Mining Large Graphs: Patterns, Anomalies, and Fraud Detection

Christos Faloutsos
CMU
Thank you!

- Nina Balcan

- Kilian Weinberger
Roadmap

• Introduction – Motivation
 – Why study (big) graphs?
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
• Conclusions
Graphs - why should we care?

~1B nodes (web sites)
~6B edges (http links)
‘YahooWeb graph’
Graphs - why should we care?

>$10B; ~1B users
Graphs - why should we care?

Internet Map
[lumeta.com]

Food Web
[Martinez ’91]
Graphs - why should we care?

- web-log (‘blog’) news propagation
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems
-
- Many-to-many db relationship -> graph
Motivating problems

• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs / tensors
Motivating problems

• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs / tensors

Patterns anomalies
destination
source time
Motivating problems

• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs / tensors

* Robust Random Cut Forest Based Anomaly Detection on Streams Sudipto Guha, Nina Mishra, Gourav Roy, Okke Schrijvers, ICML ’16
Roadmap

- Introduction – Motivation
 - Why study (big) graphs?
- Part#1: Patterns & fraud detection
- Part#2: time-evolving graphs; tensors
- Conclusions
Part 1: Patterns, & fraud detection
Laws and patterns

• Q1: Are real graphs random?
Laws and patterns

• Q1: Are real graphs random?
• A1: NO!!
 – Diameter (‘6 degrees’; ‘Kevin Bacon’)
 – in- and out- degree distributions
 – other (surprising) patterns
• So, let’s look at the data
Solution# S.1

- Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains

\[\log(\text{degree}) \quad \log(\text{rank}) \]

- att.com
- ibm.com
Solution S.1

- Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

\[\log(\text{rank}) -\log(\text{degree}) \approx -0.82 \]

internet domains

- att.com
- ibm.com
Solution# S.1

- Q: So what?

internet domains

- **att.com**
- **ibm.com**

$\log(\text{rank}) \sim -0.82 \log(\text{degree})$

ICML'16

(c) 2016, C. Faloutsos
Q: So what?

A1: # of two-step-away pairs: internet domains

$\log(\text{rank}) = \log(\text{degree}) - 0.82$

att.com

ibm.com

$\exp(6.55663) \times x^{(-0.82 \pm 0.16)}$
Solution# S.1

- Q: So what?
- A1: # of two-step-away pairs: \(100^2 \times N = 10\) Trillion internet domains

\[\log(\text{rank}) = \text{log(\text{degree})} - 0.82\]

= friends of friends (F.O.F.)

ICML'16
(c) 2016, C. Faloutsos
Solution# S.1

• Q: So what?

• A1: # of two-step-away pairs: $100^2 \times N = 10$ Trillion internet domains

= friends of friends (F.O.F.)

log(rank)

log(degree)

-0.82

att.com

ibm.com
Solution # S.1

- Q: So what?
- A1: # of two-step-away pairs: $O(d_{max}^2) \sim 10M^2$

Gaussian trap

= friends of friends (F.O.F.)

~0.8PB -> a data center(!)

internet domains

att.com

ibm.com

log(degree)

log(rank)

-0.82

DCO @ CMU

(c) 2016, C. Faloutsos
Solution# S.1

- Q: So what?
- A1: # of two-step-away internet

\[O(d_{max}^2) \sim 10M^2 \log(\text{rank}) \log(\text{degree}) \]

\[\sim 0.8PB \rightarrow \text{a data center(!)} \]

\[\sim 0.8 \text{PB} \rightarrow \text{a data center(!)} \]

Such patterns -> New algorithms

Gaussian trap
Observation – big-data:

• $O(N^2)$ algorithms are \textit{~}intractable - $N=1$B

• N^2 seconds = 31B years (>2x age of universe)
Observation – big-data:

- \(O(N^2) \) algorithms are \(\sim \) intractable - \(N = 1B \)
- \(N^2 \) seconds = 31B years
- 1,000 machines
Observation – big-data:

• $O(N^2)$ algorithms are ~intractable - $N=1B$

• N^2 seconds = 31B years

• 1M machines
Observation – big-data:

• $O(N^2)$ algorithms are ~intractable - $N=1B$

• N^2 seconds = 31B years

• 10B machines ~ 10Trillion
Observation – big-data:

- $O(N^2)$ algorithms are \(\sim \) intractable - $N=1B$

And parallelism might not help

- N^2 seconds = 31B years
- 10B machines \sim 10Trillion

ICML'16

(c) 2016, C. Faloutsos
Solution# S.2: Eigen Exponent E

- A2: power law in the eigenvalues of the adjacency matrix (`eig()`)
Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
 – Patterns: Degree; Triangles
 – Anomaly/fraud detection
 – Graph understanding
• Part#2: time-evolving graphs; tensors
• Conclusions
Solution# S.3: Triangle ‘Laws’

- Real social networks have a lot of triangles
Solution # S.3: Triangle ‘Laws’

- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?
 - 2x the friends, 2x the triangles?
Triangle Law: #S.3
[Tsourakakis ICDM 2008]

Reuters

Epinions

X-axis: degree
Y-axis: mean # triangles
n friends -> \(\sim n^{1.6} \) triangles

ICML'16
Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos) – $O(d_{\text{max}}^2)$

Q: Can we do that quickly?
A:
Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos) – $O(d_{\text{max}}^2)$

Q: Can we do that quickly?
A: Yes!

$#\text{triangles} = \frac{1}{6} \text{Sum} \left(\lambda_i^3 \right)$

(and, because of skewness (S2),
we only need the top few eigenvalues! - $O(E)$
Triangle counting for large graphs?

Anomalous nodes in Twitter (~ 3 billion edges)

[U Kang, Brendan Meeder, +, PAKDD’11]
Triangle counting for large graphs?

Anomalous nodes in Twitter (~ 3 billion edges)

[U Kang, Brendan Meeder, +, PAKDD’11]
Anomalous nodes in Twitter (~3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
Triangle counting for large graphs?

Anomalous nodes in Twitter (~ 3 billion edges)

[U Kang, Brendan Meeder, +, PAKDD’11]
Triangle counting for large graphs?

Anomalous nodes in Twitter (~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]
MORE Graph Patterns

<table>
<thead>
<tr>
<th>Static</th>
<th>Unweighted</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️ 2.</td>
<td>Triangle Power Law (TPL) [Tsourakakis ‘08]</td>
<td></td>
</tr>
<tr>
<td>✔️ 3.</td>
<td>Eigenvalue Power Law (EPL) [Siganos et al. ‘03]</td>
<td></td>
</tr>
<tr>
<td>✔️ L04.</td>
<td>Community structure [Flake et al. ‘02, Girvan and Newman ‘02]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dynamic</th>
<th>Unweighted</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>L06.</td>
<td>Small and shrinking diameter [Albert and Barabási ‘99, Leskovec et al. ‘05]</td>
<td></td>
</tr>
<tr>
<td>L07.</td>
<td>Constant size 2nd and 3rd connected components [McGlohon et al. ‘08]</td>
<td></td>
</tr>
<tr>
<td>L08.</td>
<td>Principal Eigenvalue Power Law (λ_1PL) [Akoglu et al. ‘08]</td>
<td></td>
</tr>
<tr>
<td>L09.</td>
<td>Bursty/self-similar edge/weight additions [Gomez and Santona ‘98, Gribble et al. ‘98, Crovella and</td>
<td></td>
</tr>
</tbody>
</table>

RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. PKDD’09.
MORE Graph Patterns

<table>
<thead>
<tr>
<th>Unweighted</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>L02. Triangle Power Law (TPL) [Tsourakakis ’08]</td>
<td>L09. Weight Power Law (WPL) [McGlohon et al. ’08]</td>
</tr>
<tr>
<td>L06. Small and shrinking diameter [Albert and Barabasi ’99, Leskovec et al. ’05]</td>
<td>L07. Constant size 2^m and 3^m connected components [McGlohon et al. ’08]</td>
</tr>
</tbody>
</table>

Roadmap

• Introduction – Motivation

• Part#1: Patterns in graphs
 – Patterns
 – Anomaly / fraud detection
 • CopyCatch
 • Spectral methods (‘fBox’)
 • Belief Propagation

• Part#2: time-evolving graphs; tensors

• Conclusions
Fraud

• **Given**
 – Who ‘likes’ what page, and when

• **Find**
 – Suspicious users and suspicious products

CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks, Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, Christos Faloutsos *WWW, 2013.*
Fraud

• Given
 – Who ‘likes’ what page, and when

• Find
 – Suspicious users and suspicious products

Graph Patterns and Lockstep Behavior

Our intuition

- Lockstep behavior: Same Likes, same time

(c) 2016, C. Faloutsos
Graph Patterns and Lockstep Behavior

Our intuition

- **Lockstep behavior**: Same Likes, same time
Graph Patterns and Lockstep Behavior

