Talk 3: Graph Mining Tools Tensors, communities, parallelism

Christos Faloutsos CMU

Overall Outline

- Introduction - Motivation
- Talk\#1: Patterns in graphs; generators
- Talk\#2: Tools (Ranking, proximity)
- Talk\#3: Tools (Tensors, scalability)
- Conclusions

Outline

- Task 4: time-evolving graphs - tensors
- Task 5: community detection
- Task 6: virus propagation
- Task 7: scalability, parallelism and hadoop
- Conclusions

Thanks to

- Tamara Kolda (Sandia)
for the foils on tensor definitions, and on TOPHITS

Detailed outline

- Motivation
- Definitions: PARAFAC and Tucker
- Case study: web mining

Examples of Matrices: Authors and terms

	data	mining	classif. tree		
John	13	11	22	55	
Peter	5	4	6	7	...
Mary
Nick

Motivation: Why tensors?

- Q: what is a tensor?

Motivation: Why tensors?

- A: N-D generalization of matrix:

KDD'09	data	mining	classif.	tree	.
John	13	11	22	55	...
Peter	5	4	6	7	...
Mary	\ldots	...	\ldots
Nick	\ldots	\ldots
	...	\ldots	\ldots	\ldots	...
KAIST-2011	(C) 2011, C. Faloutsos				

Motivation: Why tensors?

- A: N-D generalization of matrix:

Tensors are useful for 3 or more modes

Terminology: 'mode’ (or 'aspect'):

Notice

- $3^{\text {rd }}$ mode does not need to be time
- we can have more than 3 modes

Notice

- $3^{\text {rd }}$ mode does not need to be time
- we can have more than 3 modes
- Eg, fFMRI: x,y,z, time, person-id, task-id

From DENLAB, Temple U. (Prof. V. Megalooikonomou +)

http://denlab.temple.edu/bidms/cgi-bin/browse.cgi

Motivating Applications

- Why tensors are useful?
- web mining (TOPHITS)
- environmental sensors
- Intrusion detection (src, dst, time, dest-port)
- Social networks (src, dst, time, type-of-contact)
- face recognition
- etc ...

Detailed outline

- Motivation

Definitions: PARAFAC and Tucker

- Case study: web mining

Tensor basics

- Multi-mode extensions of SVD - recall that:

Reminder: SVD

$\mathbf{A} \approx \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\sum_{i} \sigma_{i} \mathbf{u}_{i} \circ \mathbf{v}_{i}$

- Best rank-k approximation in L2

Reminder: SVD

$\mathbf{A} \approx \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\sum_{i} \sigma_{i} \mathbf{u}_{i} \circ \mathbf{v}_{i}$

- Best rank-k approximation in L2

Goal: extension to $>=\mathbf{3}$ modes

Main points:

- 2 major types of tensor decompositions: PARAFAC and Tucker
- both can be solved with ` alternating least squares' (ALS)

Specially Structured Tensors

- Tucker Tensor

$$
x=\mathcal{G} \times_{1} \mathrm{U} \times_{2} \mathrm{~V} \times_{3} \mathrm{~W}
$$

$$
=\sum_{r} \sum_{s} \sum_{t} g_{r s t} \mathbf{u} \mathbf{u}_{r} \circ \mathbf{v}_{s} \circ \mathbf{w}_{t}
$$

$$
\equiv \llbracket \mathcal{G} ; \mathbf{U}, \mathbf{V}, \mathbf{W} \rrbracket\} \begin{gathered}
\text { Our } \\
\text { Notation }
\end{gathered}
$$

[^0]
Tucker Decomposition - intuition

- author x keyword x conference
- A: author x author-group
- B: keyword x keyword-group
- C: conf. x conf-group
- \mathbf{G} : how groups relate to each other

