Anomaly detection in large graphs

Christos Faloutsos

CMU
Thank you!

- Annette Jiang (IEEE)
- Evan Butterfield (IEEE)
- Lei Li
Roadmap

• Introduction – Motivation
 – Why study (big) graphs?
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
• Conclusions
Graphs - why should we care?

>$10B; ~1B users
Graphs - why should we care?

Internet Map
[lumeta.com]

Food Web
[Martinez ’91]
Graphs - why should we care?

- web-log (‘blog’) news propagation
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems
-

- Many-to-many db relationship -> graph
Motivating problems

- P1: patterns? Fraud detection?

- P2: patterns in time-evolving graphs / tensors
Motivating problems

• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs / tensors
Roadmap

• Introduction – Motivation
 – Why study (big) graphs?
• Part#1: Patterns & fraud detection
• Part#2: time-evolving graphs; tensors
• Conclusions
Part 1: Patterns, & fraud detection
Laws and patterns

• Q1: Are real graphs random?
Laws and patterns

• Q1: Are real graphs random?
• A1: NO!!
 – Diameter (‘6 degrees’; ‘Kevin Bacon’)
 – in- and out- degree distributions
 – other (surprising) patterns
• So, let’s look at the data
Solution# S.1

- Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains

log(degree)

log(rank)

Toutiao/Byte-Dance (c) C. Faloutsos, 2017
Solution# S.1

- Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

\[
\log(\text{rank}) = \log(\text{degree}) - 0.82
\]

internet domains

- att.com
- ibm.com

Toutiao/Byte-Dance (c) C. Faloutsos, 2017
S2: connected component sizes

- Connected Components – 4 observations:

1.4B nodes
6B edges
S2: connected component sizes

- Connected Components

![Graph showing connected component sizes](image)

- 1) 10K x larger than next
S2: connected component sizes

• Connected Components

Count

2) ~0.7B singleton nodes

YahooWeb

Giant Connected Component

Size
S2: connected component sizes

- Connected Components

Count

3) SLOPE!
S2: connected component sizes

- **Connected Components**

4) Spikes!
S2: connected component sizes

- Connected Components

![Graph showing the size distribution of connected components with a log-log scale. The graph highlights the count of components versus their size. It indicates a giant connected component and suspicious financial-advice sites (not existing now).]
Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
 – P1.1: Patterns: Degree; Triangles
 – P1.2: Anomaly/fraud detection
• Part#2: time-evolving graphs; tensors
• Conclusions
Solution# S.3: Triangle ‘Laws’

- Real social networks have a lot of triangles
Solution# S.3: Triangle ‘Laws’

• Real social networks have a lot of triangles
 – Friends of friends are friends
• Any patterns?
 – 2x the friends, 2x the triangles?
Triangle Law: #S.3
[Tsourakakis ICDM 2008]

X-axis: degree
Y-axis: mean # triangles

n friends $\rightarrow \sim n^{1.6}$ triangles
Anomalous nodes in Twitter (~ 3 billion edges)

[U Kang, Brendan Meeder, +, PAKDD’11]
Triangle counting for large graphs?

Anomalous nodes in Twitter (~3 billion edges)

[U Kang, Brendan Meeder, +, PAKDD’11]
Triangle counting for large graphs?

Anomalous nodes in Twitter (~ 3 billion edges)

[U Kang, Brendan Meeder, +, PAKDD’11]
Triangle counting for large graphs?

Anomalous nodes in Twitter (~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
Triangle counting for large graphs?

Anomalous nodes in Twitter (~ 3 billion edges)

[U Kang, Brendan Meeder, +, PAKDD’11]
S4: k-core patterns - dfn

- **k-core** (of a graph)
- **degeneracy** (of a graph)
- **coreness** (of a vertex)
CoreScope: Graph Mining Using k-Core Analysis - Patterns, Anomalies, and Algorithms

ICDM’16 (to appear)

Kijung Shin, Tina Eliassi-Rad and CF
Mirror Pattern: Observation

– coreness (of a vertex): maximum k such that the vertex belongs to the k-core
– Definition: [Mirror Pattern] $\text{degree} \sim \text{coreness}$
Mirror Pattern: Application

- Exceptions are ‘strange’
MORE Graph Patterns

<table>
<thead>
<tr>
<th>Unweighted</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️ 2. Triangle Power Law (TPL) [Tsourakakis '08]</td>
<td></td>
</tr>
<tr>
<td>✔️ 3. Eigenvalue Power Law (EPL) [Siganos et al. '03]</td>
<td></td>
</tr>
<tr>
<td>✔️ 4. Community structure [Flake et al. ‘02, Girvan and Newman ‘02]</td>
<td></td>
</tr>
</tbody>
</table>

