Talk 3: Graph Mining Tools – Tensors, communities, parallelism

Christos Faloutsos
CMU

Overall Outline

- Introduction Motivation
- Talk#1: Patterns in graphs; generators
- Talk#2: Tools (Ranking, proximity)

- Talk#3: Tools (Tensors, scalability)
 - Conclusions

Outline

- Task 4: time-evolving graphs tensors
 - Task 5: community detection
 - Task 6: virus propagation
 - Task 7: scalability, parallelism and hadoop
 - Conclusions

Thanks to

• Tamara Kolda (Sandia)

for the foils on tensor definitions, and on TOPHITS

Detailed outline

- Motivation
- Definitions: PARAFAC and Tucker
- Case study: web mining

Examples of Matrices:Authors and terms

	data	minin	ig classif.	tree	•••
John Peter Mary Nick	13	3 1	1 22	55	
	ļ	5	4 6	7	

KAIST-2011

(C) 2011, C. Faloutsos

Motivation: Why tensors?

• Q: what is a tensor?

Motivation: Why tensors?

• A: N-D generalization of matrix:

KDD'09	data	mining	classif.	tree	•••
John	13	11	22	55	
John Peter Mary Nick	5	4	6	7	
Mary					
Nick					

KAIST-2011

(C) 2011, C. Faloutsos

Motivation: Why tensors?

• A: N-D generalization of matrix:

KAIST-2011

(C) 2011, C. Faloutsos

Tensors are useful for 3 or more modes

Terminology: 'mode' (or 'aspect'):

Notice

- 3rd mode does not need to be time
- we can have more than 3 modes

Notice

- 3rd mode does not need to be time
- we can have more than 3 modes
 - Eg, fFMRI: x,y,z, time, person-id, task-id

From DENLAB, Temple U. (Prof. V. Megalooikonomou +)

http://denlab.temple.edu/bidms/cgi-bin/browse.cgi

Motivating Applications

- Why tensors are useful?
 - web mining (TOPHITS)
 - environmental sensors
 - Intrusion detection (src, dst, time, dest-port)
 - Social networks (src, dst, time, type-of-contact)
 - face recognition
 - etc ...

Detailed outline

Motivation

Case study: web mining

KAIST-2011 14

Tensor basics

• Multi-mode extensions of SVD – recall that:

KAIST-2011 (C) 2011, C. Faloutsos 15

Reminder: SVD

Best rank-k approximation in L2

KAIST-2011

Reminder: SVD

Best rank-k approximation in L2

KAIST-2011 17

Goal: extension to >=3 modes

KAIST-2011 18

Main points:

- 2 major types of tensor decompositions: PARAFAC and Tucker
- both can be solved with ``alternating least squares' (ALS)

KAIST-2011 (C) 2011, C. Faloutsos 19

Specially Structured Tensors

• Tucker Tensor

$$\mathcal{X} = \mathcal{G} \times_{1} \mathbf{U} \times_{2} \mathbf{V} \times_{3} \mathbf{W}$$

$$= \sum_{r} \sum_{s} \sum_{t} g_{rst} \mathbf{u}_{r} \circ \mathbf{v}_{s} \circ \mathbf{w}_{t}$$

$$\equiv [\mathcal{G}; \mathbf{U}, \mathbf{V}, \mathbf{W}] \qquad \text{Our}_{\text{Notation}}$$

$$\text{"core"}$$

$$\mathbf{X} = [\mathbf{G}, \mathbf{V}, \mathbf{W}] \qquad \mathbf{V} \times_{\mathbf{S}} \mathbf{V}$$

$$\mathbf{X} = [\mathbf{G}, \mathbf{V}, \mathbf{V}, \mathbf{W}] \qquad \mathbf{V} \times_{\mathbf{S}} \mathbf{V}$$