Intuition behind core tensor

- 2-d case: co-clustering
- [Dhillon et al. Information-Theoretic Coclustering, KDD'03]

$$
\begin{aligned}
& n \\
& m\left[\begin{array}{cccccc}
.05 & .05 & .05 & 0 & 0 & 0 \\
.05 & 05 & .05 & 0 & 0 & 0 \\
0 & 0 & 0 & .05 & .05 & .05 \\
0 & 0 & 0 & .05 & .05 & .05 \\
.04 & .04 & 0 & .04 & .04 & .04 \\
.04 & .04 & .04 & 0 & .04 & .04
\end{array}\right] \quad \text { eg, terms x documents } \\
& m\left[\begin{array}{ccc}
k & l \\
{\left[\begin{array}{ccc}
.5 & 0 & 0 \\
.5 & 0 & 0 \\
0 & .5 & 0 \\
0 & .5 & 0 \\
0 & 0 & .5 \\
0 & 0 & .5
\end{array}\right]} \\
k\left[\begin{array}{ll}
.3 & 0 \\
0 & .3 \\
.2 & .2
\end{array}\right] l \\
l
\end{array}\right.
\end{aligned}
$$

med. doc cs doc
term group x doc. group
$\left[\begin{array}{ccc}.5 & 0 & 0 \\ .5 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5 \\ 0 & 0 & .5\end{array}\right]\left[\begin{array}{cc}.3 & 0 \\ 0 & .3 \\ .2 & .2\end{array}\right]\left[\begin{array}{cccccc}36 & .36 & .28 & 0 & 0 & 0 \\ 0 & 0 & 0 & .28 & .36 & .36\end{array}\right]=\left[\begin{array}{ccc|ccc}.054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ \hline .036 & .036 & 028 & .028 & .036 & .036 \\ .036 & .036 & .028 & .028 & .036 & .036\end{array}\right]$

term x

term-group

Tensor tools - summary

- Two main tools
- PARAFAC
- Tucker
- Both find row-, column-, tube-groups
- but in PARAFAC the three groups are identical
- (To solve: Alternating Least Squares)

Detailed outline

- Motivation
- Definitions: PARAFAC and Tucker Case study: web mining

Web graph mining

- How to order the importance of web pages?
- Kleinberg's algorithm HITS
- PageRank
- Tensor extension on HITS (TOPHITS)

Web
Personalized Results $\mathbf{1 - 1 0}$ of about $\mathbf{1 2 , 8 0 0 , 0 0 0}$ for tensor [definition]. (0.31 seconds)
Tensor - Wikipedia, the free encyclopedia
Examples of physical tensors are the energy-momentum tensor, the inertia tensor Tensorial 3.0 Tensorial is a general purpose tensor calculus package for
en .wikipedia org/wiki/Tensor - 55 k - Cached - Similar pages
Tensor product - Wikipedia, the free encyclopedia
There is a general formula for the product of two (or more) tensors, as ... The tensor product inherits all the indices of its factors. ..
en.wikipedia.org/wiki/Tensor_product - 41k - Cached - Similar pages

Tensor Trucks

Manufacturer of skateboard trucks. Check out team members, videos and apparel. www.tensortrucks.com/ - 3 k - Cached - Similar pages
Time and Attendance \& Access Control through Smart Cards ... Tensor manufacture and supply Smart Card and Biometric Time and Attendance \& Tensor manufacture and supply Smart
Access Control Software and Systems.
www.tensor co.uk/ - 7 k - Cached - Similar pages
Free Textbook Tensor Calculus and Continuum Mechanics A free downloadable textbook on introductory tensor analysis and continuum

KAIST-2011

YaHOO! search
Web $|\underline{\text { maqees }}|$ Video $|\underline{\text { Local }}| \underline{\text { Shoppina }} \mid$ more
tensor
Search Results Preferences

- Also try tensor lamps, tensor lighting, tensor corporation, tensorproduct More
- Tensor Skateboard Trucks Today andegroiledicalcom-Great Selection and Fast Shipping Order Online Today and Save.
- Purchase Tensor Bandages at HCD www.homecaredelivered.com -Save on our full line of wound care supplies.

