

Anomaly detection in large graphs

Christos Faloutsos
CMU

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

Conclusions

Graphs - why should we care?

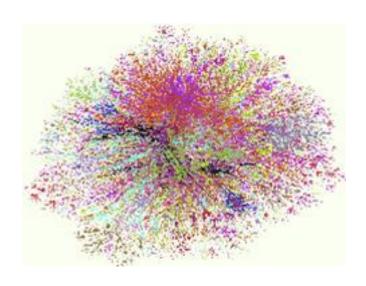
>\$10B; ~1B users

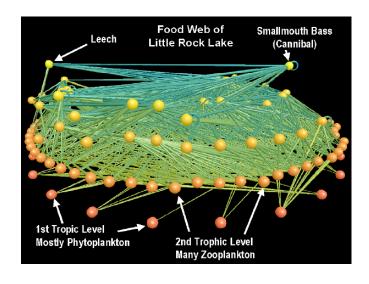
May 22, 2017

(c) C. Faloutsos, 2017

3

Graphs - why should we care?





Internet Map [lumeta.com]

Food Web [Martinez '91]

Graphs - why should we care?

- web-log ('blog') news propagation YAHOO! вьос
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems

•

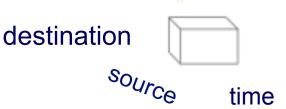
Many-to-many db relationship -> graph

Motivating problems

• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs /

tensors



Motivating problems

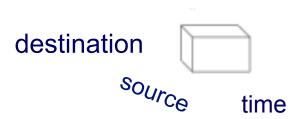
• P1: patterns? Fraud detection?

tensors

Motivating problems

• P1: patterns? Fraud detection?

tensors



* Robust Random Cut Forest Based Anomaly Detection on Streams Sudipto Guha, Nina Mishra, Gourav Roy, Okke Schrijvers, ICML'16

Roadmap

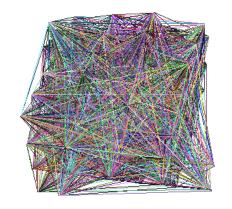
- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns & fraud detection
- Part#2: time-evolving graphs; tensors
- Conclusions

Part 1: Patterns, & fraud detection

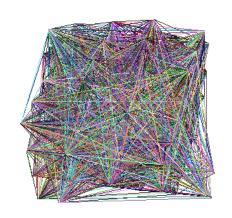
Laws and patterns

• Q1: Are real graphs random?



Laws and patterns

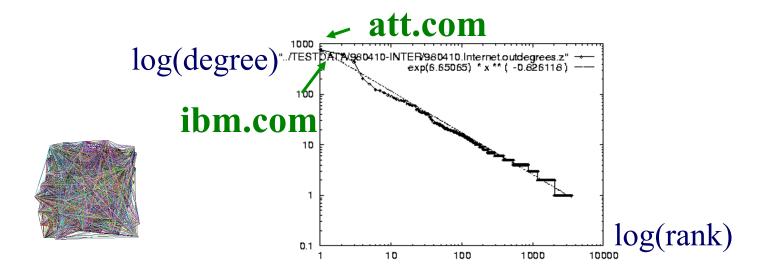
- Q1: Are real graphs random?
- A1: NO!!
 - Diameter ('6 degrees'; 'Kevin Bacon')
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data



Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

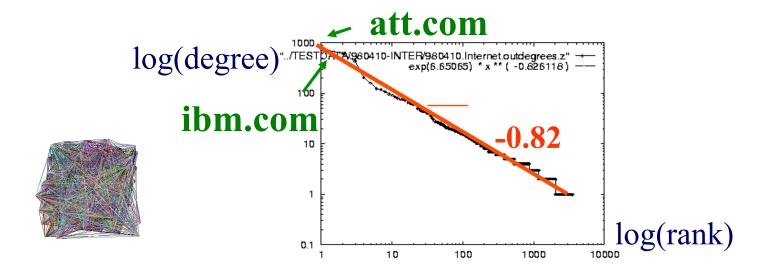
internet domains



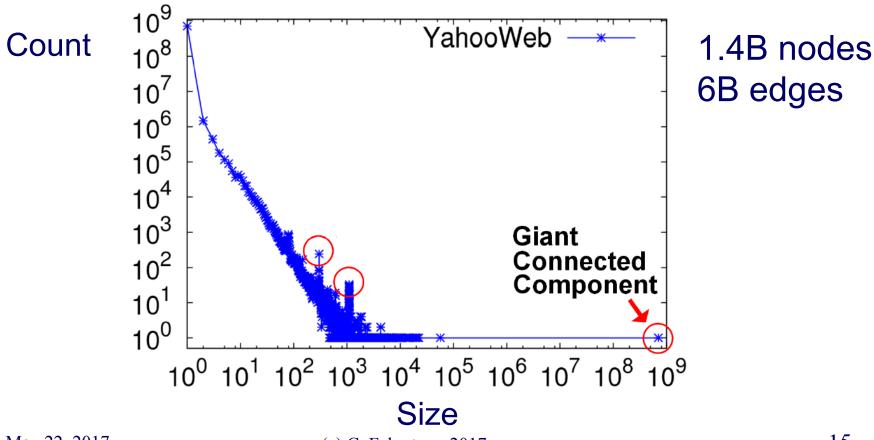
Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

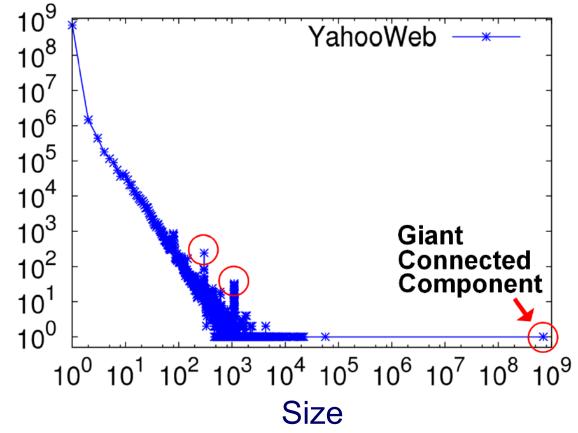
internet domains



• Connected Components – 4 observations:



Connected Components

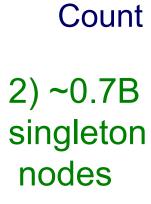


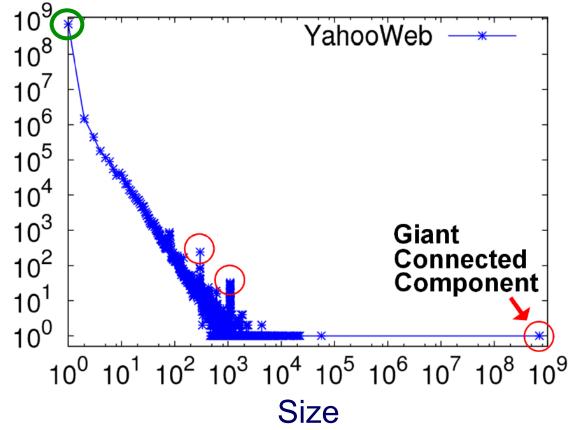
1) 10K x larger than next

May 22, 2017

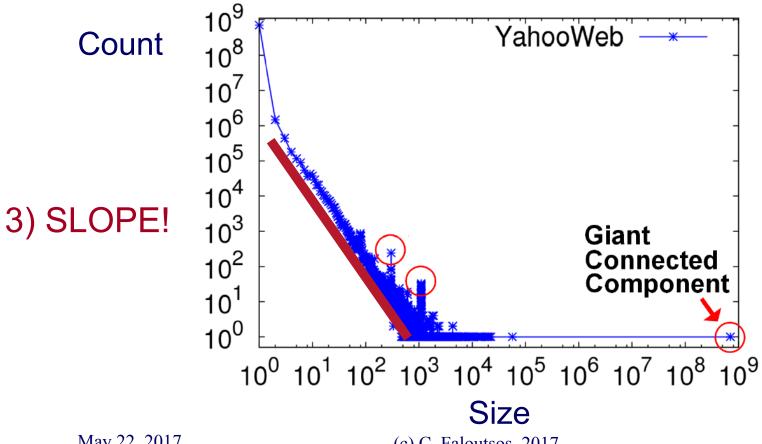
(c) C. Faloutsos, 2017

Connected Components

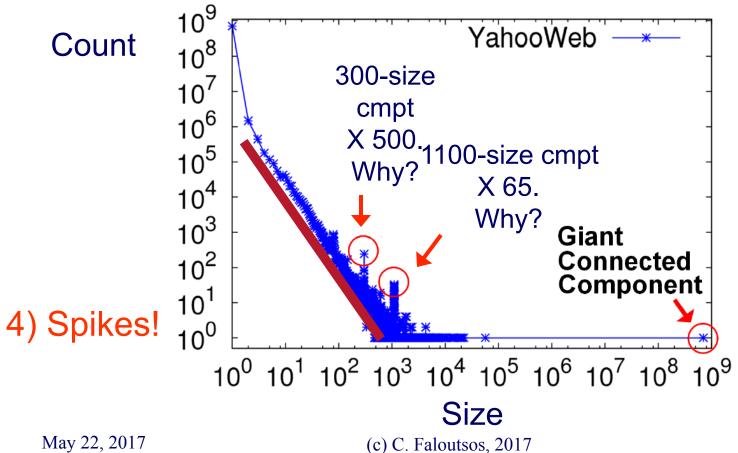




Connected Components

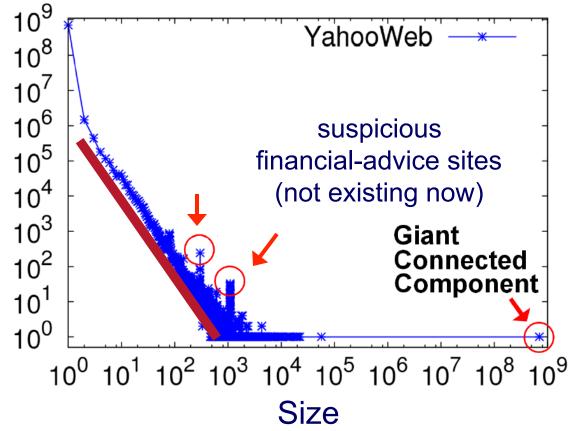


Connected Components



19 (c) C. Faloutsos, 2017

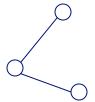
Connected Components



Roadmap

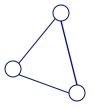
- Introduction Motivation
- Part#1: Patterns in graphs
- P1.1: Patterns: Degree; Triangles
- P1.2: Anomaly/fraud detection
- Part#2: time-evolving graphs; tensors
- Conclusions

Solution# S.3: Triangle 'Laws'

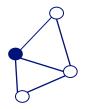


Real social networks have a lot of triangles

Solution# S.3: Triangle 'Laws'

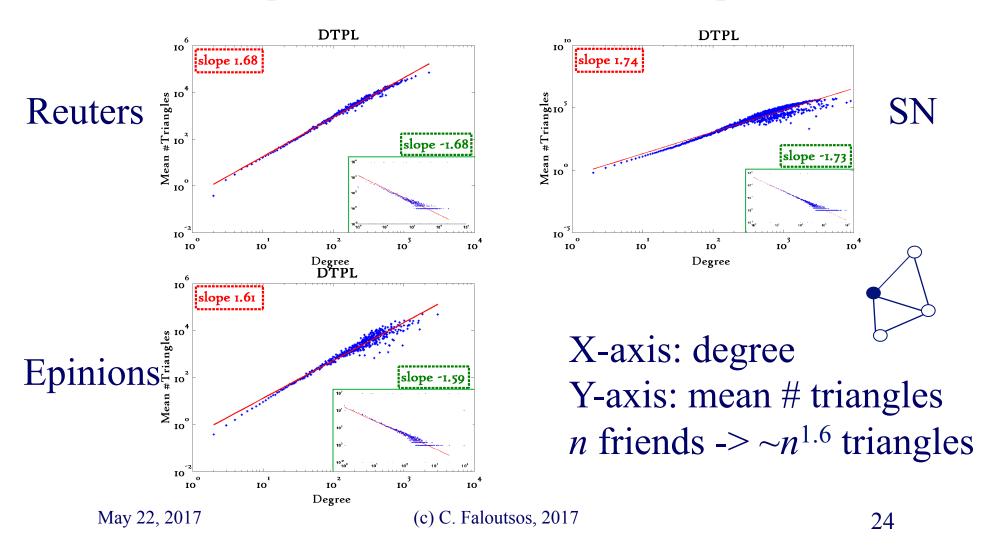


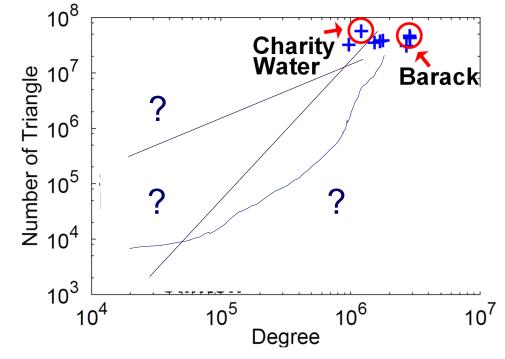
- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?
 - 2x the friends, 2x the triangles?



May 22, 2017

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

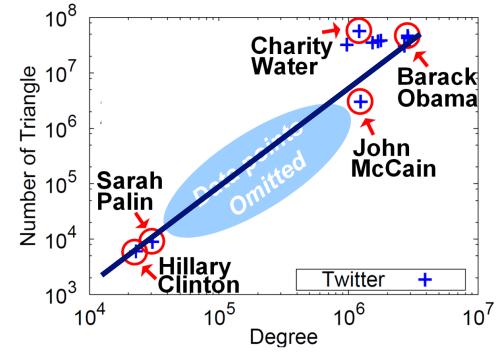




Anomalous nodes in Twitter(~ 3 billion edges)

[U Kang, Brendan Meeder, +, PAKDD'11]

May 22, 2017

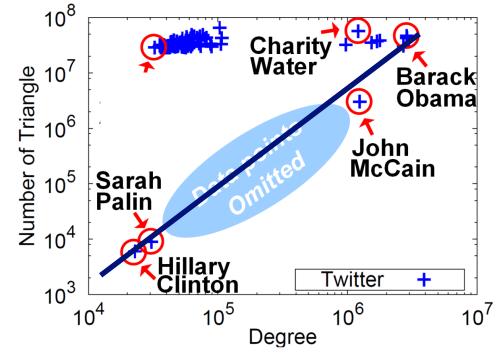


Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

May 22, 2017

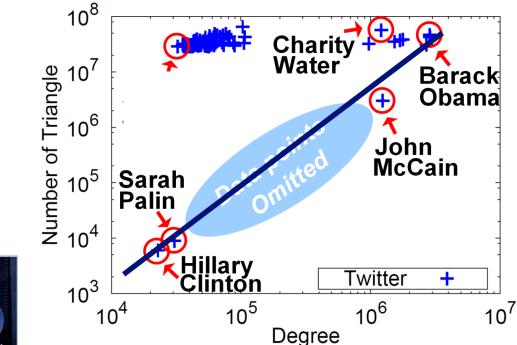
Yahoo!® Supercomputing Cluster

(c) C. Faloutsos, 2017

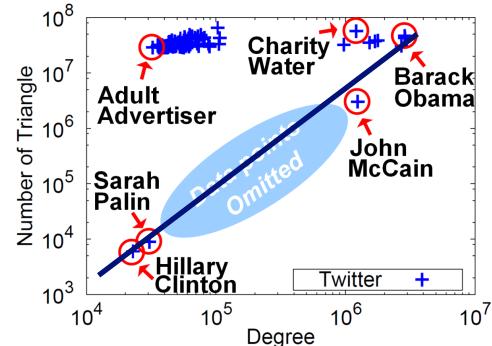


Yahoo! Supercomputing Cluster

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]



Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]



Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

MORE Graph Patterns

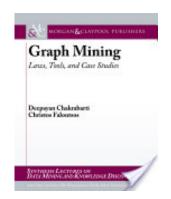
	Unweighted	Weighted
Static	Ca. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] Ca. Triangle Power Law (TPL) [Tsourakakis '08] Ca. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	 L05. Densification Power Law (DPL) [Leskovec et al. `05] L06. Small and shrinking diameter [Albert and Barabási `99, Leskovec et al. `05] L07. Constant size 2nd and 3rd connected components [McGlohon et al. `08] L08. Principal Eigenvalue Power Law (λ₁PL) [Akoglu et al. `08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et al. `98, Crovella and 	L11. Weight Power Law (WPL) [McGlohon et al. `08]

RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. PKDD'09.