Static

L05. Densification Power Law (DPL) [Leskovec et al. ‘05]	**L11.** Weight Power Law (WPL) [McGlohon et al. ‘08]
L06. Small and shrinking diameter [Albert and Barabási ‘99, Leskovec et al. ‘05]	
L07. Constant size 2nd and 3rd connected components [McGlohon et al. ‘08]	
L08. Principal Eigenvalue Power Law (λ₁PL) [Akoglu et al. ‘08]	
L09. Bursty/self-similar edge/weight additions [Gomez and Santonja ‘98, Gribble et al. ‘98, Crovella and	

RTG: A Recursive Realistic Graph Generator using Random Typing

Leman Akoglu and Christos Faloutsos. *PKDD’09.*
MORE Graph Patterns

<table>
<thead>
<tr>
<th>Unweighted</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS2. Triangle Power Law (TPL) [Touegarakis '08]</td>
<td></td>
</tr>
<tr>
<td>LS3. Eigenvalue Power Law (EPL) [Eigros et al. '03]</td>
<td>LS2. Weight Power Law (WPL) [McGlohon et al. '08]</td>
</tr>
<tr>
<td>LS4. Community structure [Blake et al. '02, Girvan and Newman '02]</td>
<td></td>
</tr>
</tbody>
</table>

Dynamic

LS5. Densification Power Law (DPL) [Leskovec et al. '09]	LS2. Weight Power Law (WPL) [McGlohon et al. '08]
LS6. Small and shrinking diameter [Albert and Barabási '99, Leskovec et al. '05]	
LS7. Constant size 2nd and 3rd connected components [McGlohon et al. '08]	
LS8. Principal Eigenvector Power Law (AEPL) [Akoglu et al. '08]	

• Mary McGlohon, Leman Akoglu, Christos Faloutsos. *Statistical Properties of Social Networks*. in "Social Network Data Analytics" (Ed.: Charu Aggarwal)

Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
 – P1.1: Patterns
 – P1.2: Anomaly / fraud detection
 • No labels – spectral
 • With labels: Belief Propagation
• Part#2: time-evolving graphs; tensors
• Conclusions
How to find ‘suspicious’ groups?

- ‘blocks’ are normal, right?
Except that:

• ‘blocks’ are normal, right?
• ‘hyperbolic’ communities are more realistic
 [Araujo+, PKDD’14]
Except that:

- ‘blocks’ are usually suspicious
- ‘hyperbolic’ communities are more realistic [Araujo+, PKDD’14]

Q: Can we spot blocks, easily?
Except that:

- ‘blocks’ are usually suspicious
- ‘hyperbolic’ communities are more realistic [Araujo+, PKDD’14]

Q: Can we spot blocks, easily?
A: Silver bullet: SVD!
Crush intro to SVD

- Recall: (SVD) matrix factorization: finds blocks

\[\mathbf{U} \mathbf{S} \mathbf{V}^T \]

\[\mathbf{U}_1 \]

\[\mathbf{V}_1 \]

\[\mathbf{U}_i \]

\[\mathbf{S} \]

\[\mathbf{M} \text{ idols} \]

\[\mathbf{N} \text{ fans} \]

\['music lovers' 'sports lovers' 'citizens' 'singers' 'athletes' 'politicians' \]

Toutiao/Byte-Dance

(c) C. Faloutsos, 2017
Crush intro to SVD

- Recall: (SVD) matrix factorization: finds blocks
Inferring Strange Behavior from Connectivity Pattern in Social Networks

PAKDD’14

Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua)
Alex Beutel, Christos Faloutsos (CMU)
Lockstep and Spectral Subspace Plot

• Case #0: No lockstep behavior in random power law graph of 1M nodes, 3M edges
• Random → “Scatter”
Lockstep and Spectral Subspace Plot

- Case #1: non-overlapping lockstep
- “Blocks” — “Rays”

Adjacency Matrix

Spectral Subspace Plot

Rule 1 (short “rays”): two blocks, high density (90%), no “camouflage”, no “fame”

Toutiao/Byte-Dance

(c) C. Faloutsos, 2017
Lockstep and Spectral Subspace Plot

- Case #2: non-overlapping lockstep
- “Blocks; low density” \(\rightarrow\) Elongation

