#### **Anomaly detection in large graphs**

# Christos Faloutsos CMU

www.cs.cmu.edu/~christos/TALKS/17-06-22-tencent/faloutsos\_tencent\_2017.pdf

#### Thank you!

• Annette Jiang (IEEE)



- Evan Butterfield (IEEE)
- Tina Huang (Tencent)

#### Roadmap

Introduction – Motivation
 – Why study (big) graphs?



- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Conclusions

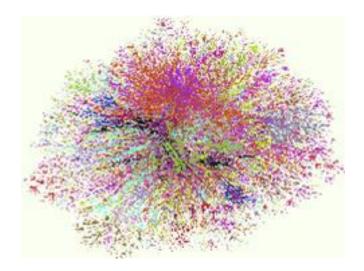
# Graphs - why should we care?

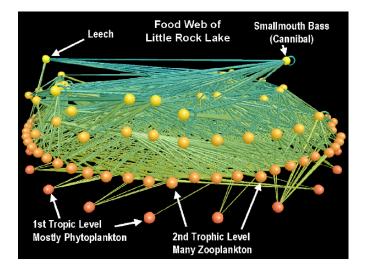


Tencent, 6/22

(c) C. Faloutsos, 2017

#### **Graphs - why should we care?**





#### Internet Map [lumeta.com]

#### Food Web [Martinez '91]

#### **Graphs - why should we care?**

- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems
- Who-bought-from-whom (ebay, Alibaba)
- ....

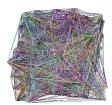
#### Many-to-many db relationship -> graph

NETFLIX

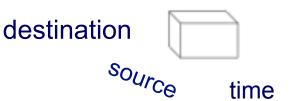
# **Motivating problems**

• P1: patterns? Fraud detection?

000



• P2: patterns in time-evolving graphs / tensors



# **Motivating problems**

Retterns X anomalies

source

time

• P1: patterns? Fraud detection?



• P2: patterns in time-evolving graphs / tensors

#### Roadmap

- Introduction Motivation
  - Why study (big) graphs?



- Part#1: Patterns & fraud detection
  - Part#2: time-evolving graphs; tensors
  - Conclusions

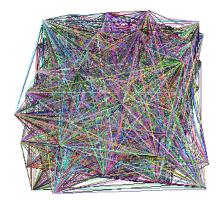


# Part 1: Patterns, & fraud detection

(c) C. Faloutsos, 2017

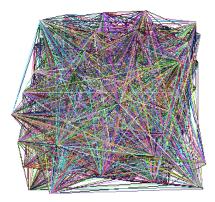
#### Laws and patterns

• Q1: Are real graphs random?



#### Laws and patterns

- Q1: Are real graphs random?
- A1: NO!!
  - Diameter ('6 degrees'; 'Kevin Bacon')
  - in- and out- degree distributions
  - other (surprising) patterns
- So, let's look at the data

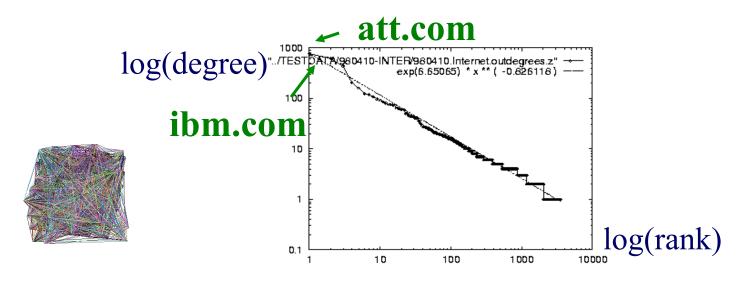




#### **Solution# S.1**

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

#### internet domains

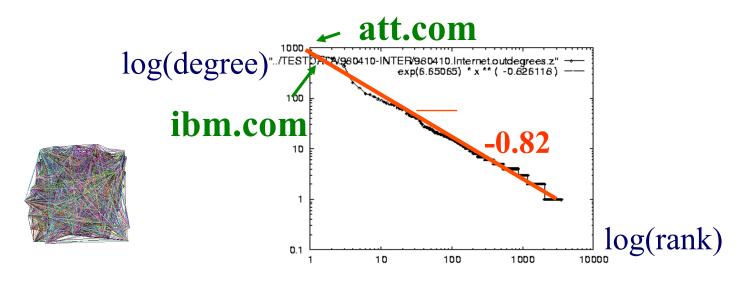


(c) C. Faloutsos, 2017

#### **Solution# S.1**

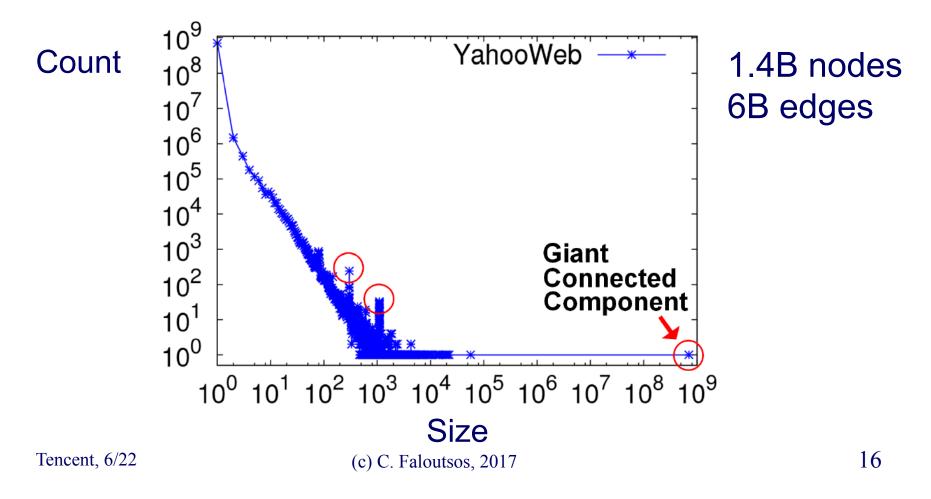
• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

#### internet domains

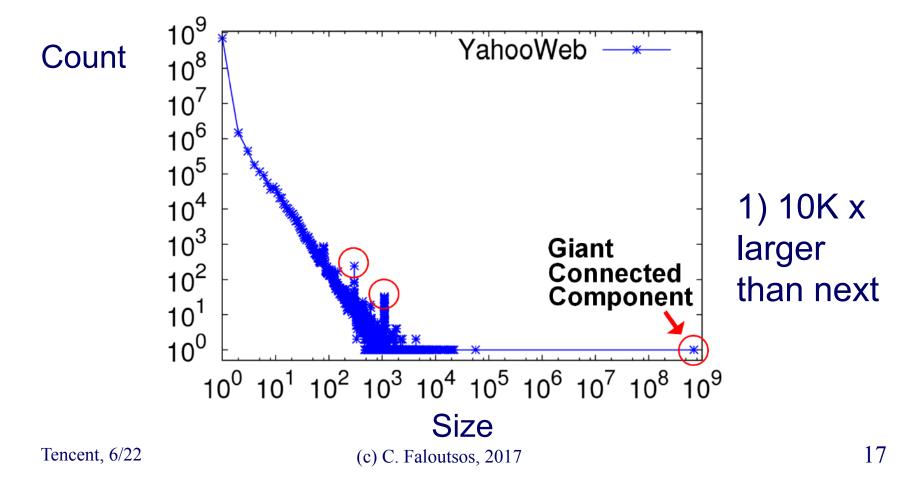


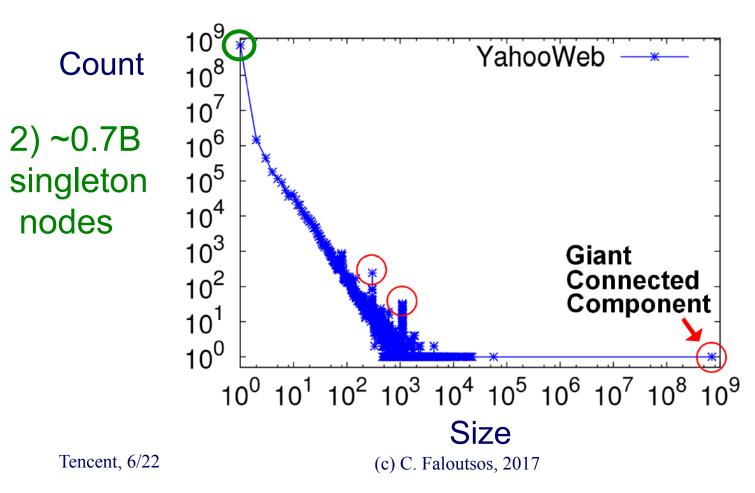
(c) C. Faloutsos, 2017

• Connected Components – 4 observations:

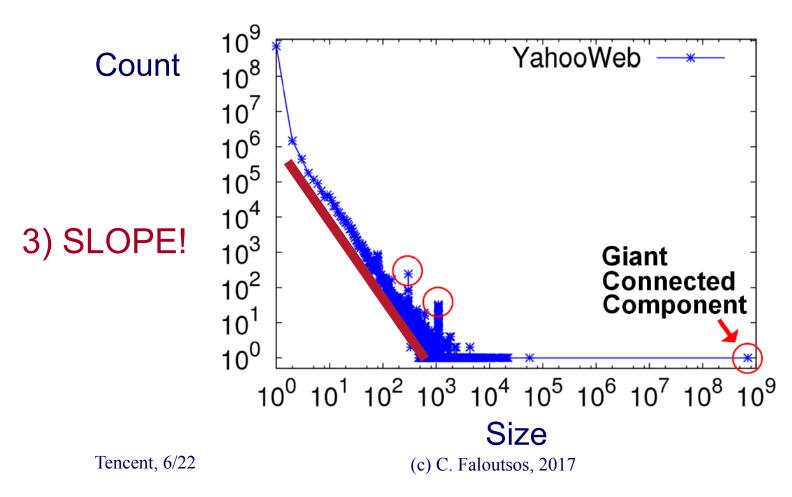




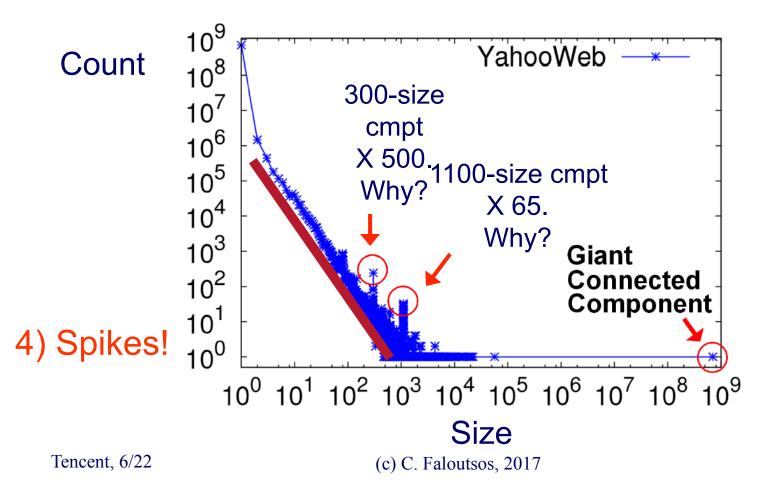




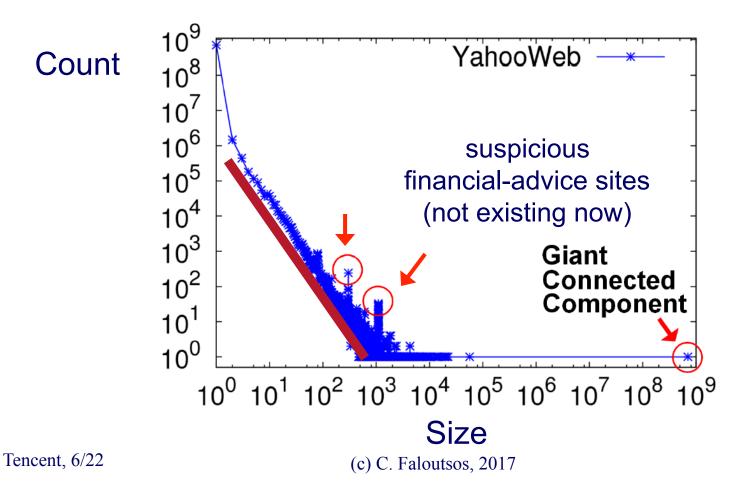














R

#### **MORE Graph Patterns**

|                                                        | Unweighted                                                                                                                                                                                                                                                                                                                                                                                                                               | Weighted                                                  |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Static                                                 | <ul> <li>A. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04]</li> <li>L02. Triangle Power Law (TPL) [Tsourakakis '08]</li> <li>B. Eigenvalue Power Law (EPL) [Siganos et al. '03]</li> <li>L04. Community structure [Flake et al. '02, Girvan and Newman '02]</li> </ul>                                                                                                   | L10. Snapshot Power Law<br>(SPL) [McGlohon et al.<br>`08] |
| Dynamic                                                | L05. Densification Power Law (DPL) [Leskovec et al. `05]<br>L06. Small and shrinking diameter [Albert and Barabási<br>`99, Leskovec et al. `05]<br>L07. Constant size $2^{nd}$ and $3^{rd}$ connected components<br>[McGlohon et al. `08]<br>L08. Principal Eigenvalue Power Law ( $\lambda_1$ PL) [Akoglu et al.<br>`08]<br>L09. Bursty/self-similar edge/weight additions [Gomez<br>and Santonja `98, Gribble et al. `98, Crovella and | L11. Weight Power Law<br>(WPL) [McGlohon et al.<br>`08]   |
| TG: A Recursive Realistic Graph Generator using Random |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |

Typing Leman Akoglu and Christos Faloutsos. PKDD'09.

#### **Carnegie Mellon**

#### **MORE Graph Patterns**

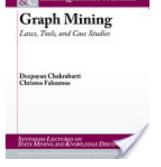
|         | Unweighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weighted                                                  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Static  | 101. Power-law degree distribution [Faloutsos et al. '99,<br>Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04]<br>102. Triangle Power Law (TPL) [Tsourakakis' 08]<br>103. Eigenvalue Power Law (EPL) [Siganos et al. '03]<br>104. Community structure [Flake et al. '02, Girvan and<br>Newman '02]                                                                                                                                                                                                                | L10. Snapshot Power Law<br>(SPL) [McGlohon et al.<br>`08] |
| Dynamic | <ul> <li>L05. Densification Power Law (DPL) [Leskovec et al. '05]</li> <li>L06. Small and shrinking diameter [Albert and Barabási '99, Leskovec et al. '05]</li> <li>L07. Constant size <sup>2md</sup> and 3<sup>rd</sup> connected components [McGlohon et al. '08]</li> <li>L08. Principal Eigenvalue Power Law (λ<sub>3</sub>PL) [Akoglu et al. '08]</li> <li>L09. Bursty/self-similar edge/weight additions [Gomez and Santonja '98, Gribble et al. '98, Crovella and Bestayros' '99. McGlohon et al. '08]</li> </ul> | L11. Weight Power Law<br>(WPL) [McGlohon et al.<br>`08]   |

 Mary McGlohon, Leman Akoglu, Christos
 Faloutsos. Statistical Properties of Social
 Networks. in "Social Network Data Analytics" (Ed.: Charu Aggarwal)

 Deepayan Chakrabarti and Christos Faloutsos, <u>Graph Mining: Laws, Tools, and Case Studies</u> Oct.
 2012, Morgan Claypool.







Tencent, 6/22

#### Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
  - P1.1: Patterns



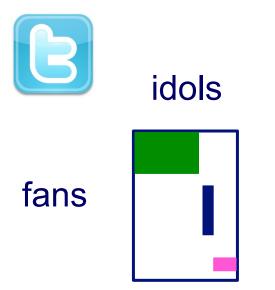
- P1.2: Anomaly / fraud detection
  - No labels spectral Patterns
  - With labels: Belief Propagation



- Part#2: time-evolving graphs; tensors
- Conclusions

# How to find 'suspicious' groups?

• 'blocks' are normal, right?

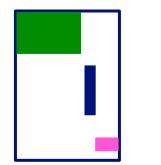


#### **Except that:**

• 'blocks' are normal, ist



 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]

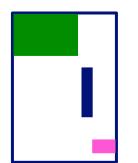




#### **Except that:**



- 'blocks' are usually suspicious
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]
  - Q: Can we spot blocks, easily?

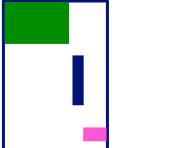




#### **Except that:**



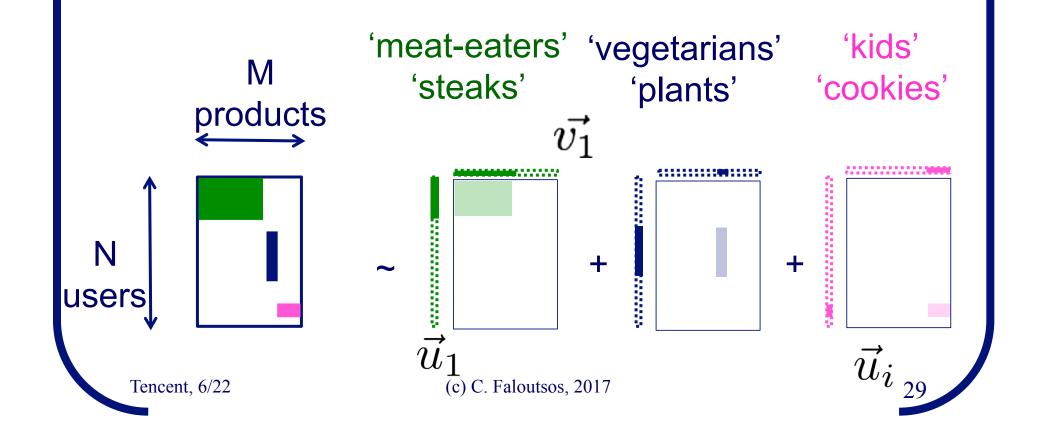
- 'blocks' are usually suspicious
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]
  - Q: Can we spot blocks, easily?
  - A: Silver bullet: SVD!







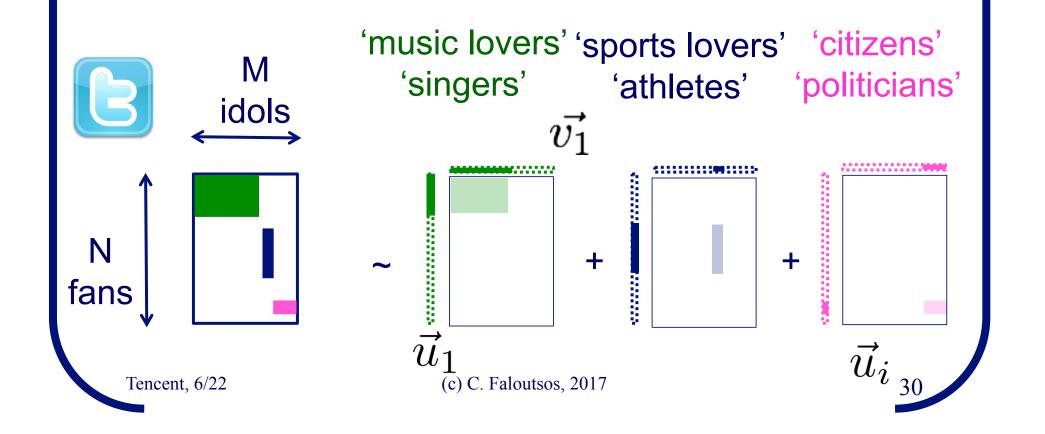
• Recall: (SVD) matrix factorization: finds blocks





DETAILS

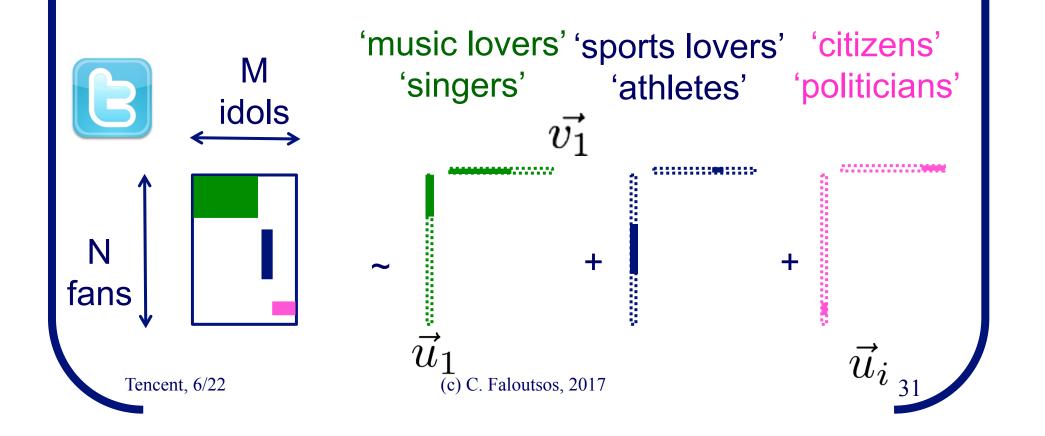
• Recall: (SVD) matrix factorization: finds blocks