Our intuition

- **Lockstep behavior**: Same Likes, same time
MapReduce Overview

- Use Hadoop to search for many clusters in parallel:
 1. Start with randomly seed
 2. Update set of Pages and center Like times for each cluster
 3. Repeat until convergence
Deployment at Facebook

- *CopyCatch* runs regularly (along with many other security mechanisms, and a large Site Integrity team)

3 months of *CopyCatch* @ Facebook

#users caught

![Graph showing number of users caught over time](image)
Deployment at Facebook

Manually labeled 22 randomly selected clusters from February 2013
Deployment at Facebook

Fake acct

- Fake Accounts
- Malicious Browser Extensions
- OS Malware
- Credential Stealing
- Social Engineering

Most clusters (77%) come from real but compromised users

Manually labeled 22 randomly selected clusters from February 2013
Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
 – Patterns
 – Anomaly / fraud detection
 • CopyCatch
 • Spectral methods (‘fBox’)
 • Belief Propagation
• Part#2: time-evolving graphs; tensors
• Conclusions
Problem: Social Network Link Fraud

Target: find “stealthy” attackers missed by other algorithms

Clique

41.7M nodes
1.5B edges
Problem: Social Network Link Fraud

Target: find “stealthy” attackers missed by other algorithms

Takeaway: use reconstruction error between true/latent representation!

Roadmap

• Introduction – Motivation

• Part#1: Patterns in graphs
 – Patterns
 – Anomaly / fraud detection
 • CopyCatch
 • Spectral methods (‘fBox’, suspiciousness)
 • Belief Propagation

• Part#2: time-evolving graphs; tensors

• Conclusions
Suspicious Patterns in Event Data

2-modes

\[\text{?} \quad \text{?} \]

\[\text{?} \quad \text{?} \]

\[\text{?} \quad \text{?} \]

n-modes

A General Suspiciousness Metric for Dense Blocks in Multimodal Data, Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos Faloutsos, *ICDM*, 2015.
Suspicious Patterns in Event Data

Which is more suspicious?

20,000 Users
Retweeting same 20 tweets 6 times each
All in 10 hours

vs.

225 Users
Retweeting same 1 tweet 15 times each
All in 3 hours
All from 2 IP addresses

Answer: volume * $D_{KL}(p||p_{background})$
Suspicous Patterns in Event Data

![Image of a network graph showing 200 minutes of retweeting activity with 225 users and 27,313 retweets.]

Retweeting: “Galaxy Note Dream Project: Happy Happy Life Traveling the World”

<table>
<thead>
<tr>
<th></th>
<th>User × tweet × IP × minute</th>
<th>Mass</th>
<th>Suspiciousness</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROSSSPOT</td>
<td>14 × 1 × 2 × 114</td>
<td>41,396</td>
<td>1,239,865</td>
</tr>
<tr>
<td></td>
<td>225 × 1 × 2 × 200</td>
<td>27,313</td>
<td>777,781</td>
</tr>
<tr>
<td></td>
<td>8 × 2 × 4 × 1,872</td>
<td>17,701</td>
<td>491,323</td>
</tr>
<tr>
<td>1</td>
<td>24 × 6 × 11 × 439</td>
<td>3,582</td>
<td>131,113</td>
</tr>
<tr>
<td>2</td>
<td>18 × 4 × 5 × 223</td>
<td>1,942</td>
<td>74,087</td>
</tr>
<tr>
<td>3</td>
<td>14 × 2 × 1 × 265</td>
<td>9,061</td>
<td>381,211</td>
</tr>
</tbody>
</table>

(C) 2016, C. Faloutsos
Roadmap

- **Introduction – Motivation**
- **Part#1: Patterns in graphs**
 - Patterns
 - Anomaly / fraud detection
 - CopyCatch
 - Spectral methods (‘fBox’)
 - (Matrix re-ordering + education -> ‘groupNteach’)
 - Belief Propagation
- **Part#2: time-evolving graphs; tensors**
- **Conclusions**
Problem dfn:

e.g.
Problem definition

• **Given** a large binary matrix of facts of
 (object, property) pairs

• **Find** *groupings* of the facts and the *order* of transmission

• To **optimize** ‘student effort’ (→ incremental learning curve, ‘*ALOC*’)

