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Overall Outline 

•  Introduction – Motivation 
•  Talk#1: Patterns in graphs; generators 
•  Talk#2: Tools (Ranking, proximity) 
•  Talk#3: Tools (Tensors, scalability) 
•  Conclusions 

KAIST-2011 
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Outline 
•  Task 4: time-evolving graphs – tensors 
•  Task 5: community detection 
•  Task 6: virus propagation 
•  Task 7: scalability, parallelism and hadoop 
•  Conclusions 

KAIST-2011 (C) 2011, C. Faloutsos 3 
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Thanks to 
•  Tamara Kolda (Sandia) 

for  the foils on tensor 
definitions, and on TOPHITS 
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Detailed outline 

•  Motivation 
•  Definitions: PARAFAC and Tucker 
•  Case study: web mining 
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Examples of Matrices: 
Authors and terms 

data mining classif. tree ... 
John 
Peter 
Mary 
Nick 

... 
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Motivation: Why tensors? 

•  Q: what is a tensor? 



CMU SCS 

KAIST-2011 (C) 2011, C. Faloutsos 8 

Motivation: Why tensors? 

•  A: N-D generalization of matrix: 

data mining classif. tree ... 
John 
Peter 
Mary 
Nick 

... 

KDD’09 
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Motivation: Why tensors? 

•  A: N-D generalization of matrix: 

data mining classif. tree ... 
John 
Peter 
Mary 
Nick 

... 

KDD’08 

KDD’07 

KDD’09 
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Tensors are useful for 3 or more 
modes  

Terminology: ‘mode’ (or ‘aspect’): 

data mining classif. tree ... 

Mode (== aspect) #1 

Mode#2 

Mode#3 
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Notice 

•  3rd mode does not need to be time 
•  we can have more than 3 modes 

... 

IP destination 

Dest. port 

IP source 

80 
125 
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Notice 
•  3rd mode does not need to be time 
•  we can have more than 3 modes 

–  Eg, fFMRI: x,y,z, time, person-id, task-id 

http://denlab.temple.edu/bidms/cgi-bin/browse.cgi 

From DENLAB, Temple U. 
(Prof. V. Megalooikonomou +) 
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Motivating Applications  
•  Why tensors are useful?  

– web mining (TOPHITS) 
–  environmental sensors 
–  Intrusion detection (src, dst, time, dest-port) 
–  Social networks (src, dst, time, type-of-contact) 
–  face recognition 
–  etc … 
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Detailed outline 

•  Motivation 
•  Definitions: PARAFAC and Tucker 
•  Case study: web mining 
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Tensor basics 

•  Multi-mode extensions of SVD – recall that: 
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Reminder: SVD 

– Best rank-k approximation in L2 

A m 

n 

Σ 
m 

n 

U 

VT 

≈ 	
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Reminder: SVD 

– Best rank-k approximation in L2 

A m 

n 

≈ 	

 + 

σ1u1°v1 σ2u2°v2 
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Goal: extension to >=3 modes 

~ 

I x R 

A 
B 

J x R 

R x R x R 

I x J x K 

+…+ = 
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Main points: 

•  2 major types of tensor decompositions: 
PARAFAC and Tucker 

•  both can be solved with ``alternating least 
squares’’ (ALS) 
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= 
U 

I x R 

V 
J x R 

R x R x R 

Specially Structured Tensors 
•  Tucker Tensor •  Kruskal Tensor 

I x J x K 

= 
U 

I x R 

V 
J x S 

R x S x T 

I x J x K 

Our  
Notation 

Our  
Notation 

+…+ = 

u1 uR 

v1 

w1 

vR 

wR 

“core” 
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Tucker Decomposition - intuition 

I x J x K 

~ 
A 

I x R 

B 
J x S 

R x S x T 

•  author x keyword x conference 
•  A: author x author-group 
•  B: keyword x keyword-group 
•  C: conf. x conf-group 
•  G: how groups relate to each other 
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Intuition behind core tensor 

•  2-d case: co-clustering 
•  [Dhillon et al. Information-Theoretic Co-

clustering, KDD’03] 
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m 

m 

n 

n l 

k 

k 
l 

eg, terms x documents 
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term x 
term-group 

doc x 
doc group 

term group x 
doc. group 

med. terms 

cs terms 
common terms 

med. doc 
cs doc 
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Tensor tools - summary 