**DETAILS** 

• Recall: (SVD) matrix factorization: finds blocks



#### Inferring Strange Behavior from Connectivity Pattern in Social Networks PAKDD'14





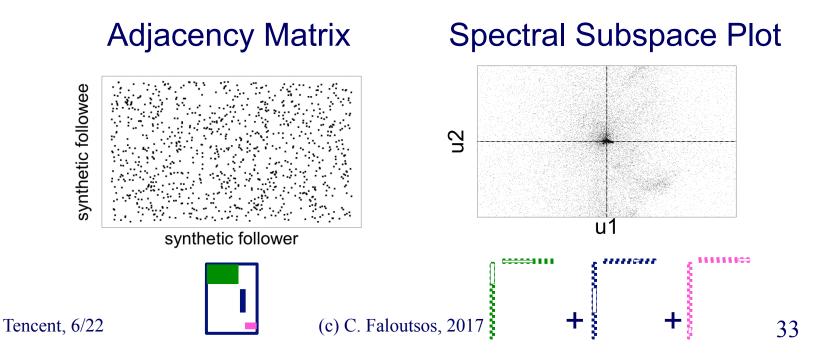




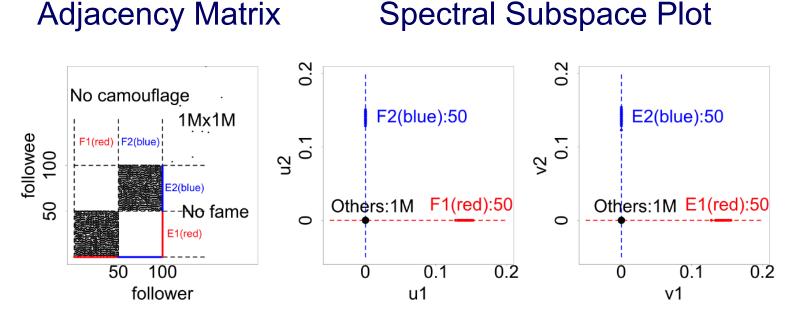
Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua) Alex Beutel, Christos Faloutsos (CMU)



- Case #0: No lockstep behavior in random power law graph of 1M nodes, 3M edges

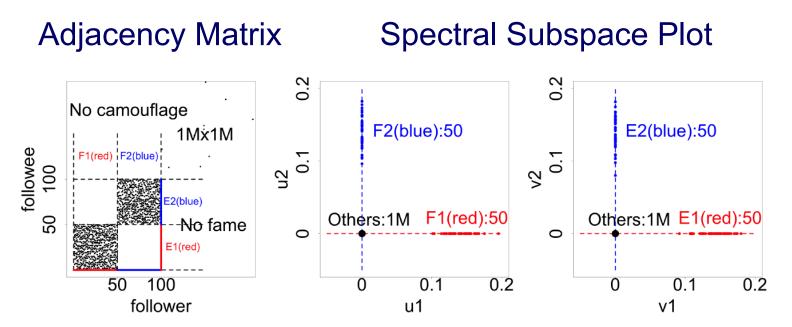


- Case #1: non-overlapping lockstep
- "Blocks" ← → "Rays"



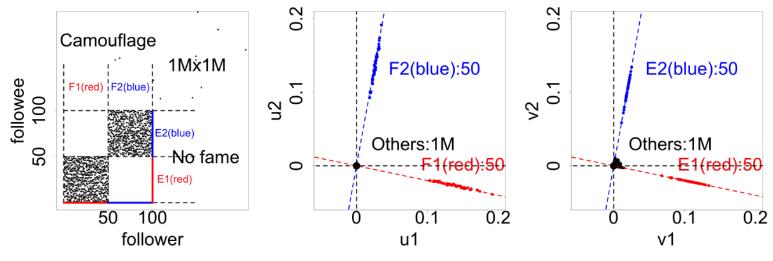
Rule 1 (short "rays"): two blocks, high density (90%), no "camouflage", no "fame"<br/>Tencent, 6/22(c) C. Faloutsos, 201734

- Case #2: non-overlapping lockstep
- "Blocks; low density" ←→ Elongation



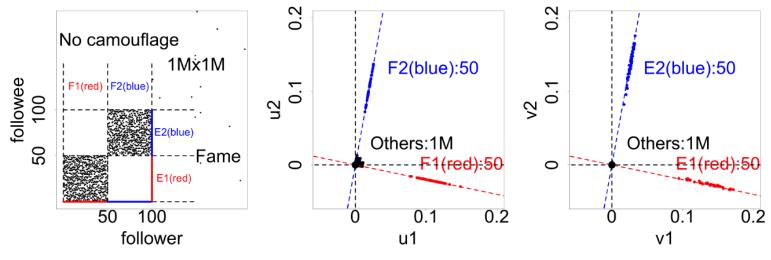
Rule 2 (long "rays"): two blocks, low density (50%), no "camouflage", no "fame"Tencent, 6/22(c) C. Faloutsos, 201735

- Case #3: non-overlapping lockstep
- "Camouflage" (or "Fame") ← → Tilting "Rays" Adjacency Matrix Spectral Subspace Plot



Rule 3 (tilting "rays"): two blocks, with "camouflage", no "fame"Tencent, 6/22(c) C. Faloutsos, 201736

- Case #3: non-overlapping lockstep
- "Camouflage" (or "Fame") ← Tilting
   "Rays" Adjacency Matrix Spectral Subspace Plot



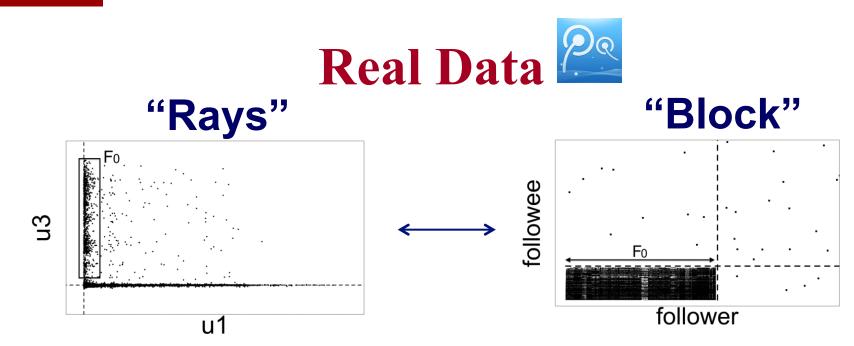
Rule 3 (tilting "rays"): two blocks, no "camouflage", with "fame"Tencent, 6/22(c) C. Faloutsos, 201737

#### Dataset

- Tencent Weibo 29
- 117 million nodes (with profile and UGC data)
- 3.33 billion directed edges

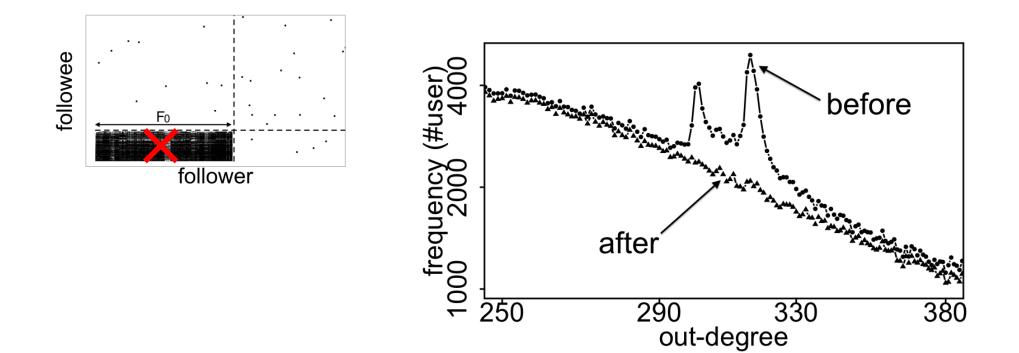


Tencent, 6/22





• Spikes on the out-degree distribution



(c) C. Faloutsos, 2017

## **Summary of Part#1**

- \*many\* patterns in real graphs
  - Power-laws everywhere
  - Long (and growing) list of tools for anomaly/ fraud detection



(c) C. Faloutsos, 2017

#### Roadmap

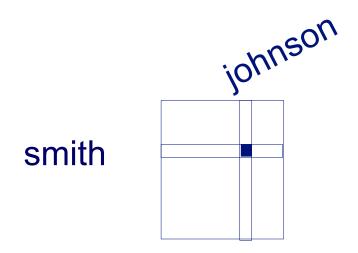
- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs
  - P2.1: tools/tensors
  - P2.2: other patterns
- Conclusions



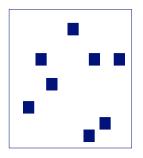
# Part 2: Time evolving graphs; tensors

(c) C. Faloutsos, 2017

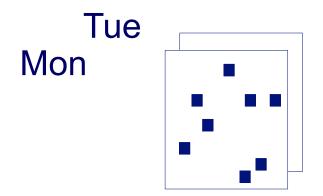
- Problem #2.1:
  - Given who calls whom, and when
  - Find patterns / anomalies



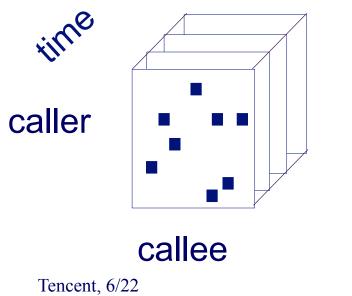
- Problem #2.1:
  - Given who calls whom, and when
  - Find patterns / anomalies