Adjacency Matrix

Spectral Subspace Plot

Rule 2 (long “rays”): two blocks, low density (50%), no “camouflage”, no “fame”

Toutiao/Byte-Dance

(c) C. Faloutsos, 2017
Lockstep and Spectral Subspace Plot

• Case #3: non-overlapping lockstep
• “Camouflage” (or “Fame”) ←→ Tilting “Rays”

Adjacency Matrix Spectral Subspace Plot

Rule 3 (tilting “rays”): two blocks, with “camouflage”, no “fame”

(c) C. Faloutsos, 2017
Lockstep and Spectral Subspace Plot

• Case #3: non-overlapping lockstep
• “Camouflage” (or “Fame”) \(\leftrightarrow \) Tilting

“Rays”

Adjacency Matrix

Spectral Subspace Plot

Rule 3 (tilting “rays”): two blocks, no “camouflage”, with “fame”

Lockstep and Spectral Subspace Plot

- Case #4: lockstep
- “?” “Pearls”

 Adjacency Matrix

 Spectral Subspace Plot

Toutiao/Byte-Dance

(c) C. Faloutsos, 2017
Lockstep and Spectral Subspace Plot

- Case #4: **overlapping** lockstep
- “Staircase” — “Pearls”

Rule 4 ("pearls"): a “staircase” of three partially overlapping blocks.
Dataset

- Tencent Weibo
- 117 million nodes (with profile and UGC data)
- 3.33 billion directed edges
Real Data

“Rays”

“Pearls”

“Block”

“Staircase”
Real Data

• Spikes on the out-degree distribution
Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
 – P1.1: Patterns
 – P1.2: Anomaly / fraud detection
 • No labels – spectral methods
 – Suspiciousness
 • With labels: Belief Propagation
• Part#2: time-evolving graphs; tensors
• Conclusions
A General Suspiciousness Metric for Dense Blocks in Multimodal Data, Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos Faloutsos, *ICDM*, 2015.
Suspicious Patterns in Event Data

Which is more suspicious?

20,000 Users
Retweeting same 20 tweets
6 times each
All in 10 hours

vs.

225 Users
Retweeting same 1 tweet
15 times each
All in 3 hours
All from 2 IP addresses

Toutiao/Byte-Dance

(c) C. Faloutsos, 2017
Suspicious Patterns in Event Data

Which is more suspicious?

20,000 Users
Retweeting same 20 tweets
6 times each
All in 10 hours

225 Users
Retweeting same 1 tweet
15 times each
All in 3 hours
All from 2 IP addresses

Answer: volume $\times D_{KL}(p||p_{background})$
Suspicious Patterns in Event Data

Which is more suspicious?

20,000 Users
Retweeting same 20 tweets
6 times each
All in 10 hours

vs.

225 Users
Retweeting same 1 tweet
15 times each
All in 3 hours
All from 2 IP addresses

Answer: volume * $D_{KL}(p || p_{background})$
Suspicious Patterns in Event Data

Retweeting: “Galaxy Note Dream Project: Happy Happy Life Traveling the World”

<table>
<thead>
<tr>
<th>#</th>
<th>User \times tweet \times IP \times minute</th>
<th>Mass c</th>
<th>Suspiciousness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14 \times 1 \times 2 \times 1,114</td>
<td>41,396</td>
<td>1,239,865</td>
</tr>
<tr>
<td>2</td>
<td>225 \times 1 \times 2 \times 200</td>
<td>27,313</td>
<td>777,781</td>
</tr>
<tr>
<td>3</td>
<td>8 \times 2 \times 4 \times 1,872</td>
<td>17,701</td>
<td>491,323</td>
</tr>
</tbody>
</table>

CROSSSPOT

<table>
<thead>
<tr>
<th>#</th>
<th>User \times tweet \times IP \times minute</th>
<th>Mass c</th>
<th>Suspiciousness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24 \times 6 \times 11 \times 439</td>
<td>3,582</td>
<td>131,113</td>
</tr>
<tr>
<td>2</td>
<td>18 \times 4 \times 5 \times 223</td>
<td>1,942</td>
<td>74,087</td>
</tr>
<tr>
<td>3</td>
<td>14 \times 2 \times 1 \times 265</td>
<td>9,061</td>
<td>381,211</td>
</tr>
</tbody>
</table>