MORE Graph Patterns

	Unweighted	Weighted
Static	1.01. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] 1.02. Triangle Power Law (TPL) [Tsourakakis '08] 1.03. Eigenvalue Power Law (EPL) [Siganos et al. '03] 1.04. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	1.05. Densification Power Law (DPL) [Leskovec et al. '05] 1.06. Small and shrinking diameter [Albert and Barabási '99, Leskovec et al. '05] 1.07. Constant size 2 nd and 3 rd connected components [McGlohon et al. '08] 1.08. Principal Eigenvalue Power Law (λ ₁ PL) [Akoglu et al. '08] 1.09. Bursty/self-similar edge/weight additions [Gomez and Santonja '98, Gribble et al. '98, Crovella and Bestavros '99, McGlohon et al. '08]	L11. Weight Power Law (WPL) [McGlohon et al. '08]

- Mary McGlohon, Leman Akoglu, Christos
 Faloutsos. Statistical Properties of Social
 Networks. in "Social Network Data Analytics" (Ed.: Charu Aggarwal)
- Deepayan Chakrabarti and Christos Faloutsos,
 <u>Graph Mining: Laws, Tools, and Case Studies</u> Oct.
 2012, Morgan Claypool.



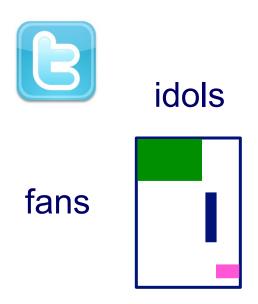
Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - P1.1: Patterns
- P1.2: Anomaly / fraud detection
 - No labels spectral
 Patterns
 - With labels: Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

anomalies

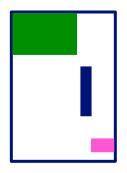
How to find 'suspicious' groups?

• 'blocks' are normal, right?



Except that:

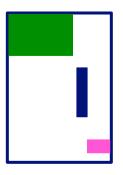
- 'blocks' are normal, is
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]



Except that:

- 'blocks' are usually suspicious
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]

Q: Can we spot blocks, easily?

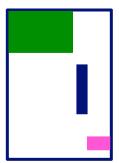


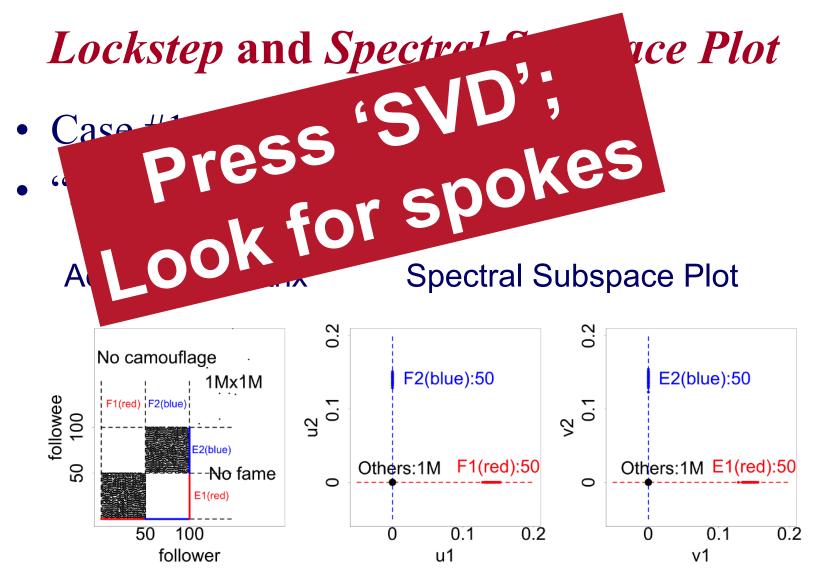
Except that:

- 'blocks' are usually suspicious
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]

Q: Can we spot blocks, easily?

A: Silver bullet: SVD!

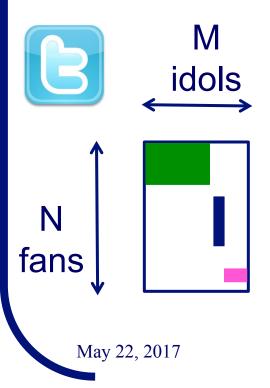




Rule 1 (short "rays"): two blocks, high density (90%), no "camouflage", no "fame" May 22, 2017 (c) C. Faloutsos, 2017 41

Crush intro to SVD

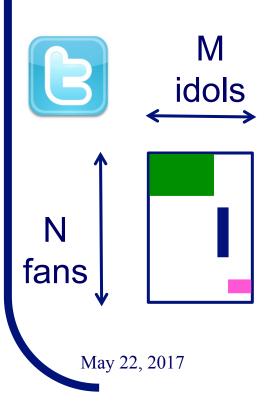
 Recall: (SVD) matrix factorization: finds blocks



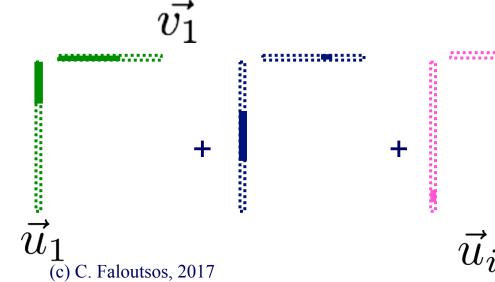
'music lovers' 'sports lovers' 'citizens' 'singers' 'athletes' 'politicians' \vec{v}_1 + \vec{u}_1 + \vec{u}_1 \vec{u}_1 \vec{u}_1 \vec{u}_2 \vec{u}_3

Crush intro to SVD

Recall: (SVD) matrix factorization: finds blocks



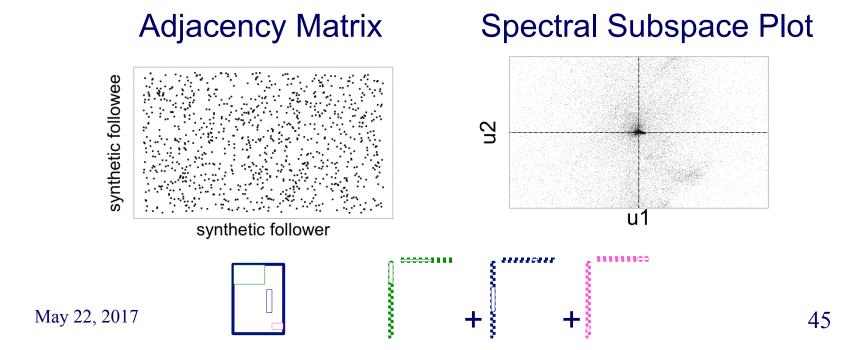
'music lovers' 'sports lovers' 'citizens' 'singers' 'athletes' 'politicians'



Inferring Strange Behavior from Connectivity Pattern in Social Networks PAKDD'14

Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua) Alex Beutel, Christos Faloutsos (CMU)

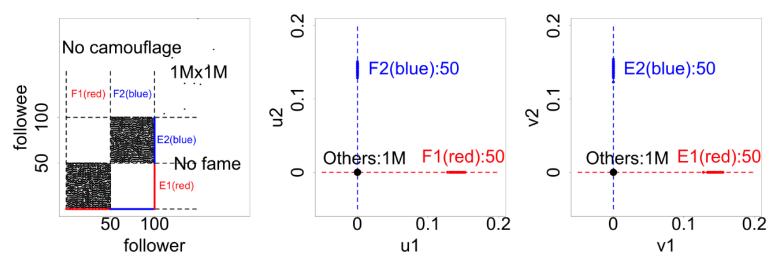
- Case #0: No lockstep behavior in random power law graph of 1M nodes, 3M edges
- Random ← "Scatter"



- Case #1: non-overlapping lockstep
- "Blocks"←→ "Rays"

Adjacency Matrix

Spectral Subspace Plot

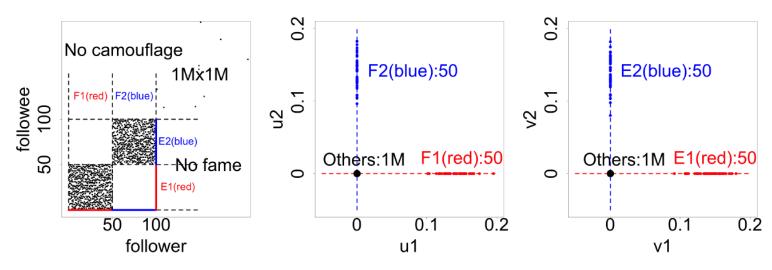


Rule 1 (short "rays"): two blocks, high density (90%), no "camouflage", no "fame" May 22, 2017 (c) C. Faloutsos, 2017 46