Given a large binary matrix of objects and properties, re-order rows and columns,

G1. Metric for better encoding of matrix for student learning?
G2. How do we construct language to describe it?
G3. How do we optimize this metric?
Pictorial Problem definition

ALOC vs. #bits transmitted

#dots learned

Score
Results

Drugs → Side effects

Anti-depressants → Teaching order → Hyper-tension → Pain
Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
 – Patterns
 – Anomaly / fraud detection
 • CopyCatch
 • Spectral methods (‘fBox’)
 • Belief Propagation
• Part#2: time-evolving graphs; tensors
• Conclusions
E-bay Fraud detection

w/ Polo Chau & Shashank Pandit, CMU
[www’07]
E-bay Fraud detection
E-bay Fraud detection
E-bay Fraud detection - NetProbe

NetProbe alpha: Unearth Networks of Suspicious Auction Users

Inspect user: alisher for suspicious networks.

alisher: Suspected fraudster -- this user has been behaving much like the other suspects by trading with the similar sets of possible accomplices.

Registration: Aug 13, 06; Location: United States

Fraudsters: 95% Accountability: 1%

NetProbe diagram showing network connections between users.
Popular press

And less desirable attention:

- E-mail from ‘Belgium police’ (‘copy of your code?’)
Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
 – Patterns
 – Anomaly / fraud detection
 • CopyCatch
 • Spectral methods (‘fBox’)
 • Belief Propagation; fast computation & unification
• Part#2: time-evolving graphs; tensors
• Conclusions
Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms

Danai Koutra
U Kang
Hsing-Kuo Kenneth Pao

Tai-You Ke
Duen Horng (Polo) Chau
Christos Faloutsos

ECML PKDD, 5-9 September 2011, Athens, Greece
Problem Definition:
GBA techniques

Given: Graph; & few labeled nodes
Find: labels of rest (assuming network effects)
Are they related?

• RWR (Random Walk with Restarts)
 – google’s pageRank (‘if my friends are important, I’m important, too’)

• SSL (Semi-supervised learning)
 – minimize the differences among neighbors

• BP (Belief propagation)
 – send messages to neighbors, on what you believe about them
Are they related? YES!

• **RWR** (Random Walk with Restarts)
 – google’s pageRank (‘if my friends are important, I’m important, too’)

• **SSL** (Semi-supervised learning)
 – minimize the differences among neighbors

• **BP** (Belief propagation)
 – send messages to neighbors, on what you believe about them
Correspondence of Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Matrix</th>
<th>Unknown</th>
<th>known</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWR</td>
<td>$[I - c \ A \ D^{-1}]$</td>
<td>x</td>
<td>$(1-c)y$</td>
</tr>
<tr>
<td>SSL</td>
<td>$[I + a(D - A)]$</td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>FABP</td>
<td>$[I + a \ D - c'A]$</td>
<td>b_h</td>
<td>ϕ_h</td>
</tr>
</tbody>
</table>

Adjacency Matrix

```
1 1 1
1 1 1
d1 d2 d3
0 1 0
1 0 1
0 1 0
```

Final Labels/Beliefs

```
? 
```

Prior Labels/Beliefs

```
0 1 1
```
Results: Scalability

FABP is linear on the number of edges.
Summary of Part#1

• *many* patterns in real graphs
 – Power-laws everywhere
 – Gaussian trap
 • Avg << Max
 – Long (and growing) list of tools for anomaly/fraud detection

Patterns \times anomalies
Roadmap

- Introduction – Motivation
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
 - P2.1: time-evolving graphs
 - [P2.2: with side information (‘coupled’ M.T.F.)
 - Speed]
- Conclusions
Part 2: Time evolving graphs; tensors
Graphs over time -> tensors!

• Problem #2.1:
 – Given who calls whom, and when
 – Find patterns / anomalies
Graphs over time -> tensors!

• Problem #2.1:
 – Given who calls whom, and when
 – Find patterns / anomalies
Graphs over time -> tensors!

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies
Graphs over time -> tensors!

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies
Graphs over time -> tensors!

• Problem #2.1’:
 – Given author-keyword-date
 – Find patterns / anomalies

MANY more settings, with >2 ‘modes’
Graphs over time -> tensors!

• Problem #2.1’’:
 – Given subject – verb – object facts
 – Find patterns / anomalies

MANY more settings, with >2 ‘modes’
Graphs over time -> tensors!