HOSVD

(c) C. Faloutsos, 2017
Roadmap

• Introduction – Motivation

• Part#1: Patterns in graphs
 – P1.1: Patterns
 – P1.2: Anomaly / fraud detection
 • No labels – spectral methods
 • With labels: Belief Propagation

• Part#2: time-evolving graphs; tensors

• Conclusions
E-bay Fraud detection

w/ Polo Chau & Shashank Pandit, CMU
[www’07]
E-bay Fraud detection
E-bay Fraud detection
E-bay Fraud detection - NetProbe
Popular press

And less desirable attention:

- E-mail from ‘Belgium police’ (‘copy of your code?’)
Roadmap

• Introduction – Motivation

• Part#1: Patterns in graphs
 – Patterns
 – Anomaly / fraud detection
 • No labels - Spectral methods
 • w/ labels: Belief Propagation – closed formulas

• Part#2: time-evolving graphs; tensors

• Conclusions
Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms

Danai Koutra
U Kang
Hsing-Kuo Kenneth Pao

Tai-You Ke
Duen Horng (Polo) Chau
Christos Faloutsos

ECML PKDD, 5-9 September 2011, Athens, Greece
Problem Definition:
GBA techniques

Given: Graph; & few labeled nodes
Find: labels of rest (assuming network effects)
Are they related?

- **RWR (Random Walk with Restarts)**
 - google’s pageRank (‘if my friends are important, I’m important, too’)
- **SSL (Semi-supervised learning)**
 - minimize the differences among neighbors
- **BP (Belief propagation)**
 - send messages to neighbors, on what you believe about them
Are they related? YES!

- **RWR (Random Walk with Restarts)**
 - google’s pageRank (*if my friends are important, I’m important, too*)
- **SSL (Semi-supervised learning)**
 - minimize the differences among neighbors
- **BP (Belief propagation)**
 - send messages to neighbors, on what you believe about them
Correspondence of Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Matrix</th>
<th>Unknown</th>
<th>known</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWR</td>
<td>([I - c AD^{-1}])</td>
<td>(x)</td>
<td>((1-c)y)</td>
</tr>
<tr>
<td>SSL</td>
<td>([I + a(D - A)])</td>
<td>(x)</td>
<td>(y)</td>
</tr>
<tr>
<td>FABP</td>
<td>([I + a D - c'A])</td>
<td>(b_h)</td>
<td>(\phi_h)</td>
</tr>
</tbody>
</table>

adjacency matrix

final labels/beliefs

prior labels/beliefs
Results: Scalability

FABP is \textbf{linear} on the number of edges.
Problem: e-commerce ratings fraud

• Given a heterogeneous graph on users, products, sellers and positive/negative ratings with “seed labels”

• Find the top k most fraudulent users, products and sellers
Problem: e-commerce ratings fraud

- **Given** a heterogeneous graph on users, products, sellers and positive/negative ratings with “seed labels”
- **Find** the top k most fraudulent users, products and sellers

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, “ZooBP: Belief Propagation for Heterogeneous Networks”, In submission to VLDB 2017
Problem: e-commerce ratings fraud

Theorem 1 (ZooBP). If \(b, e, P, Q \) are constructed as described above, the linear equation system approximating the final node beliefs given by BP is:

\[
b = e + (P - Q)b \quad \text{(ZooBP) (10)}
\]

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, “ZooBP: Belief Propagation for Heterogeneous Networks”, In submission to VLDB 2017
ZooBP: features

Fast; convergence guarantees.

Near-perfect accuracy

linear in graph size

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, “ZooBP: Belief Propagation for Heterogeneous Networks”, In submission to VLDB 2017
ZooBP in the real world

- Near 100% precision on top 300 users (Flipkart)
- Flagged users: suspicious
 - 400 ratings in 1 sec
 - 5000 good ratings and no bad ratings

Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, “ZooBP: Belief Propagation for Heterogeneous Networks”, In submission to VLDB 2017
Summary of Part#1

• *many* patterns in real graphs
 – Power-laws everywhere
 – Long (and growing) list of tools for anomaly/fraud detection

Patterns ↔ anomalies
Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: Time-evolving graphs
 – P2.1: tools/tensors
 – P2.2: Other patterns
• Conclusions
Part 2: Time evolving graphs; tensors
Graphs over time -> tensors!

• Problem #2.1:
 – Given who calls whom, and when
 – Find patterns / anomalies
Graphs over time \(-\rightarrow\) tensors!

• Problem #2.1:
 – Given who calls whom, and when
 – Find patterns / anomalies
Graphs over time -> tensors!

