful tool 

Tencent, 6/22 

= 

1 caller 5 receivers 4 days of activity 
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TAKE HOME MESSAGE: 
Cross-disciplinarity 

Tencent, 6/22 (c) C. Faloutsos, 2017 111 

= 



CMU SCS 

Cross-disciplinarity 
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= 

Thank you!  

www.cs.cmu.edu/~christos/TALKS/17-06-22-tencent/faloutsos_tencent_2017.pdf 