1. Tensor-fromMathWorld

An nth-rank tensor in m-dimensional space is a mathematical object that has n... Each index of a tensor ranges over the number of dimensions of space....
mathword. wolfram comTensor.html- Hore from this site
2. Tensor-Wikipedia, the free encyclopedia The term tensor' has slighty different meanings in mathematics and physics.... algebra and differential geometry, a tensor is a muttiinea Quick Links: Importance and applications - History - The choice of approach
en.wikipedia.org/wikiTensor-50k-Cached - More from this site

Tensor

Find Deals on Tensor and other
Sporting Equipment at Deartime.
www.dealtime.com
Tensor:Compare Pric thousands oftrusted online stores Get...
www.bizrate.com
Tensor
We are writing an on-line e-book with code: "Pseduocolor in Pure. www.youvan.com
Tensor at Shoppingcom Find, compare and buy products in categories ranging fro
www.shopping.com

Tensor $\frac{\text { Tensor }}{\text { Shop eBay for anything and }}$

Kleinberg's Hubs and Authorities (the HITS method)

authority scores for $1^{\text {st }}$ topic \downarrow
authority scores
for $2^{\text {nd }}$ topic

HITS Authorities on Sample Data

Three-Dimensional View of the Web

Three-Dimensional View of the Web

Observe that this

Three-Dimensional View of the Web

Observe that this

Topical HITS (TOPHITS)

Main Idea: Extend the idea behind the HITS model to incorporate term (i.e., topical) information.

$$
\boldsymbol{X} \approx \sum_{r=1}^{R} \lambda_{r} \mathbf{h}_{r} \circ \mathbf{a}_{r}
$$

Topical HITS (TOPHITS)

Main Idea: Extend the idea behind the HITS model to incorporate term (i.e., topical) information.

$$
\boldsymbol{X} \approx \sum_{r=1}^{R} \lambda_{r} \mathbf{h}_{r} \circ \mathbf{a}_{r} \circ \mathbf{t}_{r}
$$

Gmasele OPHITS Terms \& Authorities on Sample Data

Conclusions

- Real data are often in high dimensions with multiple aspects (modes)
- Tensors provide elegant theory and algorithms
- PARAFAC and Tucker: discover groups

References

- T. G. Kolda, B. W. Bader and J. P. Kenny. Higher-Order Web Link Analysis Using Multilinear Algebra. In: ICDM 2005, Pages 242-249, November 2005.
- Jimeng Sun, Spiros Papadimitriou, Philip Yu. Window-based Tensor Analysis on Highdimensional and Multi-aspect Streams, Proc. of the Int. Conf. on Data Mining (ICDM), Hong Kong, China, Dec 2006

Resources

- See tutorial on tensors, KDD’07 (w/ Tamara Kolda and Jimeng Sun):
www.cs.cmu.edu/~christos/TALKS/KDD-07-tutorial

Tensor tools - resources

- Toolbox: from Tamara Kolda: csmr.ca.sandia.gov/~tgkolda/TensorToolbox
- T. G. Kolda and B. W. Bader. Tensor Decompositions and Applications. SIAM Review, Volume 51, Number 3, September 2009 csmr.ca.sandia.gov/~tgkolda/pubs/bibtgkfiles/TensorReview-preprint.pdf
- T. Kolda and J. Sun: Scalable Tensor Decomposition for Multi-Aspect Data Mining (ICDM 2008)

Outline

- Task 4: time-evolving graphs - tensors
- Task 5: community detection
- Task 6: virus propagation
- Task 7: scalability, parallelism and hadoop
- Conclusions

Detailed outline

- Motivation

Hard clustering $-k$ pieces

- Hard co-clustering - (k, l) pieces
- Hard clustering - optimal \# pieces
- Observations

Problem

- Given a graph, and k
- Break it into k (disjoint) communities

Problem

- Given a graph, and k
- Break it into k (disjoint) communities

$$
k=2
$$

Solution \#1: METIS

- Arguably, the best algorithm
- Open source, at
- http://www.cs.umn.edu/~metis
- and *many* related papers, at same url
- Main idea:
- coarsen the graph;
- partition;
- un-coarsen

Solution \#1: METIS

- G. Karypis and V. Kumar. METIS 4.0: Unstructured graph partitioning and sparse matrix ordering system. TR, Dept. of CS, Univ. of Minnesota, 1998.
- <and many extensions>

Solution \#2

(problem: hard clustering, k pieces)
Spectral partitioning:

- Consider the $2^{\text {nd }}$ smallest eigenvector of the (normalized) Laplacian

Solutions \#3, ...