- Case #2: non-overlapping lockstep
- "Blocks; low density" ← → Elongation

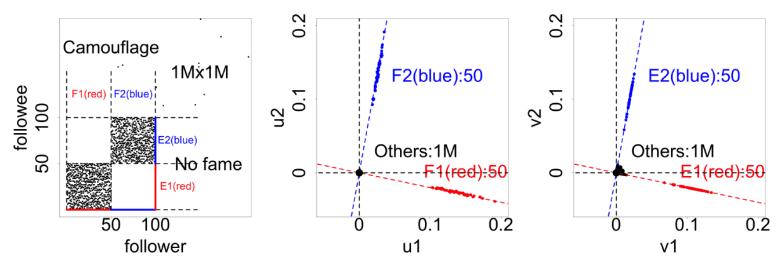
Adjacency Matrix

Spectral Subspace Plot



Rule 2 (long "rays"): two blocks, low density (50%), no "camouflage", no "fame" May 22, 2017 (c) C. Faloutsos, 2017 47

- Case #3: non-overlapping lockstep
- "Camouflage" (or "Fame") ← Tilting
 "Rays"
 Adjacency Matrix
 Spectral Subspace Plot

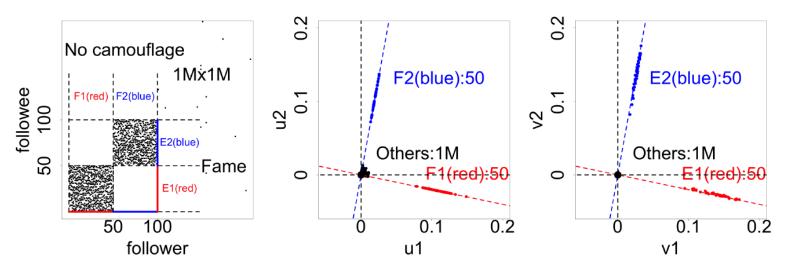


Rule 3 (tilting "rays"): two blocks, with "camouflage", no "fame" May 22, 2017 (c) C. Faloutsos, 2017

48

- Case #3: non-overlapping lockstep
- "Camouflage" (or "Fame") ← Tilting
 "Rays"

 Adjacency Matrix Spectral Subspace Plot



Rule 3 (tilting "rays"): two blocks, no "camouflage", with "fame"

May 22, 2017 (c) C. Faloutsos, 2017 49

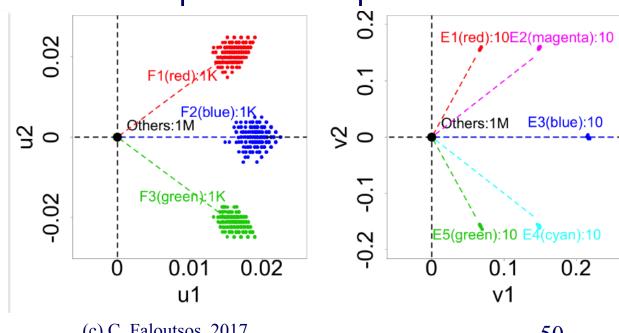
Case #4:

lockstep

"Pearls"

Adjacency Matrix

Spectral Subspace Plot

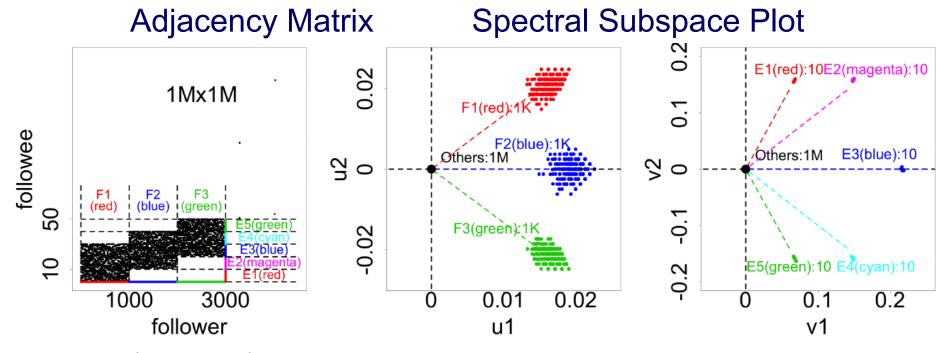


May 22, 2017

(c) C. Faloutsos, 2017

50

- Case #4: overlapping lockstep
- "Staircase" "Pearls"



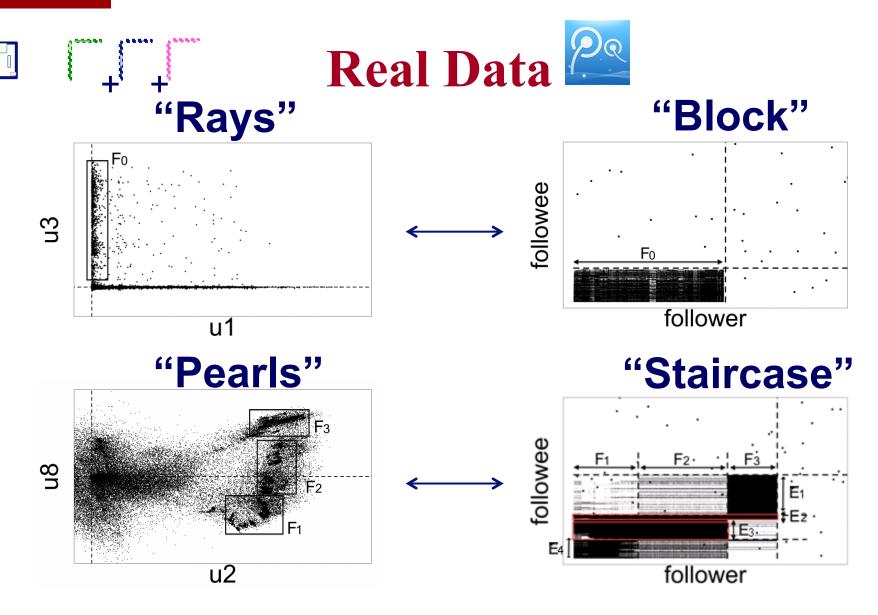
Rule 4 ("pearls"): a "staircase" of three partially overlapping blocks.

Dataset

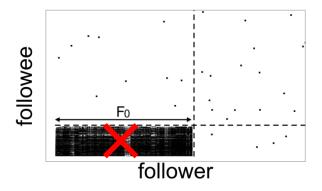
Tencent Weibo

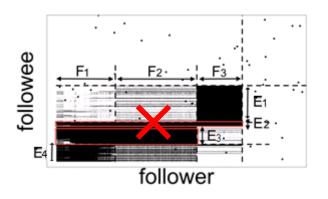
- 117 million nodes (with profile and UGC data)
- 3.33 billion directed edges

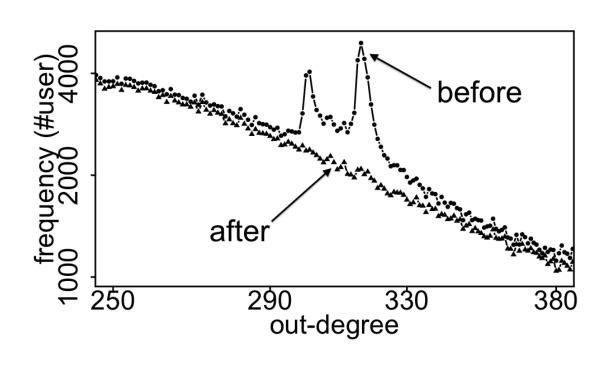
Carnegie Mellon



• Spikes on the out-degree distribution







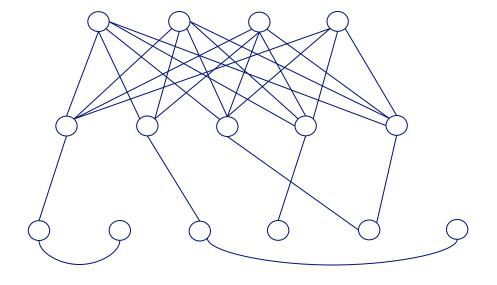
Carnegie Mellon

Roadmap

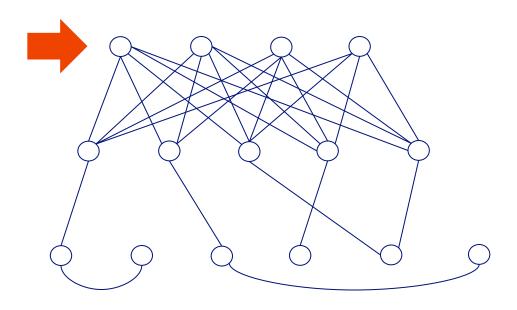
- Introduction Motivation
- Part#1: Patterns in graphs
 - P1.1: Patterns
 - P1.2: Anomaly / fraud detection
 - No labels spectral methods
 - With labels: Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