•  Two main tools 
– PARAFAC 
– Tucker 

•  Both find row-, column-, tube-groups 
–  but in PARAFAC the three groups are identical 

•  ( To solve: Alternating Least Squares ) 
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Detailed outline 

•  Motivation 
•  Definitions: PARAFAC and Tucker 
•  Case study: web mining 
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Web graph mining 

•  How to order the importance of web pages? 
– Kleinberg’s algorithm HITS 
– PageRank 
– Tensor extension on HITS (TOPHITS) 
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Kleinberg’s Hubs and Authorities 
(the HITS method) 

Sparse adjacency matrix and its SVD: 

authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic 

fro
m

 to 

Kleinberg, JACM, 1999 
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authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic 

fro
m

 to 

HITS Authorities on Sample Data 

We started our crawl from 
http://www-neos.mcs.anl.gov/neos,  

and crawled 4700 pages, 
resulting in 560  

 cross-linked hosts. 
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Three-Dimensional View of the Web 

Observe that this 
tensor is very sparse! 

Kolda, Bader, Kenny, ICDM05 
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Three-Dimensional View of the Web 

Observe that this 
tensor is very sparse! 

Kolda, Bader, Kenny, ICDM05 
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Three-Dimensional View of the Web 

Observe that this 
tensor is very sparse! 

Kolda, Bader, Kenny, ICDM05 
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Topical HITS (TOPHITS) 
Main Idea: Extend the idea behind the HITS model to incorporate 
term (i.e., topical) information. 

authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic 

fro
m

 

to 

term scores 
for 1st topic 

term scores 
for 2nd topic 
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Topical HITS (TOPHITS) 
Main Idea: Extend the idea behind the HITS model to incorporate 
term (i.e., topical) information. 

authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic 

fro
m

 

to 

term scores 
for 1st topic 

term scores 
for 2nd topic 
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TOPHITS Terms & Authorities 
on Sample Data 

TOPHITS uses 3D analysis to find 
the dominant groupings of web 
pages and terms. 

authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic fro

m
 

to 

term scores 
for 1st topic 

term scores 
for 2nd topic 

Tensor PARAFAC 

wk = # unique links using term 
k 
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Conclusions 

•  Real data are often in high dimensions with 
multiple aspects (modes) 

•  Tensors provide elegant theory and 
algorithms 
– PARAFAC and Tucker: discover groups 
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References 
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Resources 

•  See tutorial on tensors, KDD’07 (w/ Tamara 
Kolda and Jimeng Sun): 

www.cs.cmu.edu/~christos/TALKS/KDD-07-tutorial 
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Tensor tools - resources 

•  Toolbox: from Tamara Kolda: 
csmr.ca.sandia.gov/~tgkolda/TensorToolbox 

2-39 Copyright: Faloutsos, Tong (2009) 2-39 ICDE’09 

•  T. G. Kolda and B. W. Bader. Tensor Decompositions and 
Applications. SIAM Review, Volume 51, Number 3, September 2009 
csmr.ca.sandia.gov/~tgkolda/pubs/bibtgkfiles/TensorReview-preprint.pdf 

•  T. Kolda and J. Sun: Scalable Tensor Decomposition for Multi-Aspect 
Data Mining (ICDM 2008) 
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Outline 
•  Task 4: time-evolving graphs – tensors 
•  Task 5: community detection 
•  Task 6: virus propagation 
•  Task 7: scalability, parallelism and hadoop 
•  Conclusions 

KAIST-2011 (C) 2011, C. Faloutsos 40 
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Detailed outline 

•  Motivation 
•  Hard clustering – k pieces 
•  Hard co-clustering – (k,l) pieces 
•  Hard clustering – optimal # pieces 
•  Observations 
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Problem 

•  Given a graph, and k 
•  Break it into k (disjoint) communities 
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Problem 

•  Given a graph, and k 
•  Break it into k (disjoint) communities 

k = 2 
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Solution #1: METIS 

•  Arguably, the best algorithm 
•  Open source, at 

–  http://www.cs.umn.edu/~metis 

•  and *many* related papers, at same url 
•  Main idea:  

–  coarsen the graph;  
–  partition;  
–  un-coarsen 
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Solution #1: METIS 
•  G. Karypis and V. Kumar. METIS 4.0: 

Unstructured graph partitioning and sparse 
matrix ordering system. TR, Dept. of CS,  
Univ. of Minnesota, 1998. 