Many more ideas:

- Clustering on the \mathbf{A}^{2} (square of adjacency matrix) [Zhou, Woodruff, PODS'04]
- Minimum cut / maximum flow [Flake+, KDD'00]

Detailed outline

- Motivation
- Hard clustering - k pieces
- Hard co-clustering - (k, l) pieces
- Hard clustering - optimal \# pieces
- Soft clustering - matrix decompositions
- Observations

Problem definition

- Given a bi-partite graph, and k, l
- Divide it into k row groups and l row groups
- (Also applicable to uni-partite graph)

Co-clustering

- Given data matrix and the number of row and column groups k and l
- Simultaneously
- Cluster rows into k disjoint groups
- Cluster columns into l disjoint groups

Co-clustering

- Let X and Y be discrete random variables
- X and Y take values in $\{1,2, \ldots, m\}$ and $\{1,2, \ldots, n\}$
- $p(X, Y)$ denotes the joint probability distribution-if not known, it is often estimated based on co-occurrence data
- Application areas: text mining, market-basket analysis, analysis of browsing behavior, etc.
- Key Obstacles in Clustering Contingency Tables
- High Dimensionality, Sparsity, Noise
- Need for robust and scalable algorithms

Reference:

1. Dhillon et al. Information-Theoretic Co-clustering, KDD'03

$$
\begin{aligned}
& n \\
& m\left[\begin{array}{cccccc}
.05 & .05 & .05 & 0 & 0 & 0 \\
.05 & 05 & .05 & 0 & 0 & 0 \\
0 & 0 & 0 & .05 & .05 & .05 \\
0 & 0 & 0 & .05 & .05 & .05 \\
.04 & .04 & 0 & .04 & .04 & .04 \\
.04 & 04 & .04 & 0 & .04 & .04
\end{array}\right] \quad \text { eg, terms } x \text { documents } \\
& \boldsymbol{m} \boldsymbol{k} \begin{array}{c}
l \\
{\left[\begin{array}{ccc}
.5 & 0 & 0 \\
.5 & 0 & 0 \\
0 & .5 & 0 \\
0 & .5 & 0 \\
0 & 0 & .5 \\
0 & 0 & .5
\end{array}\right]} \\
\end{array}
\end{aligned}
$$

med. doc

 cs docterm group x doc. group
$\left[\begin{array}{ccc}.5 & 0 & 0 \\ .5 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5 \\ 0 & 0 & .5\end{array}\right]\left[\begin{array}{cc}.3 & 0 \\ 0 & .3 \\ .2 & .2\end{array}\right]\left[\begin{array}{cccccc}36 & .36 & .28 & 0 & 0 & 0 \\ 0 & 0 & 0 & .28 & .36 & .36\end{array}\right]=\left[\begin{array}{ccc|ccc}.054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ \hline .036 & .036 & 028 & .028 & .036 & .036 \\ .036 & .036 & .028 & .028 & .036 & .036\end{array}\right]$
term x term-group

Co-clustering

Observations

- uses KL divergence, instead of L2
- the middle matrix is not diagonal
- we saw that earlier in the Tucker tensor decomposition
- s/w at:
www.cs.utexas.edu/users/dml/Software/cocluster.html

Detailed outline

- Motivation
- Hard clustering - k pieces
- Hard co-clustering - (k,l) pieces
- Hard clustering - optimal \# pieces
- Soft clustering - matrix decompositions
- Observations

Problem with Information Theoretic Co-clustering

- Number of row and column groups must be specified

Desiderata:
\checkmark Simultaneously discover row and column groups
\times Fully Automatic: No "magic numbers"
\checkmark Scalable to large graphs

Cross-association

Desiderata:

\checkmark Simultaneously discover row and column groups
\checkmark Fully Automatic: No "magic numbers"
\checkmark Scalable to large matrices
Reference:

1. Chakrabarti et al. Fully Automatic Cross-Associations, KDD'04

What makes a cross-association "good"?

Why is this better?

What makes a cross-association "good"?

Why is this better?
simpler, easier to describe easier to compress!

What makes a cross-association "good"?