E-bay Fraud detection

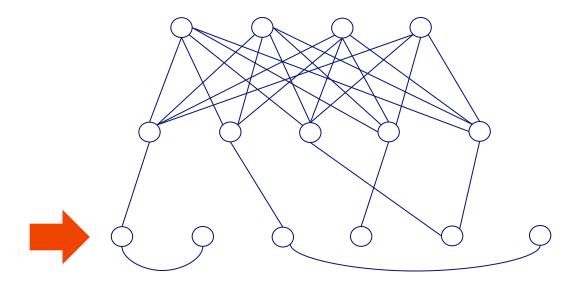
w/ Polo Chau & Shashank Pandit, CMU [www'07]



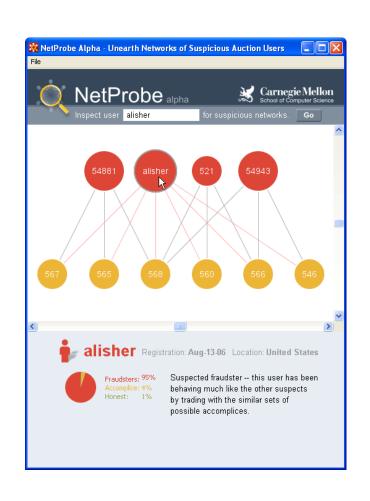
E-bay Fraud detection

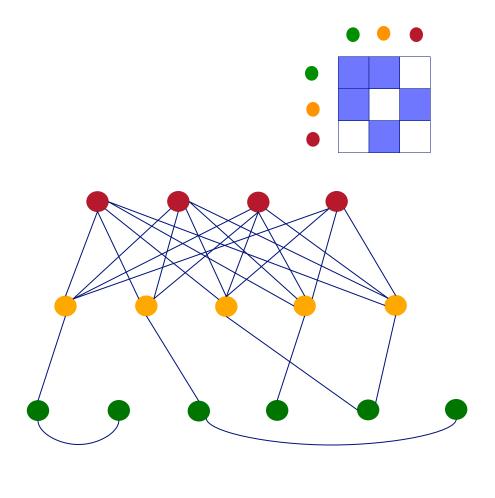


E-bay Fraud detection



E-bay Fraud detection - NetProbe





Popular press

The Washington Post

Ios Angeles Times

And less desirable attention:

• E-mail from 'Belgium police' ('copy of your code?')

May 22, 2017

Carnegie Mellon

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - No labels Spectral methods
 - w/ labels: Belief Propagation closed formulas
- Part#2: time-evolving graphs; tensors
- Conclusions

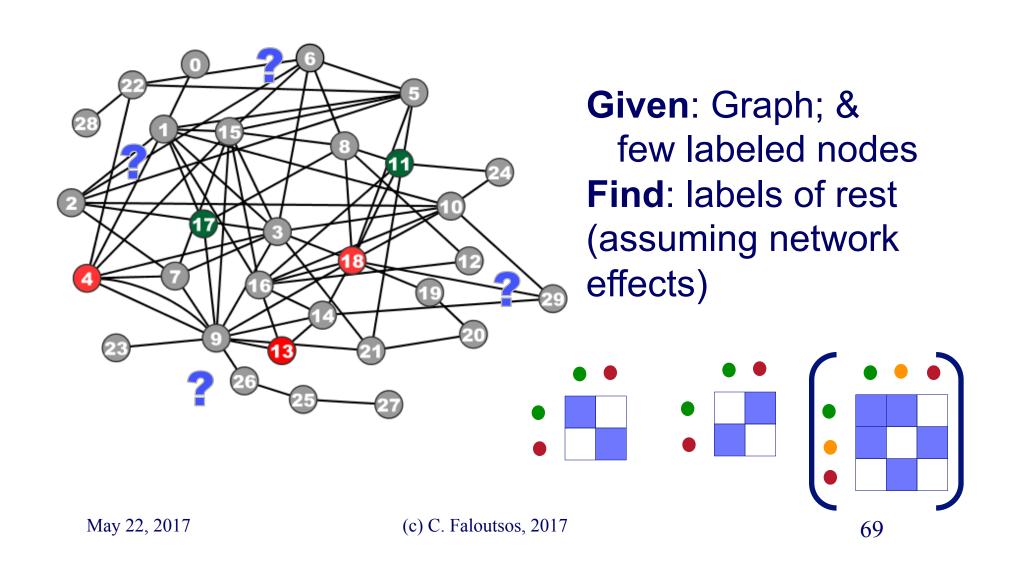
Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms

Danai Koutra
U Kang
Hsing-Kuo Kenneth Pao

Tai-You Ke
Duen Horng (Polo) Chau
Christos Faloutsos

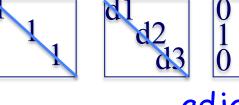
ECML PKDD, 5-9 September 2011, Athens, Greece

Problem Definition: GBA techniques

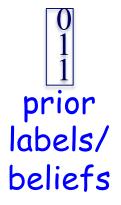


Correspondence of Methods

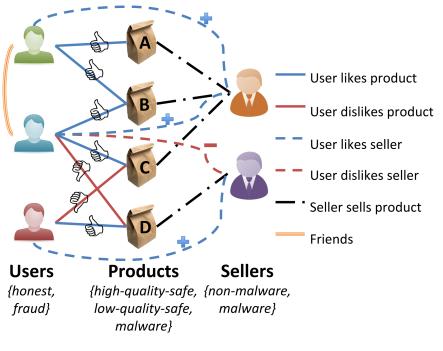
Method	Matrix	Unknown		known
RWR	$[\mathbf{I} - \mathbf{c} \ \underline{\mathbf{A}}\mathbf{D}^{-1}]$	× x	=	(1-c)y
SSL	$[\mathbf{I} + \mathbf{a}(\mathbf{D} - \underline{\mathbf{A}})]$	× x	=	y
FABP	$[\mathbf{I} + a \mathbf{D} - c' \mathbf{A}]$	\times b _h	=	$\Phi_{\mathbf{h}}$



adjacency matrix

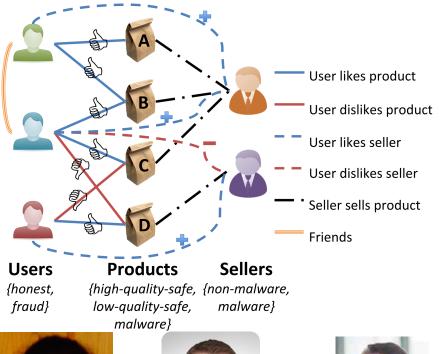


Problem: e-commerce ratings fraud



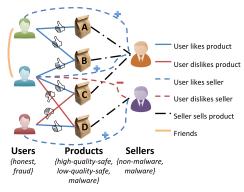
- Given a heterogeneous graph on users, products, sellers and positive/negative ratings with "seed labels"
- **Find** the top *k* most fraudulent users, products and sellers

Problem: e-commerce ratings fraud



- Given a heterogeneous graph on users, products, sellers and positive/negative ratings with "seed labels"
- **Find** the top *k* most fraudulent users, products and sellers

Problem: e-commerce ratings fraud

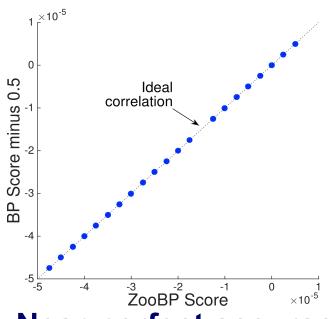


Theorem 1 (ZooBP). If **b**, **e**, **P**, **Q** are constructed as described above, the linear equation system approximating the final node beliefs given by BP is:

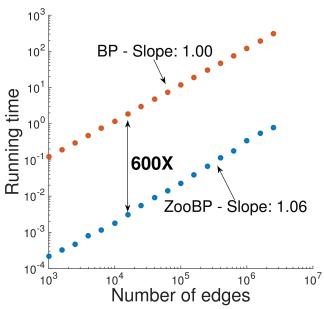
$$\mathbf{b} = \mathbf{e} + (\mathbf{P} - \mathbf{Q})\mathbf{b} \qquad (ZooBP) \tag{10}$$

ZooBP: features

Fast; convergence guarantees.