•  <and many extensions> 
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Solution #2 
(problem: hard clustering, k pieces) 
Spectral partitioning: 
•  Consider the 2nd smallest eigenvector of the 

(normalized) Laplacian 
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Solutions #3, … 

Many more ideas: 
•  Clustering on the A2 (square of adjacency 

matrix) [Zhou, Woodruff, PODS’04] 
•  Minimum cut / maximum flow [Flake+, 

KDD’00] 
•  … 
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Detailed outline 

•  Motivation 
•  Hard clustering – k pieces 
•  Hard co-clustering – (k,l) pieces 
•  Hard clustering – optimal # pieces 
•  Soft clustering – matrix decompositions 
•  Observations 
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Problem definition 

•  Given a bi-partite graph, and k, l 
•  Divide it into k row groups and l row groups 
•  (Also applicable to uni-partite graph) 
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Co-clustering 

•  Given data matrix and the number of row 
and column groups k and l 

•  Simultaneously 
– Cluster rows into k disjoint groups  
– Cluster columns into l disjoint groups 
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Co-clustering 
•  Let X and Y  be discrete random variables  

–   X  and Y  take values in {1, 2, …, m} and {1, 2, …, n} 
–   p(X, Y)  denotes the joint probability distribution—if 

not known, it is often estimated based on co-occurrence 
data 

–  Application areas: text mining, market-basket analysis, 
analysis of browsing behavior, etc.  

•  Key Obstacles in Clustering Contingency Tables  
–  High Dimensionality, Sparsity, Noise 
–  Need for robust and scalable algorithms 

Reference: 
1.  Dhillon et al. Information-Theoretic Co-clustering, KDD’03 
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m 

m 

n 

n l 

k 

k 
l 

eg, terms x documents 
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doc x 
doc group 

term group x 
doc. group 

med. terms 

cs terms 
common terms 

med. doc 
cs doc 

term x 
term-group 
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Co-clustering 

Observations 
•  uses KL divergence, instead of L2 
•  the middle matrix is not diagonal 

– we saw that earlier in the Tucker tensor 
decomposition 

•  s/w at: 
www.cs.utexas.edu/users/dml/Software/cocluster.html 
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Detailed outline 

•  Motivation 
•  Hard clustering – k pieces 
•  Hard co-clustering – (k,l) pieces 
•  Hard clustering – optimal # pieces 
•  Soft clustering – matrix decompositions 
•  Observations 
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Problem with Information Theoretic 
Co-clustering 

•  Number of row and column groups must be 
specified 

Desiderata: 

  Simultaneously discover row and column groups 

"  Fully Automatic: No “magic numbers” 

  Scalable to large graphs 
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Cross-association 

Desiderata: 

  Simultaneously discover row and column groups 

  Fully Automatic: No “magic numbers” 

  Scalable to large matrices 

Reference: 
1.  Chakrabarti et al. Fully Automatic Cross-Associations, KDD’04 
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What makes a cross-association 
“good”? 

versus 

Column 
groups 

Column 
groups 

R
ow

 g
ro

up
s 

R
ow

 g
ro

up
s 

Why is this 
better? 
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What makes a cross-association 
“good”? 

versus 

Column 
groups 

Column 
groups 

R
ow

 g
ro

up
s 

R
ow

 g
ro

up
s 

Why is this 
better? 

simpler; easier to describe 
easier to compress! 
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What makes a cross-association 
“good”? 

Problem definition: given an encoding scheme 
•  decide on the # of col. and row groups k and l 
•  and reorder rows and columns, 
•  to achieve best compression 
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Main Idea 

sizei * H(xi)  + Cost of describing 
cross-associations 

Code Cost Description 
Cost 

Σi  Total Encoding Cost = 

Good 
Compression 

Better 
Clustering 

Minimize the total cost (# bits) 

for lossless compression 
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Algorithm 
k = 5 row

 groups 

k=1, 
l=2 

k=2, 
l=2 

k=2, 
l=3 

k=3, 
l=3 

k=3, 
l=4 

k=4, 
l=4 

k=4, 
l=5 

l = 5 col groups 
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Experiments 
“CLASSIC” 

•  3,893 documents 

•  4,303 words 

•  176,347 “dots” 

Combination of 3 sources: 

•  MEDLINE (medical) 

•  CISI (info. retrieval) 

•  CRANFIELD (aerodynamics) 