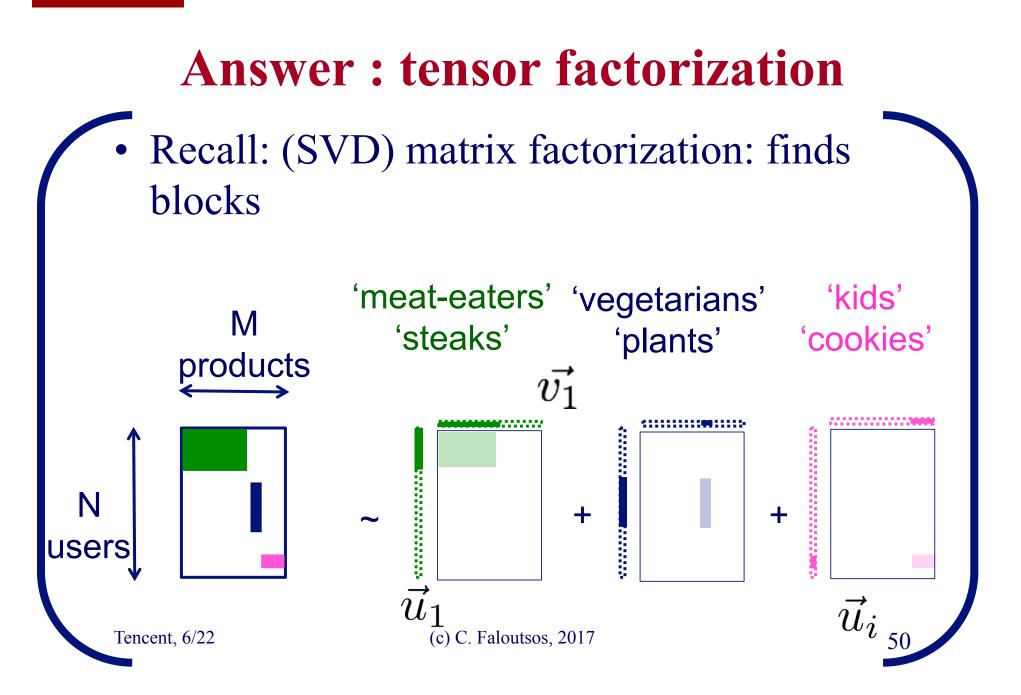
- Problem #2.1:
  - Given who calls whom, and when
  - Find patterns / anomalies



- Problem #2.1:
  - Given who calls whom, and when
  - Find patterns / anomalies

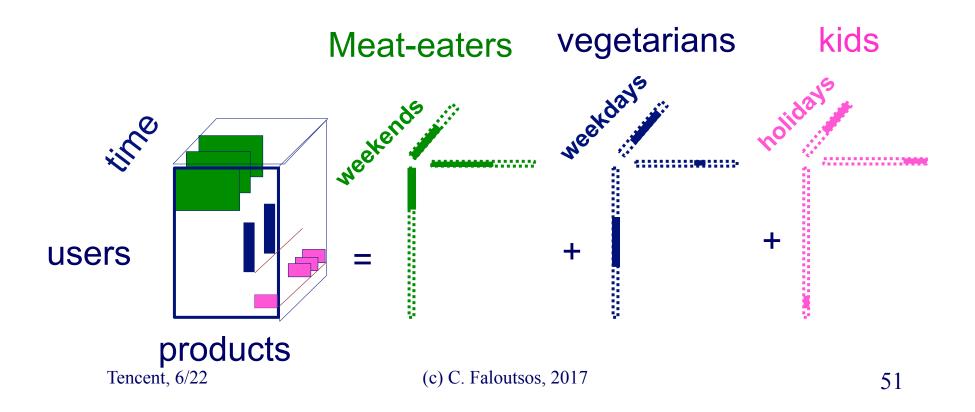


(c) C. Faloutsos, 2017



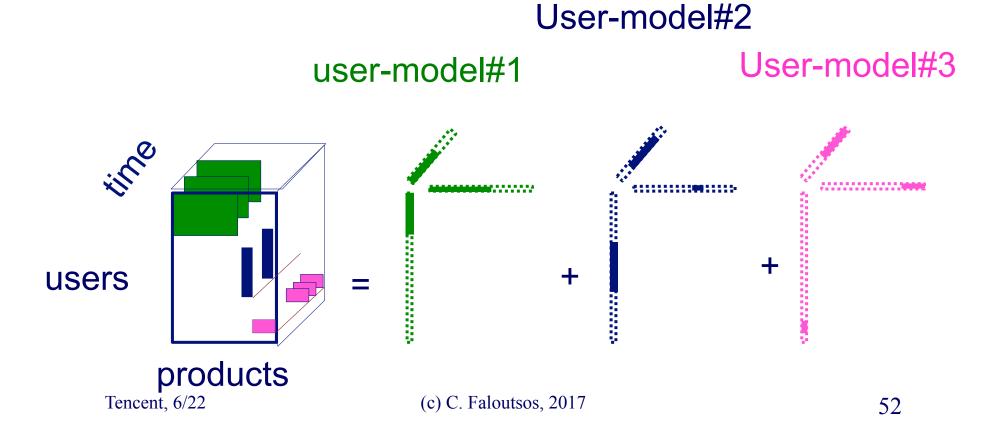
#### **Answer: tensor factorization**

• PARAFAC decomposition



#### **Answer: tensor factorization**

• PARAFAC decomposition

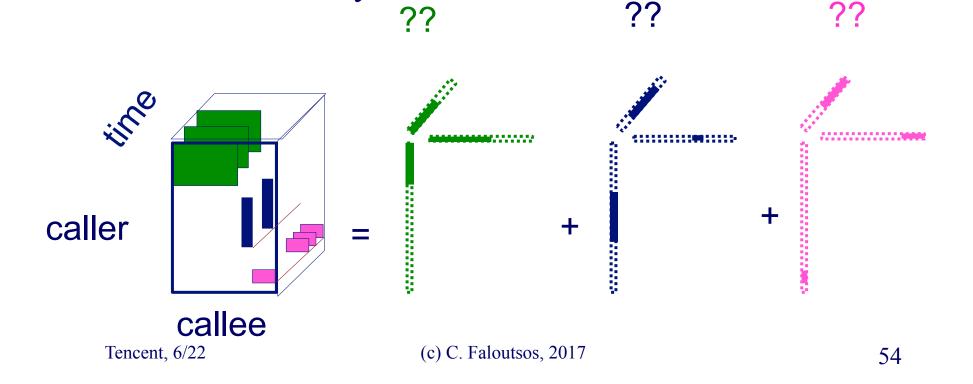


#### **Answer: tensor factorization**

• PARAFAC decomposition

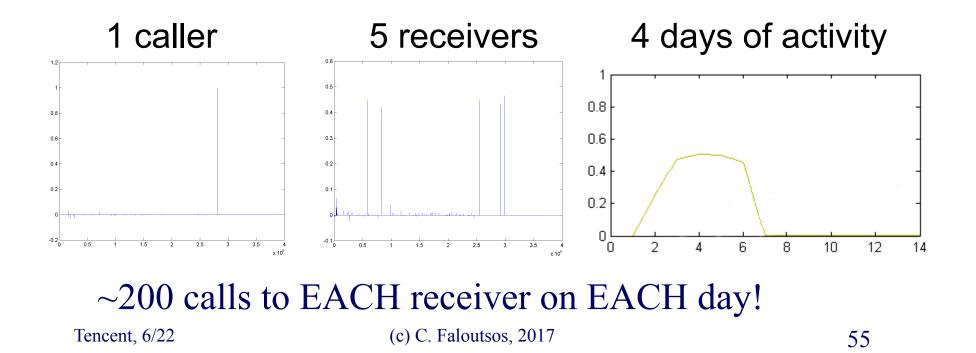
- 4M x 15 days

• Results for who-calls-whom-when



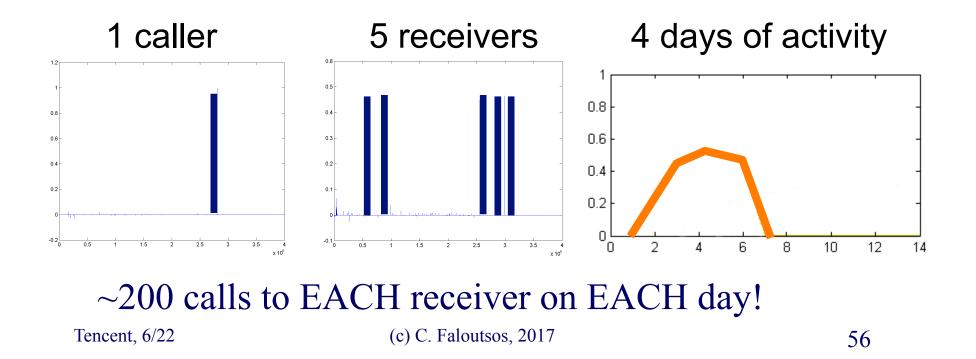


- Anomalous communities in phone call data:
  - European country, 4M clients, data over 2 weeks





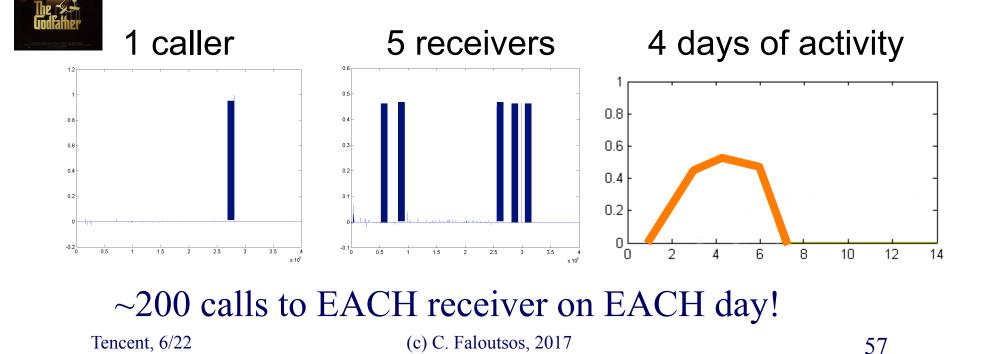
- Anomalous communities in phone call data:
  - European country, 4M clients, data over 2 weeks





• Anomalous communities in phone call data:







Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks







Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos Papalexakis, Danai Koutra. *Com2: Fast Automatic Discovery of Temporal (Comet) Communities*. PAKDD 2014, Tainan, Taiwan.

#### Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs
  - P2.1: tools/tensors
  - P2.2: other patterns
    - inter-arrival time
    - Network growth
    - Group evolution
- Conclusions





## Beyond Sigmoids: the NetTide Model for Social Network Growth and its Applications KDD'16

#### Chengxi Zang 臧承熙, Peng Cui, CF



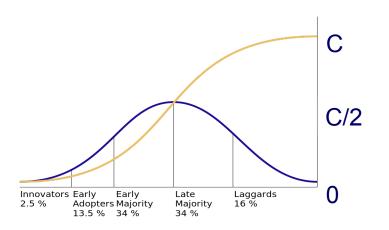






#### PROBLEM: n(t) and e(t), over time?

- n(t): the number of nodes.
- e(t): the number of edges.
- E.g.:
  - How many members will
  - How many friendship links will
  - Linear?
  - Exponential?
  - Sigmoid?





have next year?