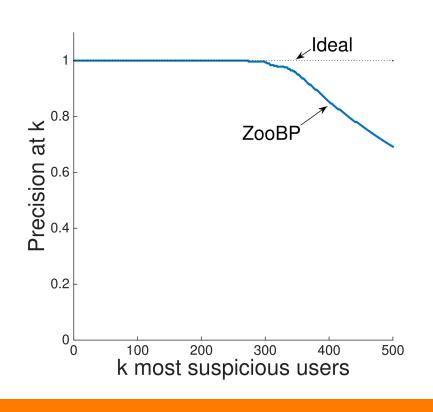


Near-perfect accuracy



linear in graph size

ZooBP in the real world



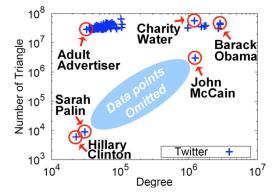
- Near 100% precision on top 300 users (Flipkart)
- Flagged users: suspicious
 - 400 ratings in 1 sec
 - 5000 good ratings and no bad ratings

Summary of Part#1

- *many* patterns in real graphs
 - Power-laws everywhere

Long (and growing) list of tools for anomaly/

fraud detection



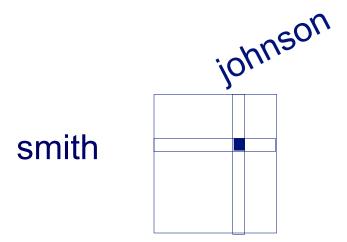
Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs

- P2.1: tools/tensors
- P2.2: other patterns
- Conclusions

Part 2: Time evolving graphs; tensors

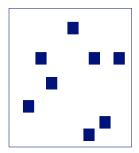
- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies



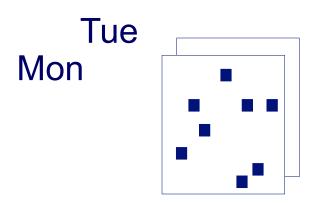
May 22, 2017

(c) C. Faloutsos, 2017

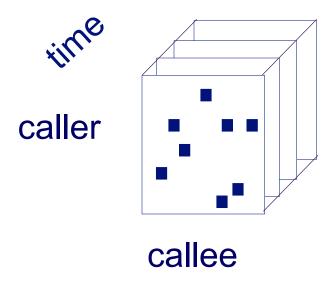
- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies



- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies



- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

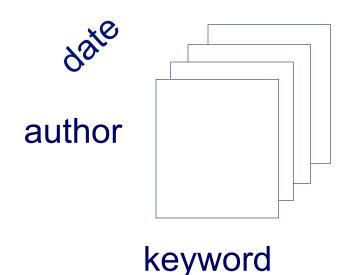


May 22, 2017 (c) C. Faloutsos, 2017

85

Graphs over time -> tensors!

- Problem #2.1':
 - Given author-keyword-date
 - Find patterns / anomalies

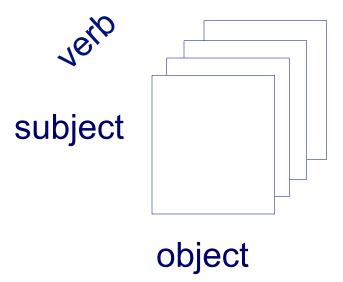


MANY more settings, with >2 'modes'

May 22, 2017

Graphs over time -> tensors!

- Problem #2.1'':
 - Given subject verb object facts
 - Find patterns / anomalies

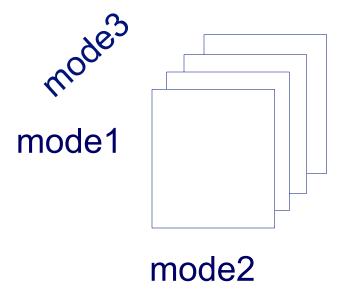


MANY more settings, with >2 'modes'

May 22, 2017

Graphs over time -> tensors!

- Problem #2.1'':
 - Given <triplets>
 - Find patterns / anomalies



MANY more settings, with >2 'modes' (and 4, 5, etc modes)

May 22, 2017

Answer: tensor factorization

Recall: (SVD) matrix factorization: finds blocks 'meat-eaters' 'vegetarians' 'kids' 'steaks' 'plants' 'cookies' products $\vec{v_1}$ users May 22, 2017 (c) C. Faloutsos, 2017

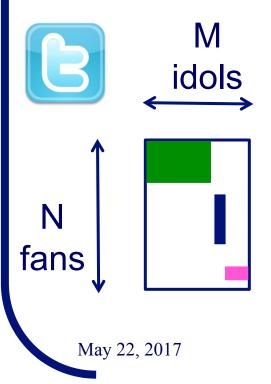
Answer: tensor factorization

• Recall: (SVD) matrix factorization: finds blocks

May 22, 2017 (c) C. Faloutsos, 2017

Crush intro to SVD

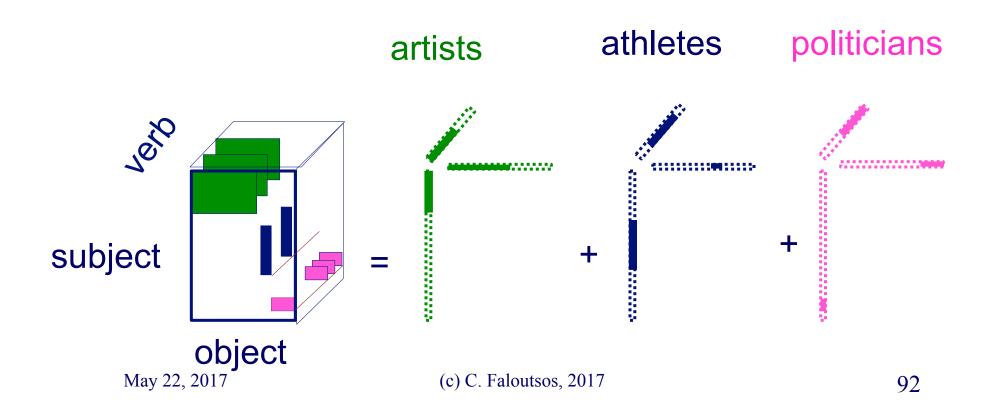
 Recall: (SVD) matrix factorization: finds blocks



'music lovers' 'sports lovers' 'citizens' 'singers' 'athletes' 'politicians' \vec{v}_1 + \vec{u}_1 + $\vec{u}_{i_{01}}$ $\vec{u}_{i_{01}}$

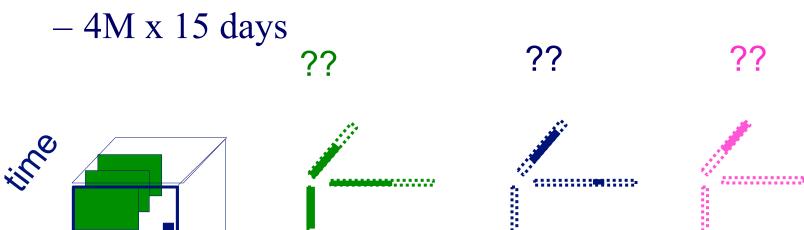
Answer: tensor factorization

PARAFAC decomposition



Answer: tensor factorization

- PARAFAC decomposition
- Results for who-calls-whom-when



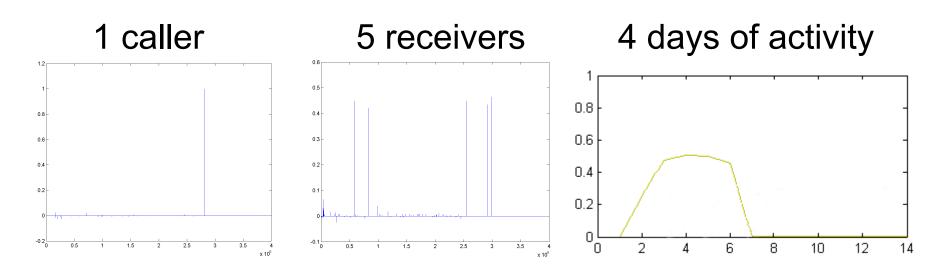
calleeMay 22, 2017

caller

(c) C. Faloutsos, 2017

93

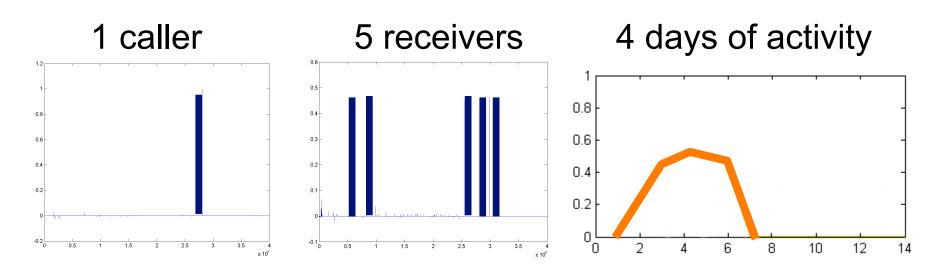
- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks



~200 calls to EACH receiver on EACH day!