Kruskal Tensor

$$egin{aligned} \mathfrak{X} &= \sum_r \lambda_r \ \mathbf{u}_r \circ \mathbf{v}_r \circ \mathbf{w}_r \ &\equiv \llbracket \lambda \ ; \mathbf{U}, \mathbf{V}, \mathbf{W}
bracket \end{bmatrix} egin{aligned} \mathsf{Our} \ \mathsf{Notation} \end{aligned}$$

KAIST-2011 20

Tucker Decomposition - intuition

- author x keyword x conference
- A: author x author-group
- B: keyword x keyword-group
- C: conf. x conf-group
- **G**: how groups relate to each other

Intuition behind core tensor

- 2-d case: co-clustering
- [Dhillon et al. Information-Theoretic Coclustering, KDD'03]

KAIST-2011 (C) 2011, C. Faloutsos 22

Carnegie Mellon

$$m\begin{bmatrix} .05 & .05 & .05 & .05 & 0 & 0 & 0 \\ .05 & .05 & .05 & .05 & 0 & 0 & 0 \\ .05 & .05 & .05 & .05 & .05 & .05 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ 0 & 4 & .04 & .04 & .04 & .04 \end{bmatrix} = \begin{bmatrix} .054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .054 & .042 & 0 & 0 & 0 \\ 0 & .5 & 0 & 0 & 0 & .28 & .36 & .36 \end{bmatrix} = \begin{bmatrix} .054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & .036 & .036 & .028 & .028 & .036 & .036 \\ 0 & .036 & .036 & .028 & .028 & .036 & .036 \end{bmatrix}$$

med. doc cs doc

.05 .05 .05 0

.05 .05 0

0 .05 .05

0 .05 .05

.04 0 .04 .04

.04 .04 .04 0 .04 .04

0

term group x doc. group

$$\begin{bmatrix} .3 & 0 \\ 0 & .3 \\ .2 & .2 \end{bmatrix}$$

doc x doc group

med. terms

cs terms

common terms

term x term-group

KAIST-2011

(C) 2011, C. Faloutsos

Tensor tools - summary

- Two main tools
 - PARAFAC
 - Tucker
- Both find row-, column-, tube-groups
 - but in PARAFAC the three groups are identical
- (To solve: Alternating Least Squares)

Detailed outline

- Motivation
- Definitions: PARAFAC and Tucker

• Case study: web mining

KAIST-2011 (C) 2011, C. Faloutsos 26

Web graph mining

- How to order the importance of web pages?
 - Kleinberg's algorithm HITS
 - PageRank
 - Tensor extension on HITS (TOPHITS)

KAIST-2011

Kleinberg's Hubs and Authorities (the HITS method)

Sparse adjacency matrix and its SVD:

$$x_{ij} = \begin{cases} 1 & \text{if page } i \text{ links to page } j \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{X} pprox \sum_{r} \sigma_r \ \mathbf{h}_r \circ \mathbf{a}_r$$

KAIST-2011 Kleinberg, JACM, 1999

HITS Authorities on Sample Data

for 2nd topic

Three-Dimensional View of the Web

30

Three-Dimensional View of the Web

31

Three-Dimensional View of the Web

32

Topical HITS (TOPHITS)

<u>Main Idea</u>: Extend the idea behind the HITS model to incorporate term (i.e., topical) information.

$$\mathbf{X} \approx \sum_{r=1}^{R} \lambda_r \, \mathbf{h}_r \circ \mathbf{a}_r$$

KAIST-2011 33

Topical HITS (TOPHITS)

<u>Main Idea</u>: Extend the idea behind the HITS model to incorporate term (i.e., topical) information.

al) information.
$$\mathbf{X}pprox \sum_{r=1}^R \lambda_r \; \mathbf{h}_r \circ \mathbf{a}_r \circ \mathbf{t}_r$$

KAIST-2011 34

Carnegie Mellon COPHITS Terms & Authorities on Sample Data

Conclusions

- Real data are often in high dimensions with multiple aspects (modes)
- Tensors provide elegant theory and algorithms
 - PARAFAC and Tucker: discover groups