Problem definition: given an encoding scheme

- decide on the \# of col. and row groups k and l
- and reorder rows and columns,
- to achieve best compression

Main Idea

Total Encoding Cost $=\underbrace{\sum_{i} \operatorname{size}_{\mathrm{i}}{ }^{*} \mathrm{H}\left(\mathrm{x}_{\mathrm{i}}\right)}_{\text {Code Cost }}+\underbrace{\begin{array}{c}\text { Cost of describing } \\ \text { cross-associations }\end{array}}_{\begin{array}{c}\text { Description } \\ \text { Cost }\end{array}}$
Minimize the total cost (\# bits)

for lossless compression

Algorithm

Experiments

"CLASSIC"

- 3,893 documents
- 4,303 words
- 176,347 "dots"

Combination of 3 sources:

- MEDLINE (medical)
- CISI (info. retrieval)
- CRANFIELD (aerodynamics)

Experiments

"CLASSIC" graph of documents \& words: $\mathrm{k}=15, \mathrm{l}=19$

Experiments

"CLASSIC" graph of documents \& words: $\mathrm{k}=15, \mathrm{l}=19$

Experiments

"CLASSIC" graph of documents \& words: $\mathrm{k}=15, \mathrm{l}=19$

Experiments

"CLASSIC" graph of documents \& words: $k=15, \mathrm{l}=19$

Experiments

"CLASSIC" graph of documents \& words: $k=15, \mathrm{l}=19$

Algorithm

Code for cross-associations (matlab):

www.cs.cmu.edu/~deepay/mywww/software/ CrossAssociations-01-27-2005.tgz

Variations and extensions:

- ‘Autopart' [Chakrabarti, PKDD’04]
- www.cs.cmu.edu/~deepay

Algorithm

- Hadoop implementation [ICDM'08]

Spiros Papadimitriou, Jimeng Sun: DisCo: Distributed Co-clustering with MapReduce: A Case Study towards Petabyte-Scale End-to-End Mining. ICDM 2008: 512-521

Detailed outline

- Motivation
- Hard clustering - k pieces
- Hard co-clustering - (k, l) pieces
- Hard clustering - optimal \# pieces
- Observations

Observation \#1

- Skewed degree distributions - there are nodes with huge degree ($>\mathrm{O}\left(10^{\wedge} 4\right)$, in facebook/linkedIn popularity contests!)

Observation \#2

- Maybe there are no good cuts: '`jellyfish" shape [Tauro+'01], [Siganos+,'06], strange behavior of cuts [Chakrabarti+'04], [Leskovec+,'08]

Observation \#2

- Maybe there are no good cuts: '`jellyfish" shape [Tauro+'01], [Siganos+,'06], strange behavior of cuts [Chakrabarti+,'04], [Leskovec+,'08]

?

Jellyfish model [Tauro+]

A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G. Siganos, M. Faloutsos, Global Internet, November 25-29, 2001

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L Tauro, M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-350, Sept. 2006.

Strange behavior of min cuts

- 'negative dimensionality’ (!)

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy

Statistical Properties of Community Structure in Large Social and Information Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney. WWW 2008.

"Min-cut" plot

- Do min-cuts recursively.

N nodes

"Min-cut" plot

- Do min-cuts recursively.

N nodes

"Min-cut" plot

- Do min-cuts recursively.

N nodes
log (mincut-size / \#edges)

For a d-dimensional grid, the slope is $-1 / d$

"Min-cut" plot

log (mincut-size / \#edges)
log (mincut-size / \#edges)

\log (\# edges)
For a d-dimensional grid, the slope is $-1 / d$

log (\# edges)
For a random graph, the slope is 0

"Min-cut" plot

- What does it look like for a real-world graph?

Experiments

- Datasets:
- Google Web Graph: 916,428 nodes and 5,105,039 edges
- Lucent Router Graph: Undirected graph of network routers from
www.isi.edu/scan/mercator/maps.html; 112,969 nodes and 181,639 edges
- User $\boldsymbol{\rightarrow}$ Website Clickstream Graph: 222,704 nodes and 952,580 edges
NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy

Experiments

- Used the METIS algorithm [Karypis, Kumar,

- Google Web graph
- Values along the y axis are averaged
- We observe a "lip" for large edges
- Slope of -0.4, corresponds to a 2.5dimensional grid!

Google graph

log (mincut-size / \#edges)

All min-cuts

Log(\#edges)

Experiments

- Same results for other graphs too...