D
oc

um
en

ts
 

Words 
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Experiments 

“CLASSIC” graph of documents & 
words: k=15, l=19 

D
oc

um
en

ts
 

Words 
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Experiments 

“CLASSIC” graph of documents & 
words: k=15, l=19 

MEDLINE 
(medical) 

insipidus, alveolar, aortic, 
death, prognosis, intravenous blood, disease, clinical, cell, 

tissue, patient 
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Experiments 

“CLASSIC” graph of documents & 
words: k=15, l=19 

CISI 
(Information Retrieval) 

providing, studying, records, 
development, students, rules 

abstract, notation, works, 
construct, bibliographies 

MEDLINE 
(medical) 
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Experiments 

“CLASSIC” graph of documents & 
words: k=15, l=19 

CRANFIELD 
(aerodynamics) 

shape, nasa, leading, 
assumed, thin 

CISI 
(Information Retrieval) 

MEDLINE 
(medical) 
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Experiments 

“CLASSIC” graph of documents & 
words: k=15, l=19 

paint, examination, fall, 
raise, leave, based 

CRANFIELD 
(aerodynamics) 

CISI 
(Information Retrieval) 

MEDLINE 
(medical) 
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Algorithm 
Code for cross-associations (matlab): 

www.cs.cmu.edu/~deepay/mywww/software/
CrossAssociations-01-27-2005.tgz!

Variations and extensions: 
•  ‘Autopart’ [Chakrabarti, PKDD’04] 
•   www.cs.cmu.edu/~deepay!
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Algorithm 
•  Hadoop implementation [ICDM’08] 

Spiros Papadimitriou, Jimeng Sun: DisCo: Distributed Co-clustering with Map-
Reduce: A Case Study towards Petabyte-Scale End-to-End Mining. ICDM 2008: 
512-521  
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Detailed outline 

•  Motivation 
•  Hard clustering – k pieces 
•  Hard co-clustering – (k,l) pieces 
•  Hard clustering – optimal # pieces 
•  Observations 
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Observation #1 

•  Skewed degree distributions – there are 
nodes with huge degree (>O(10^4), in 
facebook/linkedIn popularity contests!) 
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Observation #2 

•  Maybe there are no good cuts: ``jellyfish’’ 
shape [Tauro+’01], [Siganos+,’06], strange 
behavior of cuts [Chakrabarti+’04], 
[Leskovec+,’08] 
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Observation #2 

•  Maybe there are no good cuts: ``jellyfish’’ 
shape [Tauro+’01], [Siganos+,’06], strange 
behavior of cuts [Chakrabarti+,’04], 
[Leskovec+,’08] 

? ? 
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Jellyfish model [Tauro+] 

… 

A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G. 
Siganos, M. Faloutsos, Global Internet, November 25-29, 2001 

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L 
Tauro, M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 
339-350, Sept. 2006.  
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Strange behavior of min cuts 

•  ‘negative dimensionality’ (!) 

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,  
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 
Workshop on Link Analysis, Counter-terrorism and Privacy 

Statistical Properties of Community Structure in Large Social and 
Information Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney.  
WWW 2008.  
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“Min-cut” plot 
•  Do min-cuts recursively. 

log (# edges) 

log (mincut-size / #edges) 

N nodes 

Mincut size 
= sqrt(N) 
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“Min-cut” plot 
•  Do min-cuts recursively. 

log (# edges) 

log (mincut-size / #edges) 

N nodes 

New min-cut 
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“Min-cut” plot 
•  Do min-cuts recursively. 

log (# edges) 

log (mincut-size / #edges) 

N nodes 

New min-cut 

Slope = -0.5 

For a d-dimensional 
grid, the slope is -1/d 
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“Min-cut” plot 

log (# edges) 

log (mincut-size / #edges) 

Slope = -1/d 

For a d-dimensional 
grid, the slope is -1/d 

log (# edges) 

log (mincut-size / #edges) 

For a random graph, 
the slope is 0 



CMU SCS 

KAIST-2011 (C) 2011, C. Faloutsos 81 

“Min-cut” plot 
•  What does it look like for a real-world 

graph? 

log (# edges) 

log (mincut-size / #edges) 

? 
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Experiments 
•  Datasets: 

–  Google Web Graph: 916,428 nodes and 
5,105,039 edges 

–  Lucent Router Graph: Undirected graph of 
network routers from 
www.isi.edu/scan/mercator/maps.html; 112,969 
nodes and 181,639 edges 

–  User  Website Clickstream Graph: 222,704 
nodes and 952,580 edges 

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,  
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 
Workshop on Link Analysis, Counter-terrorism and Privacy 
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Experiments 
•  Used the METIS algorithm [Karypis, Kumar, 

1995] 

log (# edges) 

lo
g 

(m
in

cu
t-s

iz
e 

/ #
ed

ge
s)

 

•  Google Web graph 

•  Values along the y-
axis are averaged 

•  We observe a “lip” for 
large edges 

•  Slope of -0.4, 
corresponds to a 2.5-
dimensional grid! 