• Problem #2.1:
 – Given who calls whom, and when
 – Find patterns / anomalies
Graphs over time -> tensors!

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

![Diagram of a 3D tensor with axes labeled caller, callee, and time]
Graphs over time -> tensors!

• Problem #2.1’:
 – Given author-keyword-date
 – Find patterns / anomalies

MANY more settings, with >2 ‘modes’
Graphs over time -> tensors!

- Problem #2.1’’:
 - Given subject – verb – object facts
 - Find patterns / anomalies

MANY more settings, with >2 ‘modes’
Graphs over time -> tensors!

• Problem #2.1’’’:
 – Given <triplets>
 – Find patterns / anomalies

MANY more settings, with >2 ‘modes’
(and 4, 5, etc modes)
Answer: tensor factorization

- Recall: (SVD) matrix factorization: finds blocks

N
users

M
products

~

\(\mathbf{u}_1 \)

\(\mathbf{v}_1 \)

‘meat-eaters’ ‘vegetarians’ ‘kids’
‘steaks’ ‘plants’ ‘cookies’

(c) C. Faloutsos, 2017
Crush intro to SVD

• Recall: (SVD) matrix factorization: finds blocks

N fans

M idols

‘music lovers’ ‘sports lovers’ ‘citizens’

‘singers’ ‘athletes’ ‘politicians’

\(\mathbf{U} \)

\(\mathbf{V} \)

Toutiao/Byte-Dance

(c) C. Faloutsos, 2017
Answer: tensor factorization

• PARAFAC decomposition

Toutiao/Byte-Dance (c) C. Faloutsos, 2017
Answer: tensor factorization

- PARAFAC decomposition
- Results for who-calls-whom-when
 - 4M x 15 days
Anomaly detection in time-evolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!
Anomalous communities in phone call data:
- European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!
Anomaly detection in time-evolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs
 – P2.1: tools/tensors
 – P2.2: other patterns – inter-arrival time
• Conclusions
KDD 2015 – Sydney, Australia

RSC: Mining and Modeling Temporal Activity in Social Media

Alceu F. Costa* Yuto Yamaguchi Agma J. M. Traina
Caetano Traina Jr. Christos Faloutsos

*alceufc@icmc.usp.br
Pattern Mining: Datasets

Reddit Dataset
Time-stamp from comments
21,198 users
20 Million time-stamps

Twitter Dataset
Time-stamp from tweets
6,790 users
16 Million time-stamps

For each user we have:
Sequence of postings time-stamps: $T = (t_1, t_2, t_3, \ldots)$
Inter-arrival times (IAT) of postings: $(\Delta_1, \Delta_2, \Delta_3, \ldots)$
Pattern 1: Distribution of IAT is heavy-tailed
Users can be inactive for long periods of time before making new postings

IAT Complementary Cumulative Distribution Function (CCDF) (log-log axis)

Reddit Users

Twitter Users

(c) C. Faloutsos, 2017
Pattern Mining

Pattern 1: Distribution of IAT is heavy-tailed
Users can be inactive for long periods of time before making new postings

No surprises – Should we give up?

IAT Complementary Cumulative Distribution Function (CCDF)

Reddit Users

<table>
<thead>
<tr>
<th>IAT (seconds)</th>
<th>CCDF, $P(x \geq \Delta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 day</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>10 days</td>
<td>10^{-6}</td>
</tr>
</tbody>
</table>

Twitter Users

<table>
<thead>
<tr>
<th>IAT (seconds)</th>
<th>CCDF, $P(x \geq \Delta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 day</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>10 days</td>
<td>10^{-6}</td>
</tr>
</tbody>
</table>

Toutiao/Byte-Dance (c) C. Faloutsos, 2017
Human? Robots?

linear

log

PDF

PDF
Human? Robots?

2' 3h 1day

linear

log
Experiments: Can RSC-Spotter Detect Bots?

Precision vs. Sensitivity Curves

Good performance: curve close to the top

Twitter

Precision > 94%
Sensitivity > 70%

With strongly imbalanced datasets
humans >> # bots

(c) C. Faloutsos, 2017
Experiments: Can RSC-Spotter Detect Bots?

Precision vs. Sensitivity Curves

Good performance: curve close to the top

Reddit

Precision > 96%
Sensitivity > 47%

With strongly imbalanced datasets
humans >> # bots

(c) C. Faloutsos, 2017
Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs
 – P2.1: tools/tensors
 – P2.2: other patterns
 • inter-arrival time
 • Network growth
• Conclusions
Beyond Sigmoids: the NetTide Model for Social Network Growth and its Applications

KDD’16

Chengxi Zang, Peng Cui, CF
PROBLEM: n(t) and e(t), over time?