Lucent Router graph

Clickstream graph

Conclusions - Practitioner's guide

- Hard clustering - k pieces METIS
- Hard co-clustering - (k, l) pieces

Co-clustering

- Hard clustering - optimal \# pieces Cross-associations
- Observations

'jellyfish':
Maybe, there are no good cuts

Outline

- Task 4: time-evolving graphs - tensors
- Task 5: community detection
- Task 6: virus propagation
- Task 7: scalability, parallelism and hadoop
- Conclusions

Detailed outline

- Problem definition
- Analysis
- Experiments

Immunization and epidemic thresholds

- Q1: which nodes to immunize?
- Q2: will a virus vanish, or will it create an epidemic?

Q1: Immunization:

-Given

- a network,
-k vaccines, and
-the virus details
-Which nodes to immunize?

Q1: Immunization:

-Given

- a network,
-k vaccines, and
-the virus details
-Which nodes to immunize?

Q1: Immunization:

-Given

- a network,
-k vaccines, and
-the virus details
-Which nodes to immunize?

Q1: Immunization:

-Given

- a network,
-k vaccines, and -the virus details
-Which nodes to immunize?

Q2: will a virus take over?

- Flu-like virus (no immunity, 'SIS')
- Mumps (life-time immunity, 'SIR')
- Pertussis (finite-length immunity, 'SIRS')
β : attack prob δ : heal prob

Q2: will a virus take over?

- Flu-like virus (no immunity, 'SIS')
- Mumps (life-time immunity, 'SIR')
- Pertussis (finite-length immunity, 'SIRS')
β : attack prob
δ : heal prob
A: depends on connectivity
(avg degree? Max degree? variance? Something else?
(C) 2011, C. Faloutsos

The model: SIS

- 'Flu' like: Susceptible-Infected-Susceptible
- Virus 'strength’ s= β / δ

Epidemic threshold τ

of a graph: the value of τ, such that

$$
\text { if strength } s=\beta / \delta<\tau
$$

an epidemic can not happen
Thus,

- given a graph
- compute its epidemic threshold

Detailed outline

- Problem definition
- Analysis
- Experiments

Epidemic threshold τ

What should τ depend on?

- avg. degree? and/or highest degree?
- and/or variance of degree?
- and/or third moment of degree?
- and/or diameter?

Epidemic threshold

- [Theorem] We have no epidemic, if

$$
\beta / \delta<\tau=1 / \lambda_{1, A}
$$

Epidemic threshold

- [Theorem] We have no epidemic, if recovery prob.

Proof: [Wang+03] (proof: for SIS=flu only)

Beginning of proof

Healthy @ t+1:

- (healthy or healed)
- and not attacked @ t

Let: $\mathrm{p}(\mathrm{i}, \mathrm{t})=$ Prob node i is sick @ $\mathrm{t}+1$
$1-p(i, t+1)=(1-p(i, t)+p(i, t) * \delta) *$

$$
\Pi_{\mathrm{j}}(1-\beta a j i * p(j, t))
$$

Below threshold, if the above non-linear dynamical system above is 'stable' (eigenvalue of Hessian < 1)

Epidemic threshold for various networks

Formula includes older results as special cases:

- Homogeneous networks [Kephart+White]

$$
-\lambda_{l, A}=\langle k>; \tau=1 /<k>(<\mathrm{k}>: \text { avg degree })
$$

- Star networks ($\mathrm{d}=$ degree of center)
$-\lambda_{l, A}=\operatorname{sqrt}(d) ; \tau=1 / \operatorname{sqrt}(d)$
- Infinite power-law networks
$-\lambda_{l, A}=\infty ; \tau=0$; [Barabasi]

Epidemic threshold

- [Theorem 2] Below the epidemic threshold, the epidemic dies out exponentially

Recent generalization

- [Prakash+, arxiv '10]: similar threshold, for almost all virus propagation models (VPM)
- SIS -> flu
- SIR -> mumps
- SIRS -> whooping cough (temporary immunity)
- SIIR (-> HIV)
- ...

A2: will a virus take over?

- For all typical virus propagation models (flu, mumps, pertussis, HIV, etc)
- The only connectivity measure that matters, is $1 / \lambda_{I}$
the first eigenvalue of the adj. matrix
Proof for all VPM:
[Prakash+, '10, arxiv]

Detailed outline

- Epidemic threshold
- Problem definition
- Analysis
- Experiments

Experiments (Oregon)

SIS simulation - \# infected nodes vs time

Log-Lin
\#inf.
(log scale)

Time (linear scale)

SIS simulation - \# infected nodes vs time

Log-Lin
\#inf.
(log scale)

Exponential decay

above at below

Time (linear scale)

SIS simulation - \# infected nodes vs
 time

SIS simulation - \# infected nodes vs
 time

How about other VPMs?