May 22, 2017

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks



~200 calls to EACH receiver on EACH day!

May 22, 2017

Anomaly detection in timeevolving graphs =

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

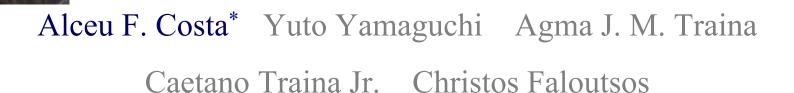
Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos Papalexakis, Danai Koutra. *Com2: Fast Automatic Discovery of Temporal (Comet) Communities*. PAKDD 2014, Tainan, Taiwan.

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs
 - P2.1: tools/tensors
- _ P2 2: other r
 - P2.2: other patterns inter-arrival time
 - Conclusions

KDD 2015 – Sydney, Australia

RSC: Mining and Modeling Temporal Activity in Social Media



^{*}alceufc@icmc.usp.br

Pattern Mining: Datasets

Reddit Dataset

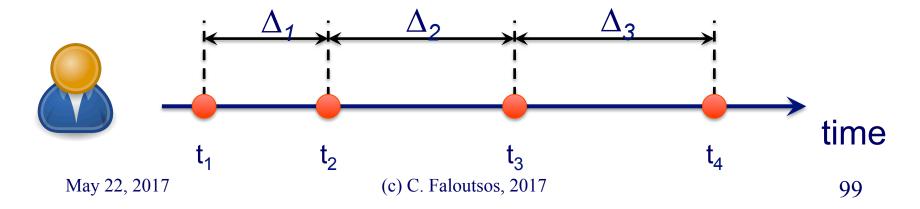
Time-stamp from comments 21,198 users 20 Million time-stamps

Twitter Dataset

Time-stamp from tweets 6,790 users 16 Million time-stamps

For each user we have:

Sequence of postings time-stamps: $T = (t_1, t_2, t_3, ...)$ Inter-arrival times (IAT) of postings: $(\Delta_1, \Delta_2, \Delta_3, ...)$

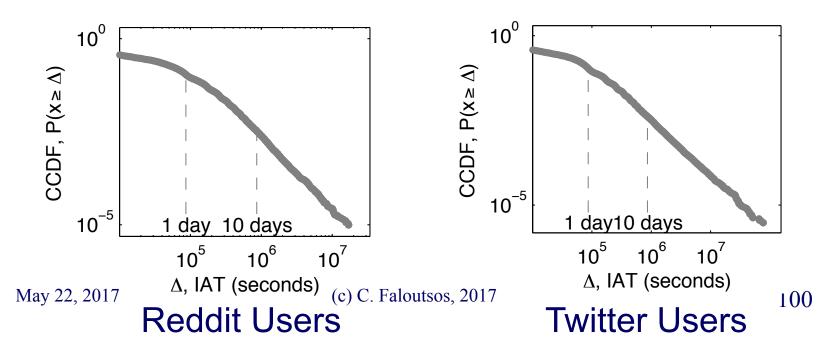


Pattern Mining

Pattern 1: Distribution of IAT is heavy-tailed

Users can be inactive for long periods of time before making new postings

IAT Complementary Cumulative Distribution Function (CCDF) (log-log axis)



Pattern Mining

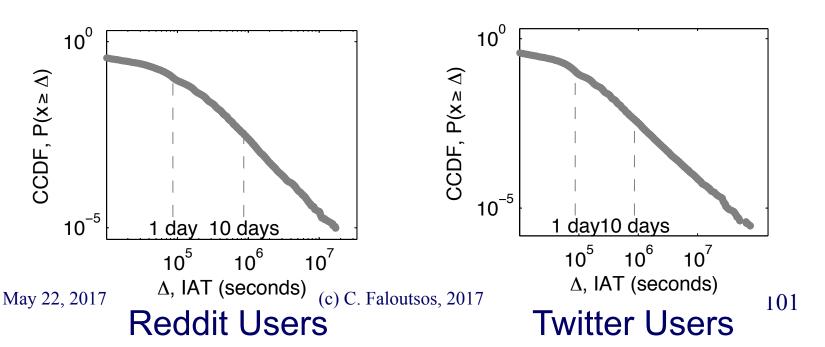
Pattern 1: Distribution of IAT is heavy-tailed

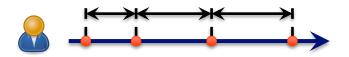
Users can be inactive for long periods of time before making new

postings

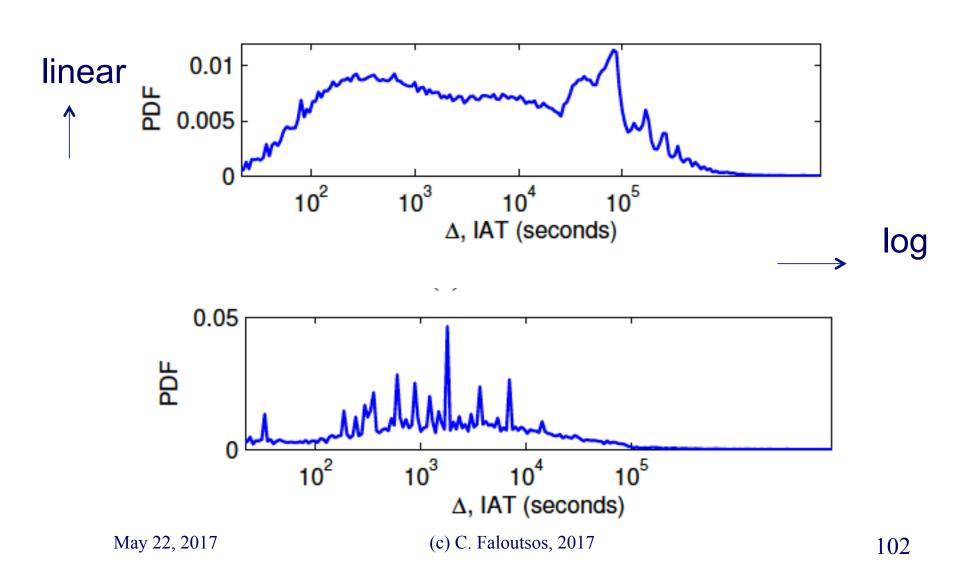
No surprises – Should we give up?

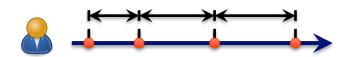
n (CCDF)



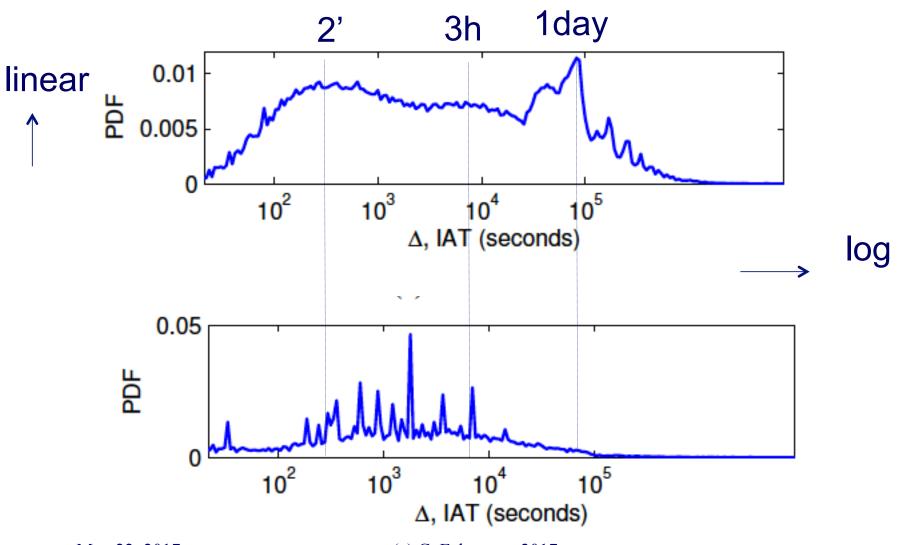


Human? Robots?





Human? Robots?