References

- T. G. Kolda, B. W. Bader and J. P. Kenny. Higher-Order Web Link Analysis Using Multilinear Algebra. In: ICDM 2005, Pages 242-249, November 2005.
- Jimeng Sun, Spiros Papadimitriou, Philip Yu. Window-based Tensor Analysis on High-dimensional and Multi-aspect Streams, Proc. of the Int. Conf. on Data Mining (ICDM), Hong Kong, China, Dec 2006

Resources

• See tutorial on tensors, KDD'07 (w/ Tamara Kolda and Jimeng Sun):

www.cs.cmu.edu/~christos/TALKS/KDD-07-tutorial

KAIST-2011 (C) 2011, C. Faloutsos 38

Tensor tools - resources

 Toolbox: from Tamara Kolda: csmr.ca.sandia.gov/~tgkolda/TensorToolbox

- T. G. Kolda and B. W. Bader. *Tensor Decompositions and Applications*. SIAM Review, Volume 51, Number 3, September 2009 csmr.ca.sandia.gov/~tgkolda/pubs/bibtgkfiles/TensorReview-preprint.pdf
- T. Kolda and J. Sun: Scalable Tensor Decomposition for Multi-Aspect Data Mining (ICDM 2008)

Outline

• Task 4: time-evolving graphs – tensors

- Task 5: community detection
 - Task 6: virus propagation
 - Task 7: scalability, parallelism and hadoop
 - Conclusions

Detailed outline

- Motivation
- \rightarrow Hard clustering k pieces
 - Hard co-clustering -(k, l) pieces
 - Hard clustering optimal # pieces
 - Observations

Problem

- Given a graph, and *k*
- Break it into k (disjoint) communities

Problem

- Given a graph, and *k*
- Break it into k (disjoint) communities

Solution #1: METIS

- Arguably, the best algorithm
- Open source, at
 - http://www.cs.umn.edu/~metis
- and *many* related papers, at same url
- Main idea:
 - coarsen the graph;
 - partition;
 - un-coarsen

Solution #1: METIS

- G. Karypis and V. Kumar. *METIS 4.0: Unstructured graph partitioning and sparse matrix ordering system*. TR, Dept. of CS,

 Univ. of Minnesota, 1998.
- <and many extensions>

Solution #2

(problem: hard clustering, k pieces)

Spectral partitioning:

• Consider the 2nd smallest eigenvector of the (normalized) Laplacian

KAIST-2011 (C) 2011, C. Faloutsos 46

Solutions #3, ...

Many more ideas:

- Clustering on the A² (square of adjacency matrix) [Zhou, Woodruff, PODS'04]
- Minimum cut / maximum flow [Flake+, KDD'00]

•

Detailed outline

- Motivation
- Hard clustering -k pieces
- \blacksquare Hard co-clustering (k,l) pieces
 - Hard clustering optimal # pieces
 - Soft clustering matrix decompositions
 - Observations

Problem definition

- Given a bi-partite graph, and k, l
- Divide it into *k* row groups and *l* row groups
- (Also applicable to uni-partite graph)

Co-clustering

- Given data matrix and the number of row and column groups *k* and *l*
- Simultaneously
 - Cluster rows into k disjoint groups
 - Cluster columns into l disjoint groups

KAIST-2011

(C) 2011, C. Faloutsos

50

Co-clustering

- Let X and Y be discrete random variables
 - X and Y take values in $\{1, 2, ..., m\}$ and $\{1, 2, ..., n\}$
 - p(X, Y) denotes the joint probability distribution—if
 not known, it is often estimated based on <u>co-occurrence</u> data
 - Application areas: <u>text mining</u>, market-basket analysis, analysis of browsing behavior, etc.
- Key Obstacles in Clustering Contingency Tables
 - High Dimensionality, Sparsity, Noise
 - Need for robust and scalable algorithms

Reference:

1. Dhillon et al. Information-Theoretic Co-clustering, KDD'03

Carnegie Mellon

$$m\begin{bmatrix} .05 & .05 & .05 & .05 & 0 & 0 & 0 \\ .05 & .05 & .05 & .05 & 0 & 0 & 0 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ .04 & .04 & 0 & .04 & .04 & .04 \\ .04 & .04 & .04 & 0 & .04 & .04 \end{bmatrix} = \begin{bmatrix} .054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 \\ 0 & 0 & 0 & .036 & .036 \\ 0 & 0 & 0$$

med. doc cs doc

term group x doc. group

$$\begin{bmatrix} .3 & 0 \\ 0 & .3 \\ .2 & .2 \end{bmatrix}$$

$$\begin{bmatrix} .3 & 0 \\ 0 & .3 \\ .2 & .2 \end{bmatrix}$$

med. terms

cs terms

common terms

term x term-group .05

.05 .05

Co-clustering

Observations

- uses KL divergence, instead of L2
- the middle matrix is **not** diagonal
 - we saw that earlier in the Tucker tensor decomposition
- s/w at:

www.cs.utexas.edu/users/dml/Software/cocluster.html

Detailed outline

- Motivation
- Hard clustering k pieces
- Hard co-clustering (k,l) pieces
- Hard clustering optimal # pieces
 - Soft clustering matrix decompositions
 - Observations

Problem with Information Theoretic Co-clustering

Number of row and column groups must be specified

Desiderata:

- ✓ Simultaneously discover row and column groups
- Fully Automatic: No "magic numbers"
- ✓ Scalable to large graphs

Cross-association

Desiderata:

- ✓ Simultaneously discover row and column groups
- ✓ Fully Automatic: No "magic numbers"
- ✓ Scalable to large matrices

Reference:

1. Chakrabarti et al. Fully Automatic Cross-Associations, KDD'04

What makes a cross-association "good"?

KAIST-2011 (C) 2011, C. Faloutsos 58

What makes a cross-association "good"?

simpler; easier to describe easier to compress!

KAIST-2011 (C) 2011, C. Faloutsos 59

What makes a cross-association "good"?

Problem definition: given an encoding scheme

- decide on the # of col. and row groups k and l
- and reorder rows and columns,
- to achieve best compression

Main Idea

Minimize the total cost (# bits) for lossless compression

Algorithm

KAIST-2011

(C) 2011, C. Faloutsos

"CLASSIC"

- 3,893 documents
- 4,303 words
- 176,347 "dots"

Combination of 3 sources:

- MEDLINE (medical)
- CISI (info. retrieval)
- CRANFIELD (aerodynamics)

KAIST-2011 (C) 2011, C. Faloutsos 63

Algorithm

Code for cross-associations (matlab):

www.cs.cmu.edu/~deepay/mywww/software/
CrossAssociations-01-27-2005.tgz

Variations and extensions:

- 'Autopart' [Chakrabarti, PKDD'04]
- www.cs.cmu.edu/~deepay

Algorithm

• Hadoop implementation [ICDM'08]

Spiros Papadimitriou, Jimeng Sun: DisCo: Distributed Co-clustering with Map-Reduce: A Case Study towards Petabyte-Scale End-to-End Mining. ICDM 2008:

512-521

Detailed outline

- Motivation
- Hard clustering -k pieces
- Hard co-clustering -(k, l) pieces
- Hard clustering optimal # pieces

Observations

Observation #1

• Skewed degree distributions – there are nodes with huge degree (>O(10^4), in facebook/linkedIn popularity contests!)

KAIST-2011 (C) 2011, C. Faloutsos 72

Observation #2

• Maybe there are no good cuts: ``jellyfish'' shape [Tauro+'01], [Siganos+,'06], strange behavior of cuts [Chakrabarti+'04], [Leskovec+,'08]

Observation #2

• Maybe there are no good cuts: ``jellyfish'' shape [Tauro+'01], [Siganos+,'06], strange behavior of cuts [Chakrabarti+,'04], [Leskovec+,'08]

Jellyfish model [Tauro+]

A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G. Siganos, M. Faloutsos, Global Internet, November 25-29, 2001

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L Tauro, M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-350, Sept. 2006.