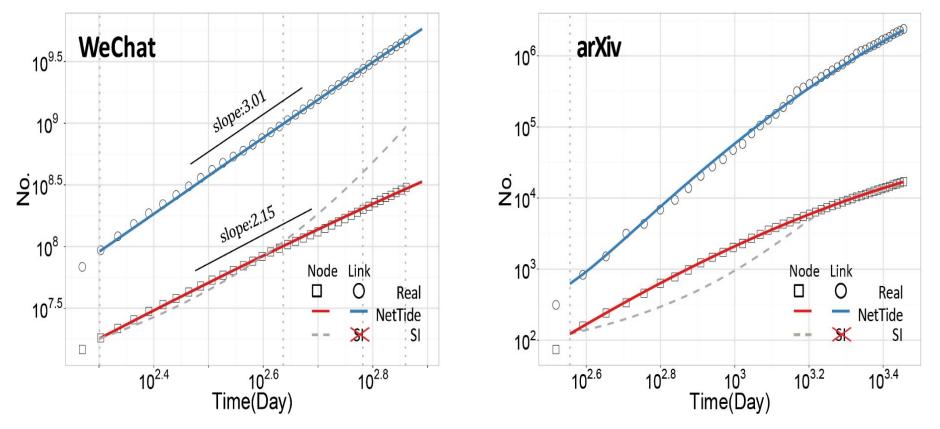
## Datasets

- WeChat 2011/1-2013/1 300M nodes, 4.75B links
- ArXiv 1992/3-2002/3 17k nodes, 2.4M links
- Enron 1998/1-2002/7 86K nodes, 600K links
- Weibo 2006

| 86K nodes,  | 600K links |
|-------------|------------|
| 165K nodes, | 331K links |

#### A: Power Law Growth





#### Cumulative growth (Log-Log scale)



# Proposed: NetTide Model

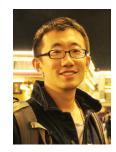
Nodes n(t)

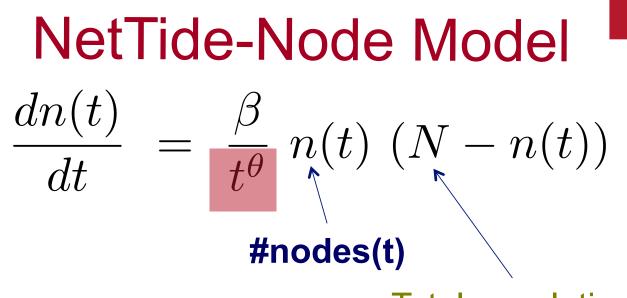
$$\frac{dn(t)}{dt} = \frac{\beta}{t^{\theta}} n(t) (N - n(t))$$

• Links e(t)

$$\frac{de(t)}{dt} = \frac{\beta'}{t^{\theta}} n(t) \left( \alpha (n(t) - 1)^{\gamma} - \frac{e(t)}{n(t)} \right) + 2 \frac{dn(t)}{dt}$$







• Intuition:

Total population

- Rich-get-richer
- Limitation

- = SI; ~Bass
- Fizzling nature





 $\frac{dn(t)}{dt} = \frac{\beta}{t^{\theta}} n(t) (N - n(t))$ #nodes(t)

• Intuition:

**Total population** 

- Rich-get-richer
- Limitation

- − = SI; ~Bass
- Fizzling nature





$$\frac{dn(t)}{dt} = \frac{\beta}{t^{\theta}} n(t) (N - n(t))$$

#nodes(t)

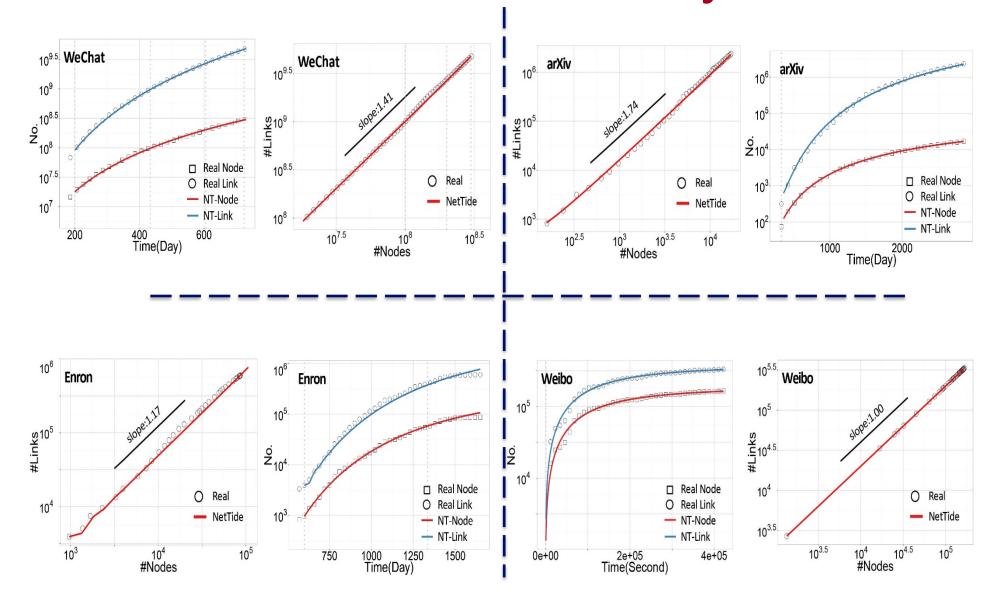
• Intuition:

**Total population** 

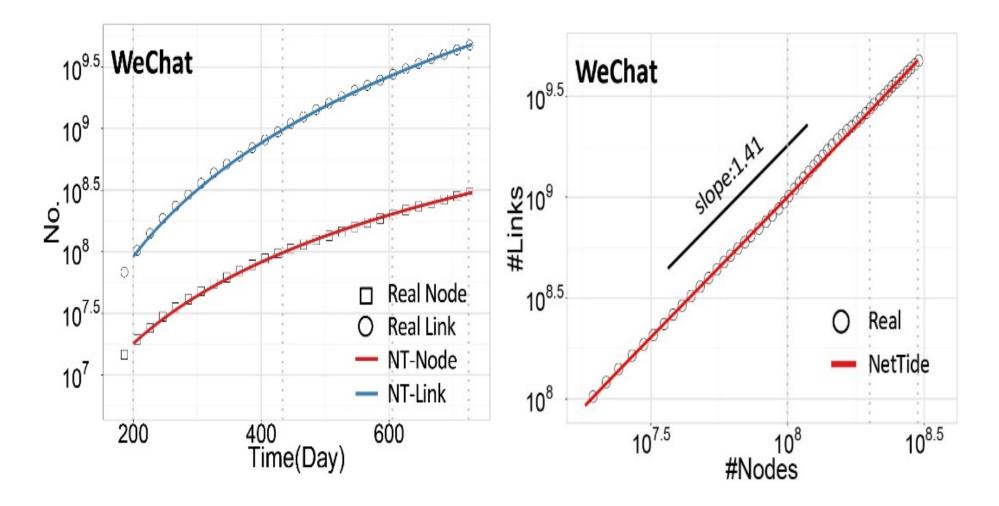
- Rich-get-richer
- Limitation

- = SI; ~Bass
- Fizzling nature

## **Results: Accuracy**

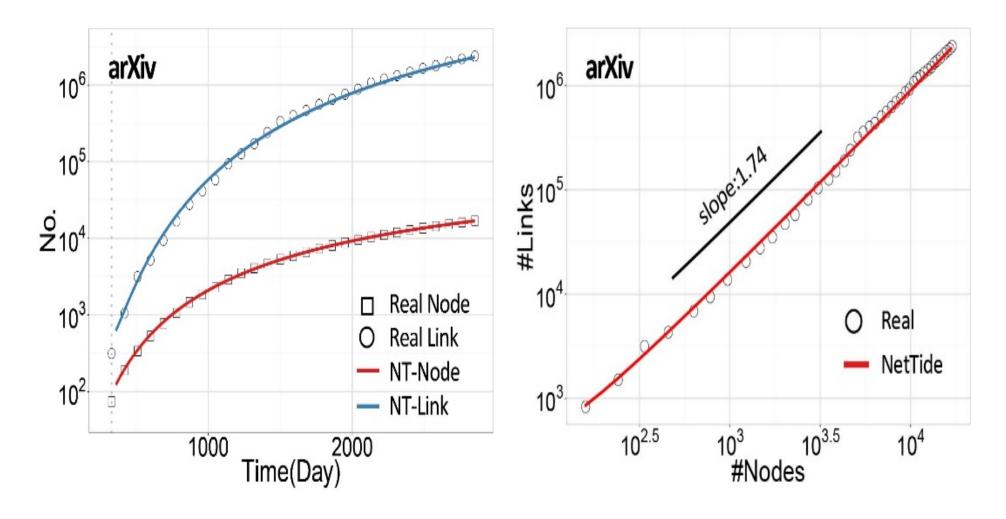


## **Results: Accuracy**

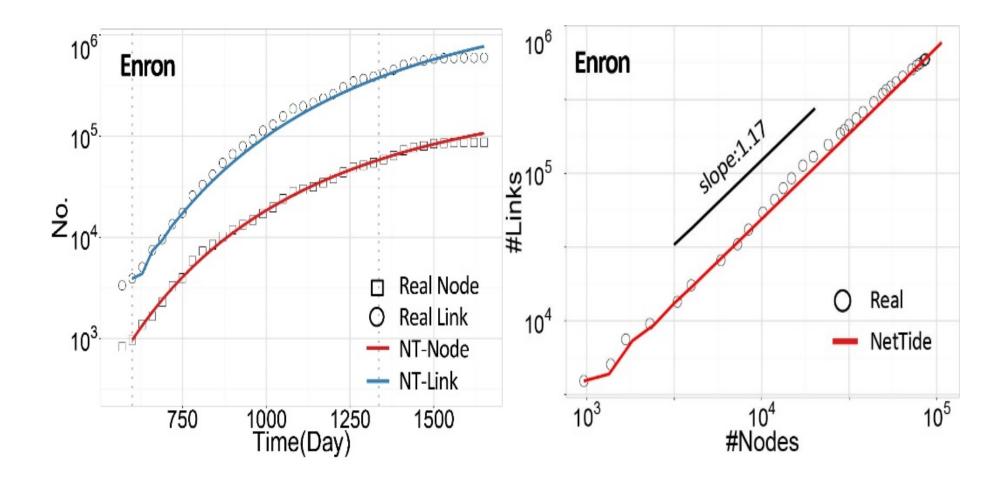


**Carnegie Mellon** 

## **Results: Accuracy**

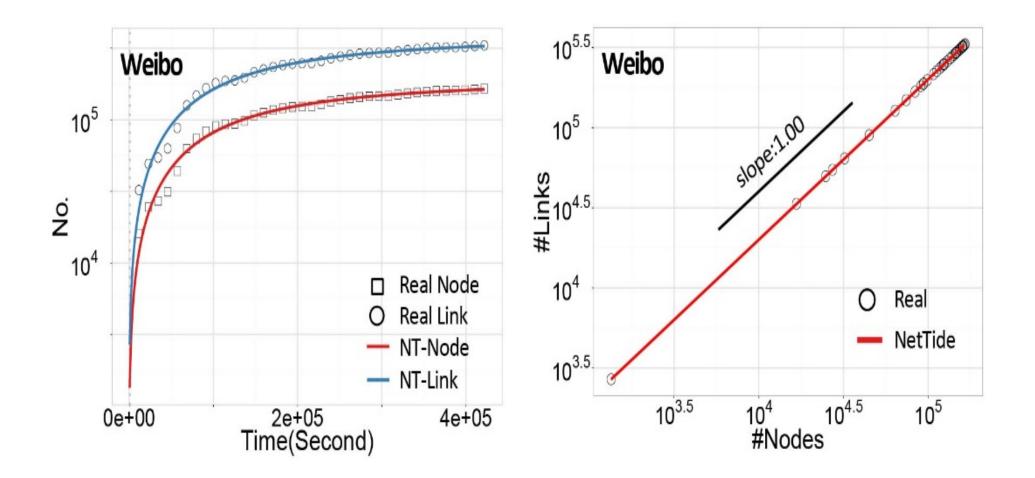


## **Results: Accuracy**



80

## **Results: Accuracy**



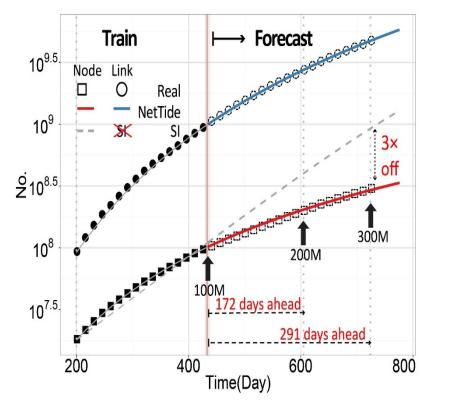
81

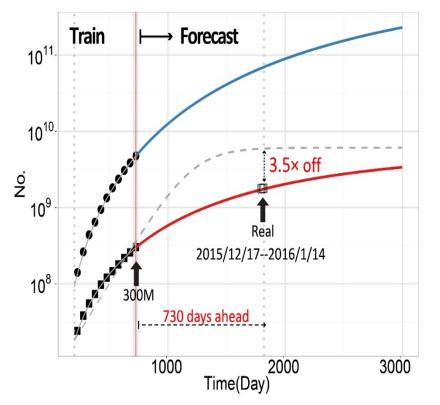
## **Results: Forecast**



#### WeChat from 100 million to 300 million

#### 730 days ahead





#### Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs
  - P2.1: tools/tensors
  - P2.2: other patterns
    - inter-arrival time
    - Network growth
    - Group evolution
- Conclusions







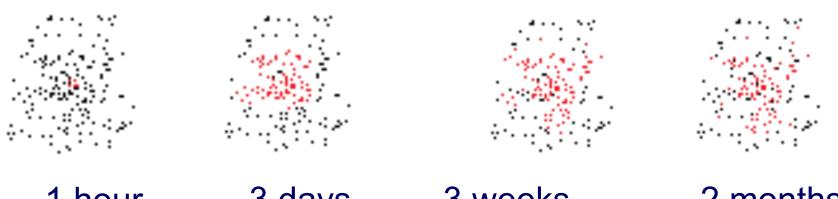
#### Come-and-Go Patterns of Group Evolution: A Dynamic Model



**<u>Tianyang Zhang</u>**, Peng Cui, Christos Faloutsos Yunfei Lu, Hao Ye, Wenwu Zhu, Shiqiang Yang

KDD'16, San Francisco, CA

#### Social Group Dynamics – An open problem



 1 hour
 3 days
 3 weeks

 N = 5
 N = 77
 N = 98

2 monthsN = 83

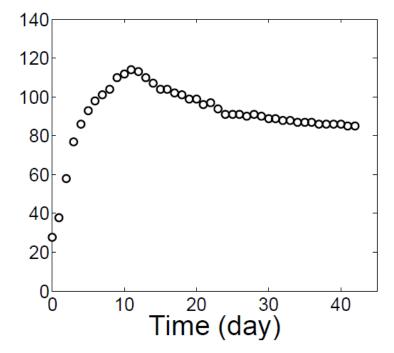
- Will it grow larger or decline?
- Forecast group size after one month?

## **Our Problem: Group Evolution Process**



- G1: Discover Patterns
- G2: Reveal Mechanisms
- G3: Model Evolution Process





**Group Evolution Process** 

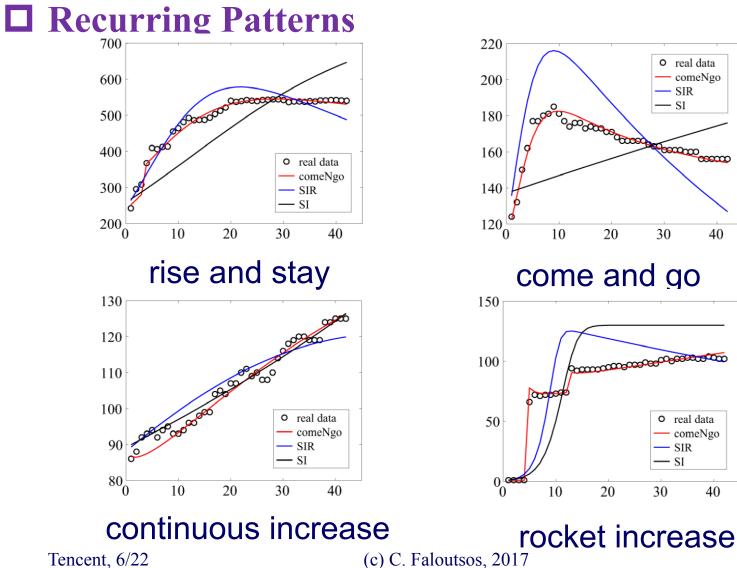
### **G1: Discover Patterns**

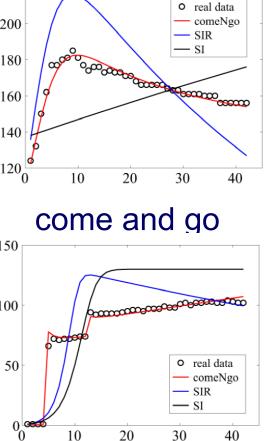
## Wechat Group dataset

- Largest social network in China
- Sample 100K social groups
- 42 days since established
- 15M records
  - Join / Quit log
  - Temporal information



### **G1: Discover Patterns**

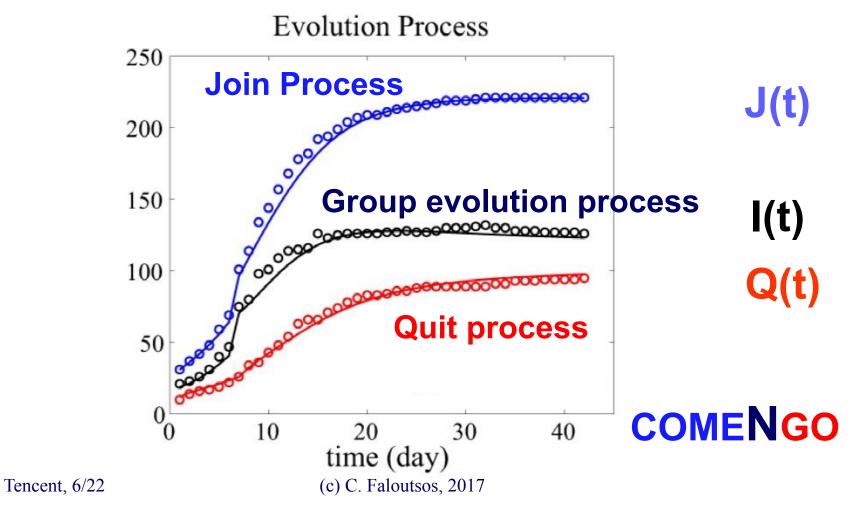




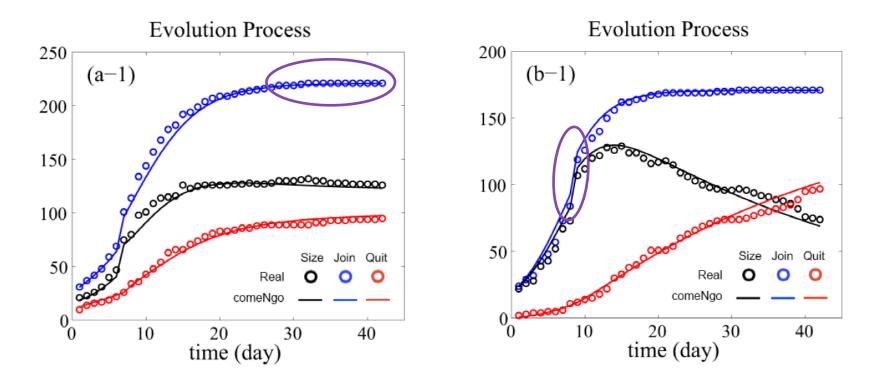
#### 88

### **G2: Reveal Mechanisms**

### **Join/quit logs**



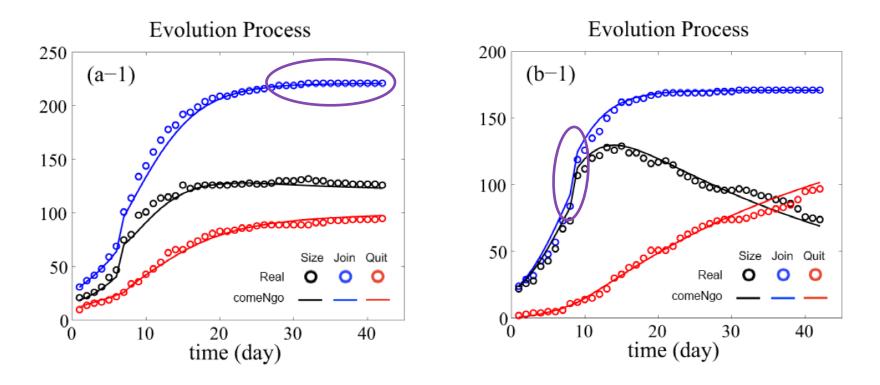
### **G2: Reveal Mechanisms**



• Q: Can we find (simple) equations, that can fit all these patterns (J(t), Q(t))?