Slope~ -0.4 
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Google graph 
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Log(#edges) 

log (mincut-size / #edges) 

Log(#edges) 

All min-cuts averaged 
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Experiments 
•  Same results for other graphs too… 

Lucent Router graph 

Clickstream graph 
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Conclusions – Practitioner’s guide 

•  Hard clustering – k pieces 
•  Hard co-clustering – (k,l) pieces 
•  Hard clustering – optimal # pieces 
•  Observations 

METIS 

Co-clustering 

Cross-associations 

‘jellyfish’:  
Maybe, there are 
no good cuts 
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Outline 
•  Task 4: time-evolving graphs – tensors 
•  Task 5: community detection 
•  Task 6: virus propagation 
•  Task 7: scalability, parallelism and hadoop 
•  Conclusions 

KAIST-2011 (C) 2011, C. Faloutsos 87 
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Detailed outline 
•  Problem definition 
•  Analysis 
•  Experiments 
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Immunization and epidemic 

thresholds 
•  Q1: which nodes to immunize? 
•  Q2: will a virus vanish, or will it create an 

epidemic? 

KAIST-2011 (C) 2011, C. Faloutsos 89 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

KAIST-2011 90 (C) 2011, C. Faloutsos 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

 A: immunize the ones that 
     maximally raise 
     the `epidemic threshold’ 
     [Tong+, ICDM’10]     

KAIST-2011 93 (C) 2011, C. Faloutsos 
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Q2: will a virus take over? 
•  Flu-like virus (no immunity, ‘SIS’) 
•  Mumps (life-time immunity, ‘SIR’) 
•  Pertussis (finite-length immunity, ‘SIRS’) 

KAIST-2011 (C) 2011, C. Faloutsos 94 

β: attack prob 
δ: heal prob 
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Q2: will a virus take over? 
•  Flu-like virus (no immunity, ‘SIS’) 
•  Mumps (life-time immunity, ‘SIR’) 
•  Pertussis (finite-length immunity, ‘SIRS’) 

KAIST-2011 (C) 2011, C. Faloutsos 95 

β: attack prob 
δ: heal prob 

Α: depends on connectivity 
    (avg degree? Max degree?  
     variance?  Something else? 
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The model: SIS 

•  ‘Flu’ like: Susceptible-Infected-Susceptible 
•  Virus ‘strength’ s= β/δ 

Infected 

Healthy 

NN1 

N3 

N2 
Prob. β 

Prob. δ 
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Epidemic threshold τ	


of a graph: the value of τ, such that 

if   strength s = β / δ <  τ	


an epidemic can not happen 
Thus,  
•  given a graph 
•  compute its epidemic threshold	
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Detailed outline 
•  Problem definition 
•  Analysis 
•  Experiments 
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Epidemic threshold τ	



What should τ depend on? 
•  avg. degree? and/or highest degree?  
•  and/or variance of degree? 
•  and/or third moment of degree? 
•  and/or diameter? 
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Epidemic threshold 

•  [Theorem] We have no epidemic, if  

β/δ <τ = 1/ λ1,A 
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Epidemic threshold 

•  [Theorem] We have no epidemic, if  

β/δ <τ = 1/ λ1,A 

largest eigenvalue 
of adj. matrix A 

attack prob. 

recovery prob. 
epidemic threshold 

Proof: [Wang+03]  (proof: for SIS=flu only) 
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Beginning of proof 
Healthy @ t+1: 
    - ( healthy or healed )  
    - and not attacked @ t 

Let: p(i , t) = Prob node i is sick @ t+1 

1 - p(i, t+1 ) = (1 – p(i, t) + p(i, t) * δ ) * 
                          Πj (1 – β aji * p(j , t) ) 

Below threshold, if the above non-linear dynamical system 
above is ‘stable’ (eigenvalue of Hessian < 1 ) 
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Epidemic threshold for various 
networks 

Formula includes older results as special cases:  
•  Homogeneous networks [Kephart+White] 