Strange behavior of min cuts

• 'negative dimensionality' (!)

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy

Statistical Properties of Community Structure in Large Social and Information Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney. WWW 2008.

• Do min-cuts recursively.

N nodes

• Do min-cuts recursively.

• Do min-cuts recursively.

N nodes

For a d-dimensional grid, the slope is -1/d

log (# edges)

For a d-dimensional grid, the slope is -1/d

log (mincut-size / #edges)

log (# edges)

For a random graph, the slope is 0

• What does it look like for a real-world graph?

Experiments

- Datasets:
 - Google Web Graph: 916,428 nodes and 5,105,039 edges
 - Lucent Router Graph: Undirected graph of network routers from www.isi.edu/scan/mercator/maps.html; 112,969 nodes and 181,639 edges
 - User → Website Clickstream Graph: 222,704
 nodes and 952,580 edges

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy

Experiments

• Used the METIS algorithm [Karypis, Kumar,

- Google Web graph
- Values along the yaxis are averaged
- We observe a "lip" for large edges
- Slope of -0.4, corresponds to a 2.5dimensional grid!

Google graph

log (mincut-size / #edges)

Experiments

• Same results for other graphs too...

Lucent Router graph

Clickstream graph

Conclusions – Practitioner's guide

• Hard clustering -k pieces

METIS

• Hard co-clustering -(k, l) pieces

Co-clustering

- Hard clustering optimal # pieces Cross-associations
- Observations

'jellyfish': Maybe, there are no good cuts

Outline

- Task 4: time-evolving graphs tensors
- Task 5: community detection

- Task 6: virus propagation
 - Task 7: scalability, parallelism and hadoop
 - Conclusions

Detailed outline

- Problem definition
- Analysis
- Experiments

Immunization and epidemic thresholds

- Q1: which nodes to immunize?
- Q2: will a virus vanish, or will it create an epidemic?

- Given
 - a network,
 - k vaccines, and
 - the virus details
- •Which nodes to immunize?

- •Given
 - a network,
 - k vaccines, and
 - the virus details
- •Which nodes to immunize?

- •Given
 - a network,
 - k vaccines, and
 - the virus details
- •Which nodes to immunize?

- Given
 - a network,
 - k vaccines, and
 - the virus details
- •Which nodes to immunize?

A: immunize the ones that maximally raise the `epidemic threshold' [Tong+, ICDM'10]

Q2: will a virus take over?

- Flu-like virus (no immunity, 'SIS')
- Mumps (life-time immunity, 'SIR')
- Pertussis (finite-length immunity, 'SIRS')

β: attack prob

δ: heal prob

Q2: will a virus take over?

- Flu-like virus (no immunity, 'SIS')
- Mumps (life-time immunity, 'SIR')
- Pertussis (finite-length immunity, 'SIRS')

β: attack prob

δ: heal prob

A: depends on connectivity (avg degree? Max degree? variance? Something else?

KAIST-2011

(C) 2011, C. Faloutsos

The model: SIS

- 'Flu' like: Susceptible-Infected-Susceptible
- Virus 'strength' $s = \beta/\delta$

Epidemic threshold τ

of a graph: the value of τ , such that if strength $s = \beta/\delta < \tau$ an epidemic can not happen Thus,

- given a graph
- compute its epidemic threshold

Detailed outline

• Problem definition

Analysis

• Experiments

Epidemic threshold τ

What should τ depend on?

- avg. degree? and/or highest degree?
- and/or variance of degree?
- and/or third moment of degree?
- and/or diameter?