Tencent, 6/22

### **G2: Reveal Mechanisms**

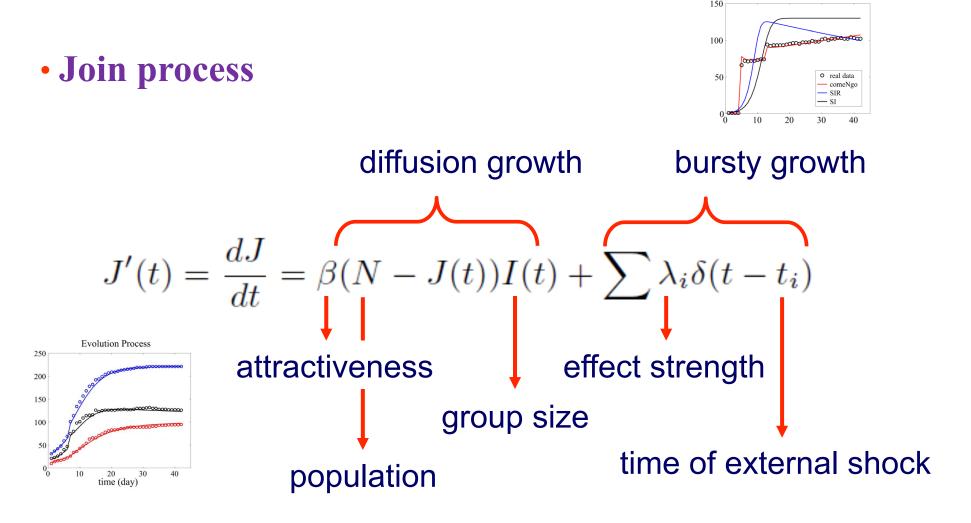


- Q: Can we find (simple) equations, that can fit all these patterns (J(t), Q(t))?
- A: Yes!

Tencent, 6/22

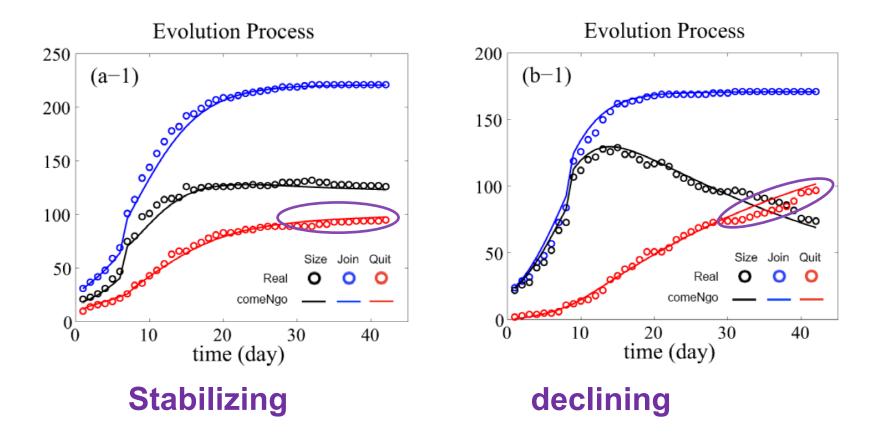


## G3-1: Dynamic Model – Join



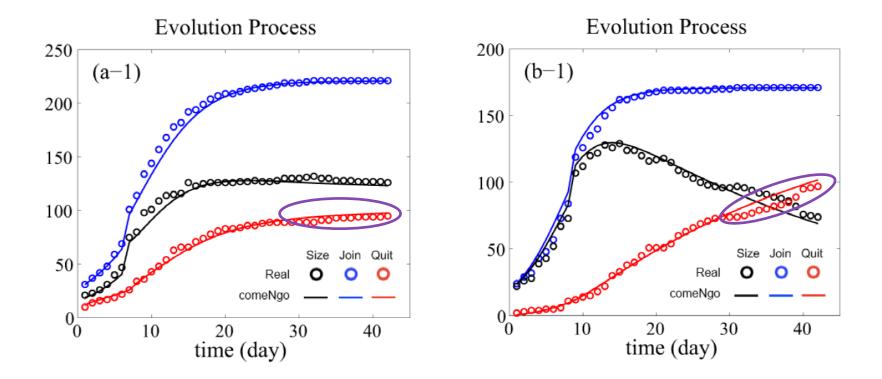
Details

## **G2-2: Reveal Mechanisms – Quit**



Details

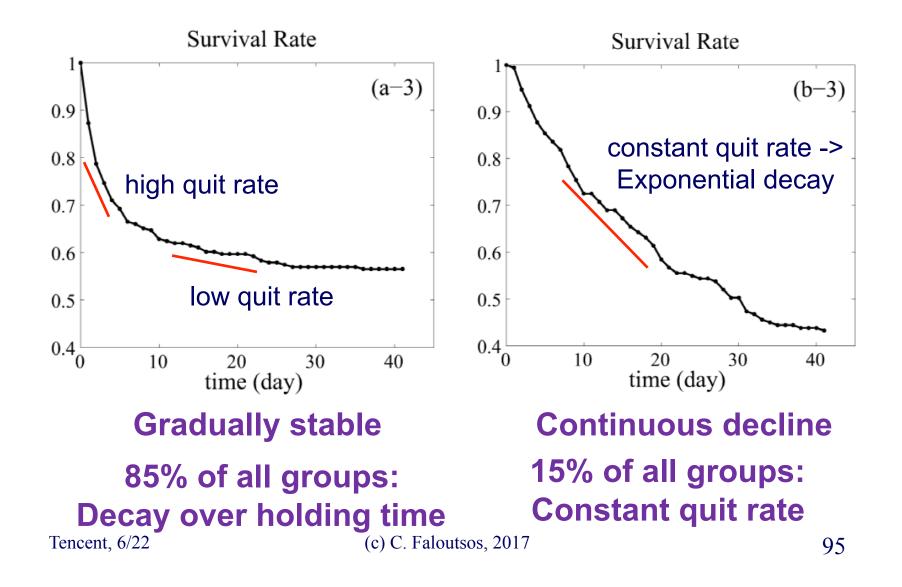
## G2-2: Reveal Mechanisms – Quit



## Q: Quitting: exponential ('half life' == SIR) ?

Tencent, 6/22

G2-2: Reveal Mechanisms – Quit Process





## G3-2: Dynamic Model – Quit Process

### **Quit process – Quit rate:**

$$\underline{\gamma(\tau)} = \gamma_0 \tau^{-\alpha}$$

 $\alpha$ =0, exact exponential distribution 0<  $\alpha$ <1, exponential like distribution  $\alpha$ >1, power-law distribution



## G3-2: Dynamic Model – Quit Process

### **Quit process**

- Quit rate may decrease over holding time  $\tau$
- Power-law or Exponential distributed holding time

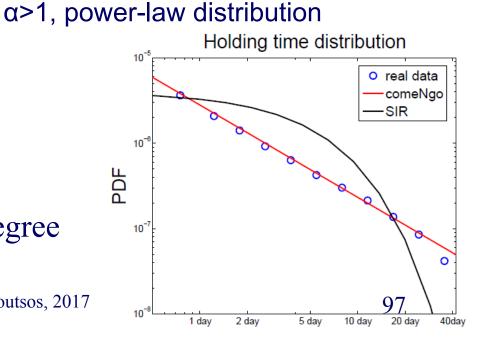
$$\gamma(\tau) = \gamma_0 \tau^{-\alpha} -$$

**Quit Rate** 

$$\underline{f(\tau)} = c\tau^{-\alpha} \exp(\frac{\gamma_0 \tau^{1-\alpha}}{\alpha - 1})$$

### p.d.f of holding time т

- $\gamma_0$ : short time satisfaction degree
- α: long time dependence Tencent, 6/22 (c) C. Faloutsos, 2017



 $\alpha$ =0, exact exponential distribution

 $0 < \alpha < 1$ , exponential like distribution

## G3: Dynamic Model - COMENGO

**J(t)** =? **Q(t)** =?

group size: 
$$I(t) = J(t) - Q(t)$$
  
join process:  $J'(t) = \frac{dJ}{dt} = \beta(N - J(t))I(t) + \sum \lambda_i \delta(t - t_i)$   
quit process:  $Q'(t) = \frac{dQ}{dt} = \int_0^t J'(x)f(t - x)dx$   
holding time:  $f(\tau) = c\tau^{-\alpha} \exp(\frac{\gamma_0 \tau^{1-\alpha}}{\alpha - 1})$ 

Tencent, 6/22

## G3: Dynamic Model - COMENGO

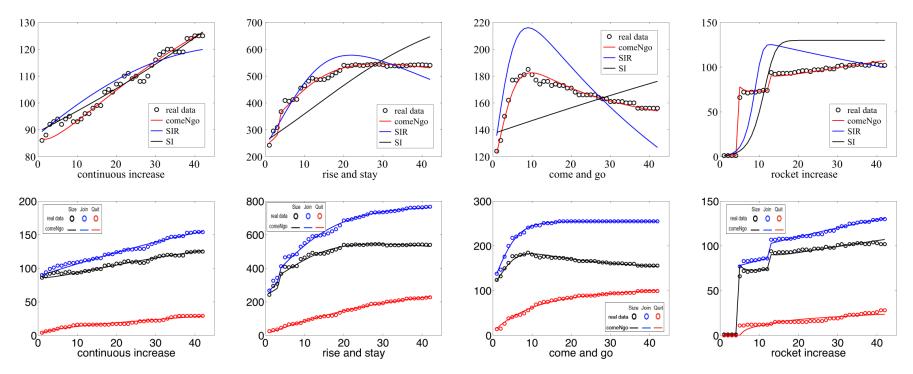
group size: 
$$I(t) = J(t) - Q(t)$$
  
join process:  $J'(t) = \frac{dJ}{dt} = \beta N - J(t) I(t) + \sum \lambda_i (t - t_i)$   
quit process:  $Q'(t) = \frac{dQ}{dt} = \int_0^t J'(x) f(t - x) dx$   
holding time:  $f(\tau) = c \tau^{-\alpha} \exp(\frac{\gamma 0}{\alpha - 1})$ 