A2: will a virus take over? (SIRS case)

Conclusions

$\lambda_{l, A}$: Eigenvalue of adjacency matrix determines the survival of (almost) any virus

- measure of connectivity (~ \# paths)
- Can answer 'what-if' scenarios
- May guide immunization policies
- Can help us avoid expensive simulations

References

- D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos, Epidemic Thresholds in Real Networks, in ACM TISSEC, 10(4), 2008
- Ganesh, A., Massoulie, L., and Towsley, D., 2005. The effect of network topology on the spread of epidemics. In INFOCOM.

References (cont'd)

- Hethcote, H. W. 2000. The mathematics of infectious diseases. SIAM Review 42, 599653.
- Hethcote, H. W. AND Yorke, J. A. 1984. Gonorrhea Transmission Dynamics and Control. Vol. 56. Springer. Lecture Notes in Biomathematics.

References (cont'd)

- Y. Wang, D. Chakrabarti, C. Wang and C. Faloutsos, Epidemic Spreading in Real Networks: An Eigenvalue Viewpoint, in SRDS 2003 (pages 25-34), Florence, Italy

Outline

- Task 4: time-evolving graphs - tensors
- Task 5: community detection
- Task 6: virus propagation
- Task 7: scalability, parallelism and hadoop
- Conclusions

Scalability

- How about if graph/tensor does not fit in core?
- How about handling huge graphs?

Scalability

- How about if graph/tensor does not fit in core?
- ['MET’: Kolda, Sun, ICMD’08, best paper award]
- How about handling huge graphs?

Scalability

- Google: $>450,000$ processors in clusters of ~2000 processors each [Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro 2003]
- Yahoo: 5Pb of data [Fayyad, KDD’07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?

Scalability

- Google: $>450,000$ processors in clusters of ~ 2000 processors each [Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro 2003]
- Yahoo: 5Pb of data [Fayyad, KDD’07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?
- A: map/reduce - hadoop (open-source clone) http://hadoop.apache.org/

2' intro to hadoop

- master-slave architecture; n-way replication (default $\mathrm{n}=3$)
- 'group by' of SQL (in parallel, fault-tolerant way)
- e.g, find histogram of word frequency
- compute local histograms
- then merge into global histogram
select course-id, count(*)
from ENROLLMENT group by course-id

2' intro to hadoop

- master-slave architecture; n-way replication (default $\mathrm{n}=3$)
- 'group by' of SQL (in parallel, fault-tolerant way)
- e.g, find histogram of word frequency
- compute local histograms
- then merge into global histogram
select course-id, count(*)
from ENROLLMENT group by course-id
reduce
map

By default: 3-way replication;
Late/dead machines: ignored, transparently (!)

D.I.S.C.

- 'Data Intensive Scientific Computing' $[\mathrm{R}$. Bryant, CMU]
- 'big data'
- www.cs.cmu.edu/~bryant/pubdir/cmu-cs-07-128.pdf

Analysis of a large graph

~200Gb (Yahoo crawl) - Degree Distribution:

- in 12 minutes with 50 machines
- Many (link spams ?) at out-degree 1200

(C) 2011, C. Faloutsos

P8-128

Outline - Algorithms \& results

\Rightarrow| | Centralized | Hadoop/
 PEGASUS |
| :--- | :---: | :---: |
| Degree Distr. | old | old |
| Pagerank | old | old |
| Diameter/ANF | old | DONE |
| Conn. Comp | old | DONE |
| Triangles | DONE | |
| Visualization | STARTED | |

HADI for diameter estimation

- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs $\mathbf{O}(\mathbf{N} * * 2)$ space and up to $\mathrm{O}\left(\mathrm{N}^{* *} 3\right)$ time - prohibitive $(\mathrm{N} \sim 1 \mathrm{~B})$
- Our HADI: linear on E (~10B)
- Near-linear scalability wrt \# machines
- Several optimizations -> 5x faster

CarnegieMellon

YahooWeb graph (120Gb, 1.4 B hodes, 6.6 B edges)

- Largest publicly available graph ever studied.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- Largest publicly available graph ever studied.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- 7 degrees of separation (!)
-Diameter: shrunk

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) Q: Shape?