Epidemic threshold

• [Theorem] We have no epidemic, if

$$\beta/\delta < \tau = 1/\lambda_{1,A}$$

Epidemic threshold

• [Theorem] We have no epidemic, if

Proof: [Wang+03] (proof: for SIS=flu only)

Beginning of proof

Healthy @ t+1:

- (healthy or healed)
- and not attacked @ t

Let: p(i, t) = Prob node i is sick @ t+1

$$1 - p(i, t+1) = (1 - p(i, t) + p(i, t) * \delta) *$$
$$\Pi_{j} (1 - \beta aji * p(j, t))$$

Below threshold, if the above *non-linear dynamical system* above is 'stable' (eigenvalue of Hessian < 1)

Epidemic threshold for various networks

Formula includes older results as special cases:

Homogeneous networks [Kephart+White]

$$-\lambda_{I,A} = \langle k \rangle$$
; $\tau = 1/\langle k \rangle$ ($\langle k \rangle$: avg degree)

• Star networks (d = degree of center)

$$-\lambda_{I,A} = sqrt(d); \ \tau = 1/sqrt(d)$$

Infinite power-law networks

$$-\lambda_{I,A} = \infty$$
; $\tau = 0$; [Barabasi]

Epidemic threshold

• [Theorem 2] Below the epidemic threshold, the epidemic dies out exponentially

Recent generalization

- [Prakash+, arxiv '10]: similar threshold, for almost **all** virus propagation models (VPM)
 - $-SIS \rightarrow flu$
 - − SIR -> mumps
 - SIRS -> whooping cough (temporary immunity)
 - − SIIR (-> HIV)

— ...

A2: will a virus take over?

- For all typical virus propagation models (flu, mumps, pertussis, HIV, etc)
- The only connectivity measure that matters, is

$$1/\lambda_1$$

the first eigenvalue of the adj. matrix

Proof for all VPM:

[Prakash+, '10, arxiv]

Detailed outline

- Epidemic threshold
 - Problem definition
 - Analysis
- Experiments

Experiments (Oregon)

SIS simulation - # infected nodes vs time

Log - Lin

#inf. (log scale)

SIS simulation - # infected nodes vs time

SIS simulation - # infected nodes vs time

SIS simulation - # infected nodes vs time

How about other VPMs?

A2: will a virus take over? (SIRS case)

114

Conclusions

- $\lambda_{I,A}$: Eigenvalue of adjacency matrix determines the survival of (almost) **any** virus
- measure of connectivity (~ # paths)
- Can answer 'what-if' scenarios
 - May guide immunization policies
- Can help us avoid expensive simulations

References

- D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos, *Epidemic Thresholds in Real Networks*, in ACM TISSEC, 10(4), 2008
- Ganesh, A., Massoulie, L., and Towsley, D., 2005. The effect of network topology on the spread of epidemics. In *INFOCOM*.

References (cont'd)

- Hethcote, H. W. 2000. The mathematics of infectious diseases. *SIAM Review 42*, 599–653.
- Hethcote, H. W. AND Yorke, J. A. 1984. Gonorrhea Transmission Dynamics and Control. Vol. 56. Springer. Lecture Notes in Biomathematics.

References (cont'd)

• Y. Wang, D. Chakrabarti, C. Wang and C. Faloutsos, *Epidemic Spreading in Real Networks: An Eigenvalue Viewpoint*, in SRDS 2003 (pages 25-34), Florence, Italy

Outline

- Task 4: time-evolving graphs tensors
- Task 5: community detection
- Task 6: virus propagation

- Task 7: scalability, parallelism and hadoop
 - Conclusions

How about if graph/tensor does not fit in core?

How about handling huge graphs?

- How about if graph/tensor does not fit in core?
- ['MET': Kolda, Sun, ICMD'08, best paper award]
- How about handling huge graphs?

- Google: > 450,000 processors in clusters of ~2000 processors each [Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro 2003]
- Yahoo: 5Pb of data [Fayyad, KDD'07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?

- Google: > 450,000 processors in clusters of ~2000 processors each [Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro 2003]
- Yahoo: 5Pb of data [Fayyad, KDD'07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?
- A: map/reduce hadoop (open-source clone)
 http://hadoop.apache.org/

2' intro to hadoop

- master-slave architecture; n-way replication (default n=3)
- 'group by' of SQL (in parallel, fault-tolerant way)
- e.g, find histogram of word frequency
 - compute local histograms
 - then merge into global histogram

select course-id, count(*) from ENROLLMENT group by course-id

2' intro to hadoop

- master-slave architecture; n-way replication (default n=3)
- 'group by' of SQL (in parallel, fault-tolerant way)
- e.g, find histogram of word frequency
 - compute local histograms
 - then merge into global histogram

select course-id, count(*)
from ENROLLMENT
group by course-id

reduce

map

By default: 3-way replication;

Late/dead machines: ignored, transparently (!)