Tencent, 6/22

Carnegie Mellon

### **Experiment – Fitting Accuracy**

# Fits all different patterns Fit both join & quit process



Tencent, 6/22

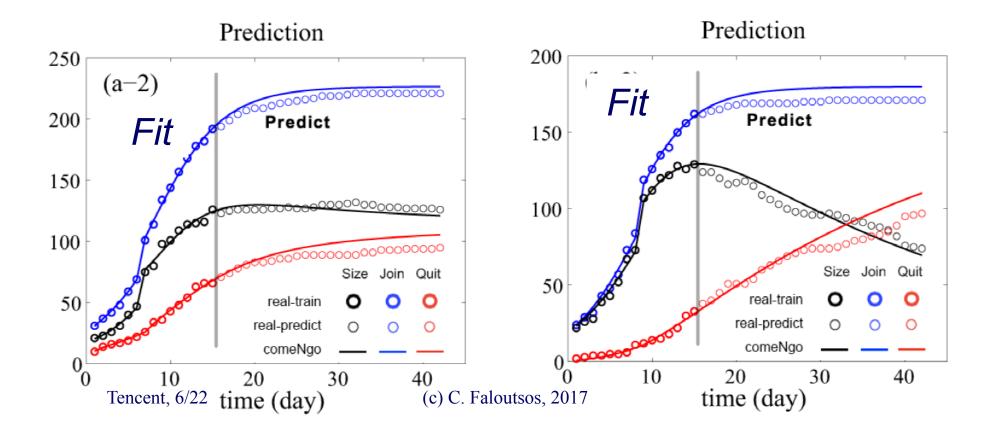
(c) C. Faloutsos, 2017

100

### **Experiment – Predicting Power**

### **Size prediction**

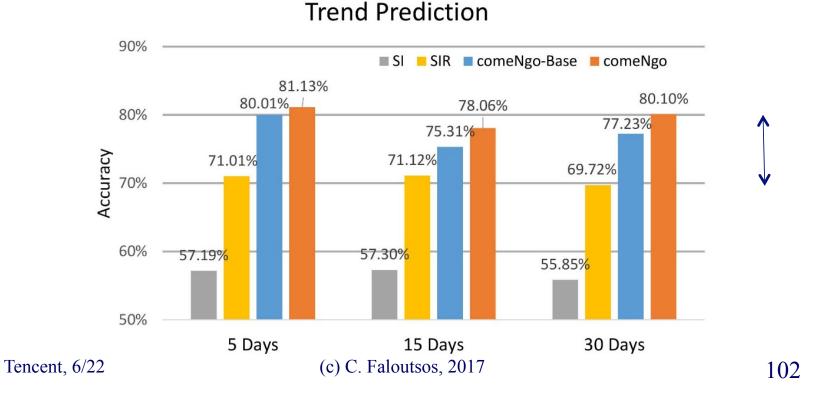
• Given early stage data, predict the group size in future



## **Experiment – Predicting Power**

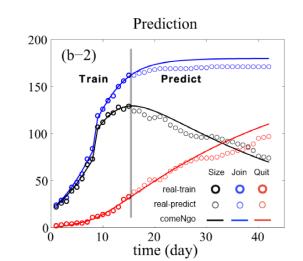
### **Trend prediction**

- Given early stage data, predict whether the group will grow
- 14.3% better accuracy

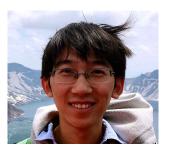


## Conclusions

✓ G1: Discover patterns
✓ G2: Reveal mechanisms
✓ G3: Novel unifying model
✓ Better accuracy
✓ predictive power

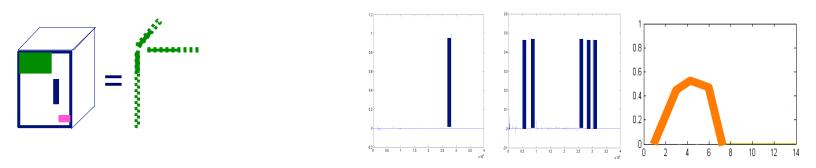


### Tianyang Zhang zhangty09@foxmail.com



## **Part 2: Conclusions**

- Time-evolving / heterogeneous graphs -> tensors
- PARAFAC finds patterns
- Surprising temporal patterns (P.L. growth, comeNgo group evolution)



## Roadmap

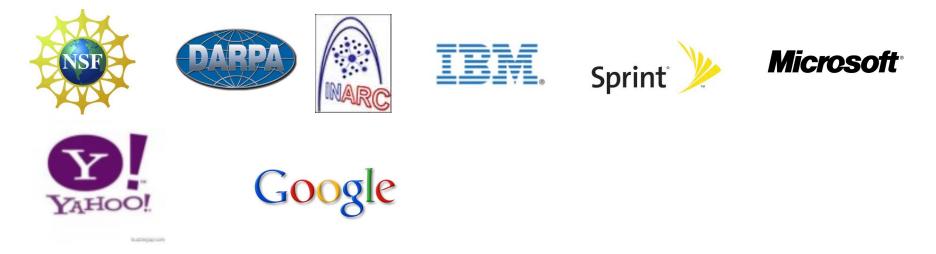
- Introduction Motivation
  - Why study (big) graphs?



- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Acknowledgements and Conclusions

**Carnegie Mellon** 

## Thanks



### Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

## Cast









Araujo, Miguel



Beutel, Alex







Eswaran,

Dhivya





Kang, U







Koutra, Papalexakis, Danai Vagelis



Shah,

Neil

Shin, Kijung



Song, Hyun Ah

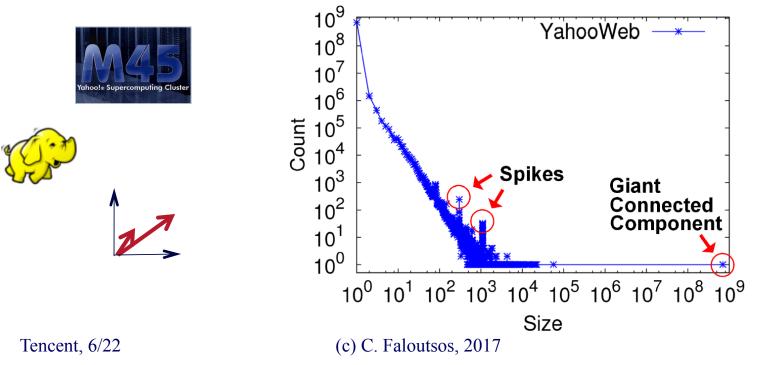
Tencent, 6/22

(c) C. Faloutsos, 2017

107

## **CONCLUSION#1 – Big data**

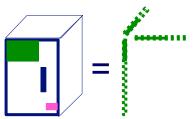
- Patterns X Anomalies
- Large datasets reveal patterns/outliers that are invisible otherwise

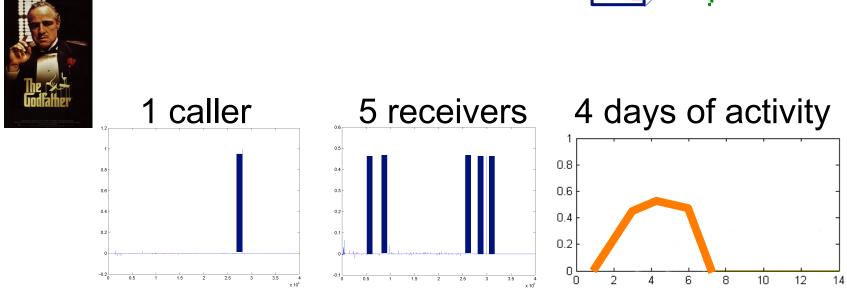


108

## **CONCLUSION#2 – tensors**

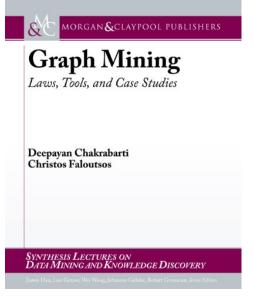
• powerful tool





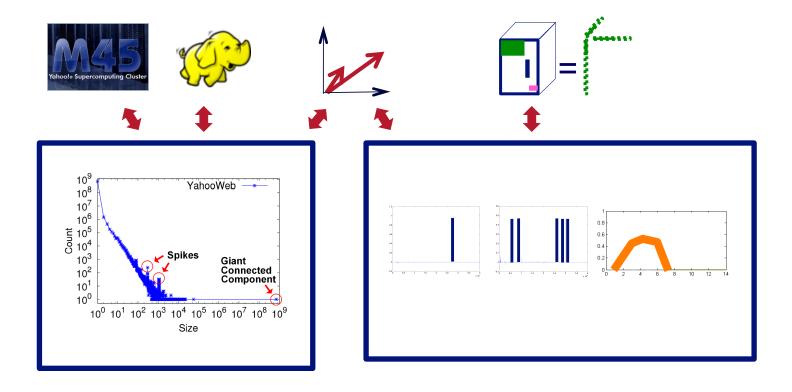
## References

- D. Chakrabarti, C. Faloutsos: Graph Mining Laws, Tools and Case Studies, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/10.2200/ S00449ED1V01Y201209DMK006



## **TAKE HOME MESSAGE:**

## **Cross-disciplinarity**



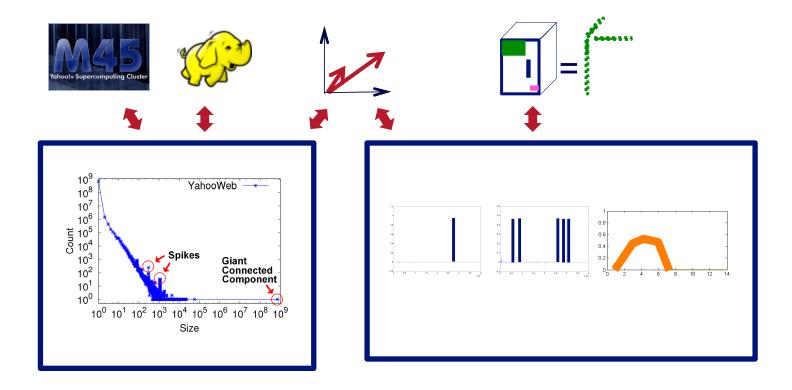
Tencent, 6/22

(c) C. Faloutsos, 2017

111

## Thank you!

## **Cross-disciplinarity**



www.cs.cmu.edu/~christos/TALKS/17-06-22-tencent/faloutsos\_tencent\_2017.pdf