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality (?!)

Radius Plot of GCC of YahooWeb.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

Conjecture: EN
$\{D E$

$2 B B R$

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

Conjecture:

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

Running time - Kronecker and Erdos-Renyi Graphs with billions edges.

Outline - Algorithms \& results

	Centralized	Hadoop/ PEGASUS
Degree Distr.	old	old
Pagerank	old	old
Diameter/ANF	old	DONE
Conn. Comp	old	DONE
Triangles	DONE	
Visualization	STARTED	

Generalized Iterated Matrix Vector Multiplication (GIMV)

PEGASUS: A Peta-Scale Graph Mining System - Implementation and Observations. U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. (ICDM) 2009, Miami, Florida, USA. Best Application Paper (runner-up).

Generalized Iterated Matrix Vector Multiplication (GIMV)

- PageRank
- proximity (RWR)
- Diameter
- Connected components
- (eigenvectors,
- Belief Prop.
- ...)

Matrix - vector Multiplication
(iterated)

Example: GIM-V At Work

- Connected Components - 4 observations:

Example: GIM-V At Work

- Connected Components

Example: GIM-V At Work

- Connected Components

Example: GIM-V At Work

- Connected Components

Example: GIM-V At Work

- Connected Components

(C) 2011, C. Faloutsos

Example: GIM-V At Work

- Connected Components

(C) 2011, C. Faloutsos

GIM-V At Work

- Connected Components over Time
- LinkedIn: 7.5M nodes and 58M edges

Stable tail slope after the gelling point

Conclusions

- Hadoop: promising architecture for Tera/ Peta scale graph mining

Resources:

- http://hadoop.apache.org/core/
- http://hadoop.apache.org/pig/

Higher-level language for data processing

References

- Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, OSDI'04
- Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew Tomkins: Pig latin: a not-so-foreign language for data processing. SIGMOD 2008: 1099-1110

Overall Conclusions

- Real graphs exhibit surprising patterns (power laws, shrinking diameter, superlinearity on edge weights, triangles etc)
- SVD: a powerful tool (HITS, PageRank)
- Several other tools: tensors, METIS, ...
- But: good communities might not exist...
- Immunization: first eigenvalue
- Scalability: hadoop/parallelism

Our goal:

Open source system for mining huge graphs:

PEGASUS project (PEta GrAph mining System)

- www.cs.cmu.edu/~pegasus

- code and papers

Project info

www.cs.cmu.edu/~pegasus

Akoglu, Leman

Koutra, Danae

Kang, U

McGlohon, Mary

Prakash, Aditya

Tong, Hanghang

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Extra material

- E-bay fraud detection
- Outlier detection

Detailed outline

- Fraud detection in e-bay
- Anomaly detection

E-bay Fraud detection

w/ Polo Chau \& Shashank Pandit, CMU

NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks, S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos (WWW'07), pp. 201-210

E-bay Fraud detection

- lines: positive feedbacks
- would you buy from him/her?

E-bay Fraud detection

- lines: positive feedbacks
- would you buy from him/her?
- or him/her?

E-bay Fraud detection - NetProbe

Belief Propagation gives:

Popular press

Iㅗ오영

 Low Angeles ©imes

And less desirable attention:

- E-mail from 'Belgium police’ ('copy of your code?')

Extra material

- E-bay fraud detection
- Outlier detection

OddBall: Spotting Anomalies in Weighted Graphs

Leman Akoglu, Mary McGlohon, Christos
Faloutsos
Carnegie Mellon University
School of Computer Science

PAKDD 2010, Hyderabad, India

Main idea

For each node,

- extract 'ego-net' (=1-step-away neighbors)
- Extract features (\#edges, total weight, etc etc)
- Compare with the rest of the population

What is an egonet?

Selected Features

- $\quad N_{i}$: number of neighbors (degree) of ego i
- E_{i} : number of edges in egonet i
- W_{i} : total weight of egonet i
- $\lambda_{w, i}$ principal eigenvalue of the weighted adjacency matrix of egonet I

Near-Clique/Star

Near-Clique/Star

[^0]: KAIST-2011