May 22, 2017

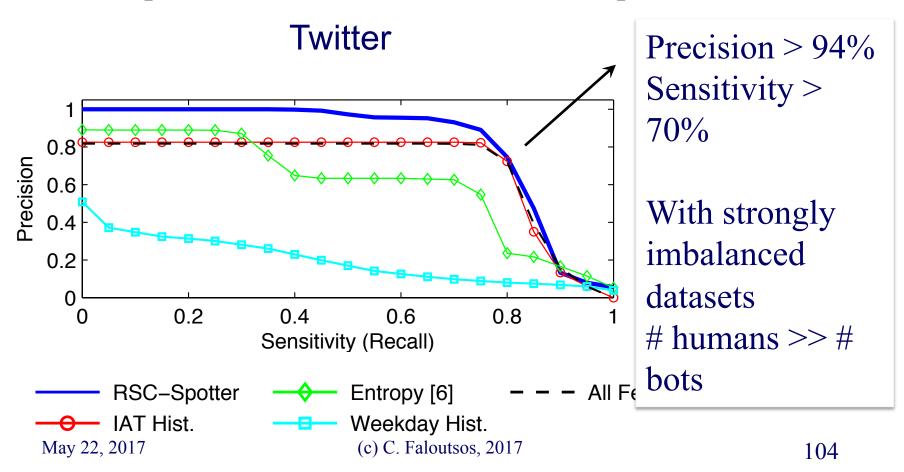
(c) C. Faloutsos, 2017

103

Experiments: Can RSC-Spotter Detect Bots?

Precision vs. Sensitivity Curves

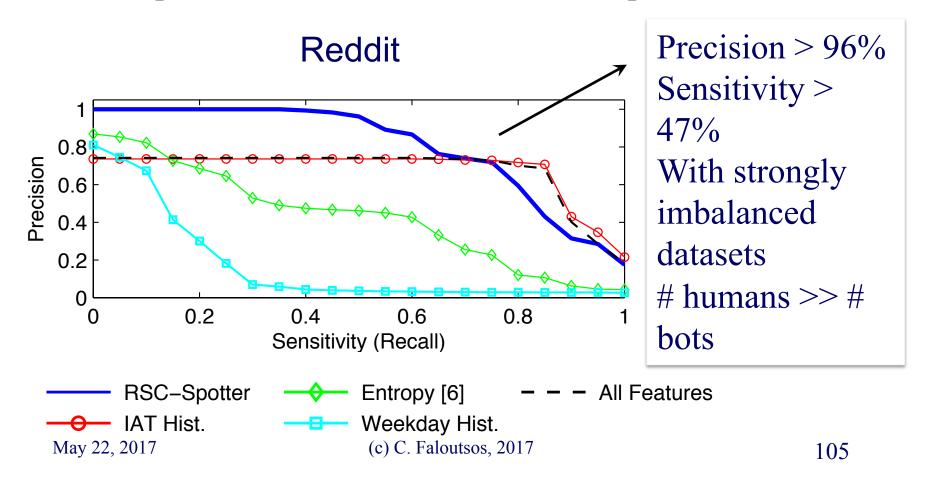
Good performance: curve close to the top



Experiments: Can RSC-Spotter Detect Bots?

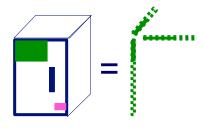
Precision vs. Sensitivity Curves

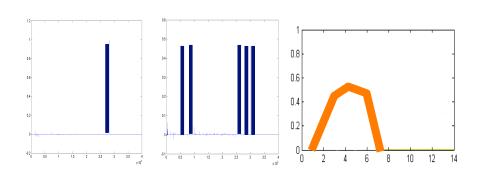
Good performance: curve close to the top



Part 2: Conclusions

- Time-evolving / heterogeneous graphs -> tensors
- PARAFAC finds patterns
- Surprising temporal patterns (P.L. growth)





May 22, 2017

Roadmap

- Introduction Motivation
 - Why study (big) graphs?
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors

Thanks

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Cast

Akoglu, Leman

Araujo, Miguel

Beutel, Alex

Chau, Polo

Eswaran, Dhivya

Hooi, Bryan

Kang, U

Koutra, Danai

Papalexakis, Vagelis

Shah, Neil

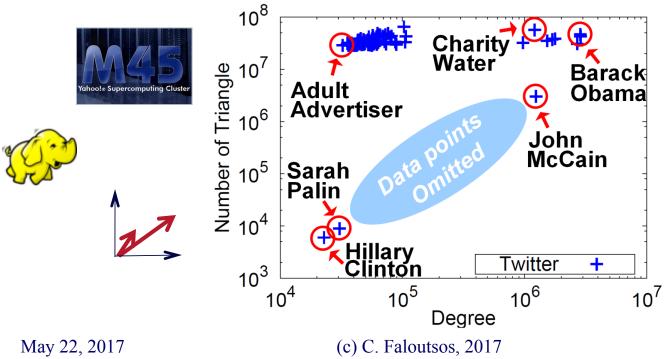
Shin, Kijung

Song, Hyun Ah

CONCLUSION#1 – Big data

Patterns Anomalies

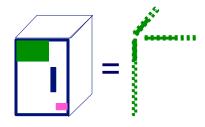
• Large datasets reveal patterns/outliers that are invisible otherwise

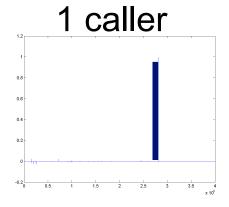


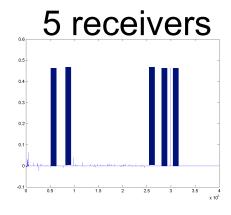
124

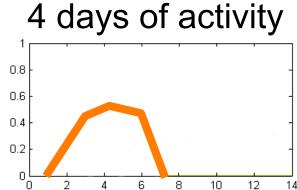
CONCLUSION#2 – tensors

powerful tool





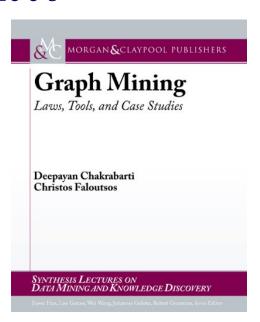




May 22, 2017 (c) C. Faloutsos, 2017 125

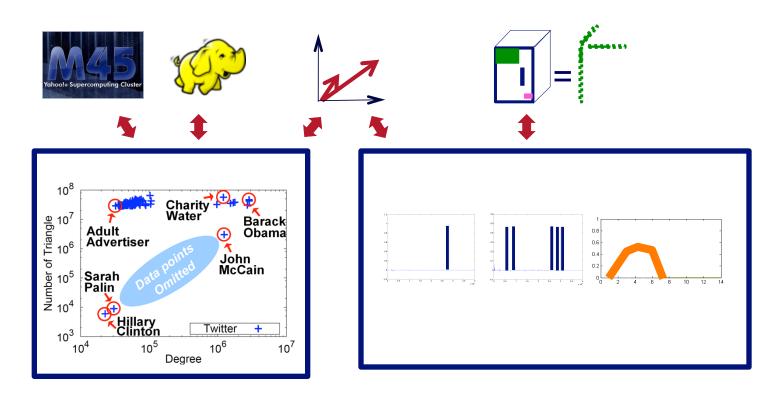
References

- D. Chakrabarti, C. Faloutsos: *Graph Mining Laws, Tools and Case Studies*, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/10.2200/ S00449ED1V01Y201209DMK006



TAKE HOME MESSAGE:

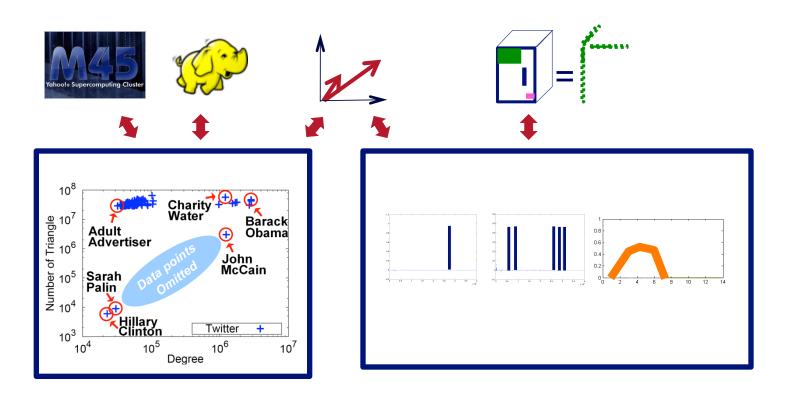
Cross-disciplinarity



May 22, 2017 (c) C. Faloutsos, 2017 127

Thank you!

Cross-disciplinarity



May 22, 2017 (c) C. Faloutsos, 2017 128