–  λ1,A = <k>; τ = 1/<k> (<k> : avg degree) 

•  Star networks (d = degree of center) 
–  λ1,A = sqrt(d); τ = 1/ sqrt(d) 

•  Infinite power-law networks 
–  λ1,A = ∞; τ = 0 ; [Barabasi] 
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Epidemic threshold 

•  [Theorem 2] Below the epidemic threshold, 
the epidemic dies out exponentially 
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Recent generalization 
•  [Prakash+, arxiv ‘10]: similar threshold, for 

almost all virus propagation models (VPM) 
– SIS -> flu  
– SIR -> mumps 
– SIRS -> whooping cough (temporary 

immunity) 
– SIIR (-> HIV) 
– … 

KAIST-2011 (C) 2011, C. Faloutsos 105 
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A2: will a virus take over? 
•  For all typical virus propagation models (flu, 

mumps, pertussis, HIV, etc) 
•  The only connectivity measure that matters, is 

      1/λ1  
the first eigenvalue of the 
 adj. matrix 
Proof for all VPM: 
[Prakash+, ‘10, arxiv] 

KAIST-2011 (C) 2011, C. Faloutsos 106 
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Detailed outline 
•  Epidemic threshold 

– Problem definition 
– Analysis 
– Experiments 
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Experiments (Oregon) 

β/δ > τ  
(above threshold) 

β/δ = τ  
(at the threshold) 

β/δ < τ  
(below threshold) 
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SIS simulation - # infected nodes vs 
time 

Time (linear scale) 

#inf. 
(log scale) 

above 

at 

below 

Log - Lin 



KAIST-2011 (C) 2011, C. Faloutsos 110 

SIS simulation - # infected nodes vs 
time 

Log - Lin 

Time (linear scale) 

#inf. 
(log scale) 

above 

at 

below 

Exponential 
decay 
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SIS simulation - # infected nodes vs 
time 

Log - Log 

Time (log scale) 

#inf. 
(log scale) 

above 

at 

below 
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SIS simulation - # infected nodes vs 
time 

Time (log scale) 

#inf. 
(log scale) 

above 

at 

below 

Log - Log 

Power-law 
Decay (!) 



How about other VPMs? 

KAIST-2011 (C) 2011, C. Faloutsos P6-113 
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A2: will a virus take over? (SIRS case) 

KAIST-2011 (C) 2011, C. Faloutsos 114 

Fraction of 
infected 

Time ticks 

Below: exp. extinction 

Above: take-over 

Graph: 
Portland, OR 
31M links 
1.5M nodes 
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Conclusions 

λ1,A   : Eigenvalue of adjacency matrix 
determines the survival of (almost) any 
virus 

•  measure of connectivity (~ # paths) 
•  Can answer ‘what-if’ scenarios 

– May guide immunization policies 

•  Can help us avoid expensive simulations 
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Outline 
•  Task 4: time-evolving graphs – tensors 
•  Task 5: community detection 
•  Task 6: virus propagation 
•  Task 7: scalability, parallelism and hadoop 
•  Conclusions 
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Scalability 

•  How about if graph/tensor does not fit in 
core? 

•  How about handling huge graphs? 



CMU SCS 

KAIST-2011 (C) 2011, C. Faloutsos P8-121 

Scalability 

•  How about if graph/tensor does not fit in 
core? 

•  [‘MET’: Kolda, Sun, ICMD’08, best paper 
award] 

•  How about handling huge graphs? 
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Scalability 
•   Google: > 450,000 processors in clusters of 

~2000 processors each [Barroso, Dean, Hölzle, 
“Web Search for a Planet: The Google Cluster 
Architecture” IEEE Micro 2003] 

•  Yahoo: 5Pb of data [Fayyad, KDD’07] 
•  Problem: machine failures, on a daily basis 
•  How to parallelize data mining tasks, then? 
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Scalability 
•   Google: > 450,000 processors in clusters of ~2000 

processors each [Barroso, Dean, Hölzle, “Web Search for 
a Planet: The Google Cluster Architecture” IEEE Micro 
2003] 

•  Yahoo: 5Pb of data [Fayyad, KDD’07] 
•  Problem: machine failures, on a daily basis 
•  How to parallelize data mining tasks, then? 
•  A: map/reduce – hadoop (open-source clone)  

http://hadoop.apache.org/ 
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2’ intro to hadoop 
•  master-slave architecture; n-way replication 