- **n(t)**: the number of nodes.
- **e(t)**: the number of edges.
- **E.g.:**
 - How many members will have next month?
 - How many friendship links will have next year?

- Linear?
- Exponential?
- Sigmoid?
Datasets

- **WeChat** 2011/1-2013/1 300M nodes, 4.75B links
- **ArXiv** 1992/3-2002/3 17k nodes, 2.4M links
- **Enron** 1998/1-2002/7 86K nodes, 600K links
- **Weibo** 2006 165K nodes, 331K links
A: Power Law Growth

Cumulative growth (Log-Log scale)
Proposed: NetTide Model

- **Nodes** $n(t)$
 \[
 \frac{dn(t)}{dt} = \frac{\beta}{\theta} n(t) (N - n(t))
 \]

- **Links** $e(t)$
 \[
 \frac{de(t)}{dt} = \frac{\beta'}{\theta} n(t) \left(\alpha (n(t) - 1)^\gamma - \frac{e(t)}{n(t)} \right) + 2 \frac{dn(t)}{dt}
 \]
NetTide-Node Model

\[\frac{dn(t)}{dt} = \frac{\beta}{t^\theta} n(t) \left(N - n(t)\right) \]

- **Intuition:**
 - **Rich-get-richer**
 - **Limitation**
 - **Fizzling nature**
NetTide-Node Model

\[
\frac{dn(t)}{dt} = \frac{\beta}{t^\theta} n(t) (N - n(t))
\]

- **Intuition:**
 - Rich-get-richer
 - **Limitation**
 - Fizzling nature

\[
\text{Total population} = \text{SI; ~Bass}
\]

\#nodes(t)
NetTide-Node Model

\[
\frac{dn(t)}{dt} = \frac{\beta}{t^\theta} n(t) (N - n(t))
\]

- **Intuition:**
 - Rich-get-richer
 - Limitation
 - Fizzling nature

- Total population
- \#nodes(t)

= SI; \sim Bass
Results: Accuracy
Results: Accuracy
Results: Accuracy

![Graph showing accuracy results for arXiv datasets.](image)

- **Graph 1**: Comparison of real node and link counts with NT-Node and NT-Link predictions over time (days).
 - Real Node: □
 - Real Link: ○
 - NT-Node: -
 - NT-Link: —
- **Graph 2**: Log-log plot of #Links vs. #Nodes with a slope of 1.74 for NetTide.
Results: Accuracy

[Graph showing the growth of network size over time with comparison to real and simulated nodes and links.]
Results: Accuracy

![Graphs showing the accuracy of different models over time and node counts.]

- Left graph: Weibo, showing the number of nodes over time with different markers for real nodes, real links, NT-node, and NT-link.
- Right graph: Weibo, showing the number of links versus node counts with a linear relationship indicated by a slope of 1.00.
Results: Forecast

WeChat from 100 million to 300 million

730 days ahead
Part 2: Conclusions

- Time-evolving / heterogeneous graphs -> tensors
- PARAFAC finds patterns
- Surprising temporal patterns (P.L. growth)
Roadmap

• Introduction – Motivation
 – Why study (big) graphs?
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
• Acknowledgements and Conclusions
Thanks

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab
Cast

Akoglu, Leman
Araujo, Miguel
Beutel, Alex
Chau, Polo
Eswaran, Dhivya
Hooi, Bryan
Kang, U
Koutra, Danai
Papalexakis, Vagelis
Shah, Neil
Shin, Kijung
Song, Hyun Ah

(c) C. Faloutsos, 2017
CONCLUSION#1 – Big data

- **Patterns & Anomalies**
- **Large** datasets reveal patterns/outliers that are invisible otherwise

Toutiao/Byte-Dance
CONCLUSION#2 – tensors

- powerful tool

Toutiao/Byte-Dance =

1 caller

5 receivers

4 days of activity
References

• D. Chakrabarti, C. Faloutsos: Graph Mining – Laws, Tools and Case Studies, Morgan Claypool 2012
• http://www.morganclaypool.com/doi/abs/10.2200/S00449ED1V01Y201209DMK006
TAKE HOME MESSAGE:

Cross-disciplinarity
Thank you!

Cross-disciplinarity