- Problem #2.1’’’:
 - Given <triplets>
 - Find patterns / anomalies

MANY more settings, with >2 ‘modes’
(and 4, 5, etc modes)
Graphs & side info

- Problem #2.2: coupled (e.g., side info)
 - Given subject – verb – object facts
 - And voxel-activity for each subject-word
 - Find patterns / anomalies
Problem #2.2: coupled (eg., side info)

- Given subject – verb – object facts
 - And voxel-activity for each subject-word
- Find patterns / anomalies

`apple tastes sweet'
Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
 – P2.1: time-evolving graphs
 – [P2.2: with side information (‘coupled’ M.T.F.)
 – Speed]
• Conclusions
Answer to both: tensor factorization

- Recall: (SVD) matrix factorization: finds blocks

\[\text{~} + \quad \text{~} + \quad \text{~} \]

\[\mathbf{u}_1 \quad \mathbf{v}_1 \quad \mathbf{w}_i \]

\[N \quad M \]

\[\text{users} \quad \text{products} \]
Answer to both: tensor factorization

- PARAFAC decomposition

\[\text{subject} \times \text{verb} \times \text{object} = \text{politicans} + \text{artists} + \text{athletes} \]
Answer: tensor factorization

- PARAFAC decomposition
- Results for who-calls-whom-when
 - 4M x 15 days
Anomaly detection in time-evolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!
Anomaly detection in time-evolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!
Anomaly detection in time-evolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Roadmap

• Introduction – Motivation
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
 – P2.1: Discoveries @ phonecall network
 – [P2.2: Discoveries in neuro-semantics
 – Speed]
• Conclusions
Coupled Matrix-Tensor Factorization (CMTF)
Neuro-semantics

- **Brain Scan Data**
 - 9 persons
 - 60 nouns

- **Questions**
 - 218 questions
 - ‘is it alive?’, ‘can you eat it?’

Neuro-semantics

- **Brain Scan Data**
 - 9 persons
 - 60 nouns
- **Questions**
 - 218 questions
 - ‘is it alive?’, ‘can you eat it?’

Patterns?
Brain Scan Data
- 9 persons
- 60 nouns

Questions
- 218 questions
- ‘is it alive?’, ‘can you eat it?’

Patterns?
- airplane
- dog
Nouns Questions

Nouns
- beetle
- pants
- bee

Questions
- can it cause you pain?
- do you see it daily?
- is it conscious?

Nouns
- bear
- cow
- coat

Questions
- does it grow?
- is it alive?
- was it ever alive?

Nouns
- glass
- tomato
- bell

Questions
- can you pick it up?
- can you hold it in one hand?
- is it smaller than a golfball?

Nouns
- bed
- house
- car

Questions
- does it use electricity?
- can you sit on it?
- does it cast a shadow?

Figure 4: Neuro-semantics
Neuro-semantics

Small items -> Premotor cortex

Nouns
- glass
- tomato
- bell

Questions
- can you pick it up?
- can you hold it in one hand?
- is it smaller than a golfball?”
Small items -> Premotor cortex

Evangelos Papalexakis, Tom Mitchell, Nicholas Sidiropoulos, Christos Faloutsos, Partha Pratim Talukdar, Brian Murphy, Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor Factorizations by 200x, SDM 2014
Part 2: Conclusions

• Time-evolving / heterogeneous graphs -> tensors
• PARAFAC finds patterns
• (GigaTensor/HaTen2 -> fast & scalable)
Roadmap

• Introduction – Motivation
 – Why study (big) graphs?
• Part#1: Patterns in graphs
• Part#2: time-evolving graphs; tensors
• Acknowledgements and Conclusions
Thanks

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab
CONCLUSION#1 – Big data

- Patterns ≠ Anomalies

- Large datasets reveal patterns/outliers that are invisible otherwise
CONCLUSION#2 – tensors

• powerful tool

1 caller

5 receivers

4 days of activity
References

• D. Chakrabarti, C. Faloutsos: *Graph Mining – Laws, Tools and Case Studies*, Morgan Claypool 2012
• http://www.morganclaypool.com/doi/abs/10.2200/S00449ED1V01Y201209DMK006
TAKE HOME MESSAGE:

Cross-disciplinarity
Thank you!

Cross-disciplinarity

http://www.cs.cmu.edu/~christos/TALKS/16-06-19-ICML/