(default n=3) 
•  ‘group by’ of SQL (in parallel, fault-tolerant way) 
•  e.g, find histogram of word frequency 

–  compute local histograms 
–  then merge into global histogram 

select course-id, count(*) 
from ENROLLMENT 
group by course-id 
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2’ intro to hadoop 
•  master-slave architecture; n-way replication 

(default n=3) 
•  ‘group by’ of SQL (in parallel, fault-tolerant way) 
•  e.g, find histogram of word frequency 

–  compute local histograms 
–  then merge into global histogram 

select course-id, count(*) 
from ENROLLMENT 
group by course-id map 

reduce 
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User 
Program 

Reducer 

Reducer 

Master 

Mapper 

Mapper 

Mapper 

fork fork fork 

assign 
map assign 

reduce 

read 
local 
write 

remote read, 
sort 

Output 
File 0 

Output 
File 1 

write 
Split 0 
Split 1 
Split 2 

Input	
  Data 
(on	
  HDFS) 

By default: 3-way replication; 
Late/dead machines: ignored, transparently (!) 
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D.I.S.C.  

•  ‘Data Intensive Scientific Computing’ [R. 
Bryant, CMU] 
–  ‘big data’  
–  www.cs.cmu.edu/~bryant/pubdir/cmu-

cs-07-128.pdf 
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~200Gb (Yahoo crawl) - Degree Distribution:  
•  in 12 minutes with 50 machines 
•  Many (link spams ?) at out-degree 1200 

Analysis of a large graph 
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Centralized Hadoop/
PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old DONE 

Conn. Comp old DONE 

Triangles DONE 
Visualization STARTED 

Outline – Algorithms & results 

KAIST-2011 
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HADI for diameter estimation 
•  Radius Plots for Mining Tera-byte Scale 

Graphs U Kang, Charalampos Tsourakakis, 
Ana Paula Appel, Christos Faloutsos, Jure 
Leskovec, SDM’10 

•  Naively: diameter needs O(N**2) space and 
up to O(N**3) time – prohibitive (N~1B) 

•  Our HADI: linear on E (~10B) 
– Near-linear scalability wrt # machines 
– Several optimizations -> 5x faster 

(C) 2011, C. Faloutsos 130 KAIST-2011 
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???? 

19+ [Barabasi+] 

131 (C) 2011, C. Faloutsos 

Radius 

Count 

KAIST-2011 

~1999, ~1M nodes 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+ [Barabasi+] 

132 (C) 2011, C. Faloutsos 

Radius 

Count 

KAIST-2011 

?? 

~1999, ~1M nodes 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+? [Barabasi+] 

133 (C) 2011, C. Faloutsos 

Radius 

Count 

KAIST-2011 

14 (dir.) 
~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
• 7 degrees of separation (!) 
• Diameter: shrunk 

???? 

19+? [Barabasi+] 

134 (C) 2011, C. Faloutsos 

Radius 

Count 

KAIST-2011 

14 (dir.) 
~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
Q: Shape? 

???? 

135 (C) 2011, C. Faloutsos 

Radius 

Count 

KAIST-2011 

~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality (?!) 

KAIST-2011 
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Radius Plot of GCC of YahooWeb. 

137 (C) 2011, C. Faloutsos KAIST-2011 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

KAIST-2011 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

KAIST-2011 

EN 

~7 

Conjecture: 
DE 

BR 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

KAIST-2011 

~7 

Conjecture: 
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Running time -  Kronecker and Erdos-Renyi  
Graphs with billions edges. 

details 
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Centralized Hadoop/
PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old DONE 

Conn. Comp old DONE 

Triangles DONE 
Visualization STARTED 

Outline – Algorithms & results 

KAIST-2011 
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Generalized Iterated Matrix 

Vector Multiplication (GIMV) 

(C) 2011, C. Faloutsos 143 

PEGASUS: A Peta-Scale Graph Mining  
System - Implementation and Observations.  
U Kang, Charalampos E. Tsourakakis,  
and Christos Faloutsos.  
(ICDM) 2009, Miami, Florida, USA.  
Best Application Paper (runner-up).  

KAIST-2011 
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Generalized Iterated Matrix 

Vector Multiplication (GIMV) 

(C) 2011, C. Faloutsos 144 

•  PageRank 
•  proximity (RWR) 
•  Diameter 
•  Connected components 
•  (eigenvectors,  
•   Belief Prop.  
•   … ) 

Matrix – vector 
Multiplication 

(iterated) 

KAIST-2011 

details 
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Example: GIM-V At Work 
•  Connected Components – 4 observations: 

Size 

Count 

(C) 2011, C. Faloutsos KAIST-2011 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

(C) 2011, C. Faloutsos KAIST-2011 

1) 10K x  
larger 
than next 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

(C) 2011, C. Faloutsos KAIST-2011 

2) ~0.7B  
singleton 
 nodes 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

(C) 2011, C. Faloutsos KAIST-2011 

3) SLOPE! 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 
300-size 

cmpt 
X 500. 
Why? 1100-size cmpt 

X 65. 
Why? 

(C) 2011, C. Faloutsos KAIST-2011 

4) Spikes! 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

suspicious 
financial-advice sites 

(not existing now) 

(C) 2011, C. Faloutsos KAIST-2011 
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GIM-V At Work 
•  Connected Components over Time 
•  LinkedIn: 7.5M nodes and 58M edges 

Stable tail slope 
after the gelling point 

(C) 2011, C. Faloutsos KAIST-2011 
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Conclusions 

•  Hadoop: promising architecture for Tera/
Peta scale graph mining 

Resources: 
•  http://hadoop.apache.org/core/ 
•  http://hadoop.apache.org/pig/ 

Higher-level language for data processing 
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Overall Conclusions 
•  Real graphs exhibit surprising patterns 

(power laws, shrinking diameter, super-
linearity on edge weights, triangles etc) 

•  SVD: a powerful tool (HITS, PageRank) 
•  Several other tools: tensors, METIS, … 

– But: good communities might not exist… 

•  Immunization: first eigenvalue 
•  Scalability: hadoop/parallelism 

KAIST-2011 (C) 2011, C. Faloutsos 154 
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Our goal: 

Open source system for mining huge graphs: 

PEGASUS project (PEta GrAph mining 
System)  

•  www.cs.cmu.edu/~pegasus 
•  code and papers 

KAIST-2011 
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Extra material 
•  E-bay fraud detection 
•  Outlier detection 

KAIST-2011 (C) 2011, C. Faloutsos 157 
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Detailed outline 
•  Fraud detection in e-bay 
•  Anomaly detection 
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E-bay Fraud detection 

w/ Polo Chau & 
Shashank Pandit, CMU 

NetProbe: A Fast and Scalable System for Fraud Detection in 
Online Auction Networks, S. Pandit, D. H. Chau, S. Wang, and C. 
Faloutsos (WWW'07), pp. 201-210  



CMU SCS 

KAIST-2011 (C) 2011, C. Faloutsos 160 

E-bay Fraud detection 

•  lines: positive feedbacks 
•  would you buy from  him/her? 
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E-bay Fraud detection 

•  lines: positive feedbacks 
•  would you buy from  him/her? 

•  or him/her? 
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E-bay Fraud detection - NetProbe 

Belief Propagation gives: 
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Popular press 

And less desirable attention: 
•  E-mail from ‘Belgium police’ (‘copy of 

your code?’) 
KAIST-2011 (C) 2011, C. Faloutsos 163 
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Extra material 
•  E-bay fraud detection 
•  Outlier detection 

KAIST-2011 (C) 2011, C. Faloutsos 164 
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OddBall: Spotting Anomalies 
in  Weighted Graphs 

Leman Akoglu, Mary McGlohon, Christos 
Faloutsos 

Carnegie Mellon University  
School of Computer Science 

PAKDD 2010, Hyderabad, India 
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Main idea 
For each node,  
•  extract ‘ego-net’ (=1-step-away neighbors) 
•  Extract features (#edges, total weight, etc 

etc) 
•  Compare with the rest of the population 

(C) 2011, C. Faloutsos 166 KAIST-2011 
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What is an egonet? 

ego 

167 

egonet 

(C) 2011, C. Faloutsos KAIST-2011 
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Selected Features 
  Ni: number of neighbors (degree) of ego i 
  Ei: number of edges in egonet i 
  Wi: total weight of egonet i 
  λw,i: principal eigenvalue of the weighted 

adjacency matrix of egonet I 

168 (C) 2011, C. Faloutsos KAIST-2011 
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Near-Clique/Star 

169 KAIST-2011 (C) 2011, C. Faloutsos 



CMU SCS 
Near-Clique/Star 

170 (C) 2011, C. Faloutsos KAIST-2011 
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END 
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