KAIST-2011

(C) 2011, C. Faloutsos

P8-126

D.I.S.C.

- 'Data Intensive Scientific Computing' [R. Bryant, CMU]
 - 'big data'
 - www.cs.cmu.edu/~bryant/pubdir/cmucs-07-128.pdf

Analysis of a large graph

~200Gb (Yahoo crawl) - Degree Distribution:

- in 12 minutes with 50 machines
- Many (link spams?) at out-degree 1200

Outline – Algorithms & results

	Centralized	Hadoop/ PEGASUS
Degree Distr.	old	old
Pagerank	old	old
Diameter/ANF	old	DONE
Conn. Comp	old	DONE
Triangles	DONE	
Visualization	STARTED	

HADI for diameter estimation

- Radius Plots for Mining Tera-byte Scale
 Graphs U Kang, Charalampos Tsourakakis,
 Ana Paula Appel, Christos Faloutsos, Jure
 Leskovec, SDM'10
- Naively: diameter needs O(N**2) space and up to O(N**3) time – prohibitive (N~1B)
- Our HADI: linear on E (~10B)
 - Near-linear scalability wrt # machines
 - Several optimizations -> 5x faster

KAIST-2011

YahooWeb graph (120Gb, 1.4B hodes, 6.6 B edges)

Largest publicly available graph ever studied.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

· Largest publicly available graph ever studied.

KAIST-2011

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- •7 degrees of separation (!)
- Diameter: shrunk

KAIST-2011

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) Q: Shape?

Radius

KAIST-2011

Radius

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality (?!)

KAIST-2011

Radius Plot of GCC of YahooWeb.

KAIST-2011 (C) 2011, C. Faloutsos

137

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores.

Conjecture:

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores.

KAIST-2011

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores.

KAIST-2011

Running time - Kronecker and Erdos-Renyi Graphs with billions edges.

Outline – Algorithms & results

	Centralized	Hadoop/ PEGASUS
Degree Distr.	old	old
Pagerank	old	old
Diameter/ANF	old	DONE
Conn. Comp	old	DONE
Triangles	DONE	
Visualization	STARTED	

Generalized Iterated Matrix Vector Multiplication (GIMV)

<u>PEGASUS: A Peta-Scale Graph Mining</u> <u>System - Implementation and Observations</u>.

U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos.

(ICDM) 2009, Miami, Florida, USA. Best Application Paper (runner-up).

Generalized Iterated Matrix Vector Multiplication (GIMV)

- PageRank
- proximity (RWR)
- Diameter
- Connected components
- (eigenvectors,
- Belief Prop.
- ...)

Matrix – vector Multiplication (iterated)

• Connected Components – 4 observations:

KAIST-2011 (C) 2011, C. Faloutsos 145

Connected Components

KAIST-2011 (C) 2011, C. Faloutsos 146

Connected Components

KAIST-2011 147 (C) 2011, C. Faloutsos

Connected Components

148

Connected Components

Connected Components

KAIST-2011 (C) 2011, C. Faloutsos 150

GIM-V At Work

- Connected Components over Time
- LinkedIn: 7.5M nodes and 58M edges

Stable tail slope after the gelling point

Conclusions

Hadoop: promising architecture for Tera/
 Peta scale graph mining

Resources:

- http://hadoop.apache.org/core/
- http://hadoop.apache.org/pig/
 Higher-level language for data processing

References

- <u>Jeffrey Dean</u> and <u>Sanjay Ghemawat</u>, *MapReduce:* Simplified Data Processing on Large Clusters, OSDI'04
- Christopher Olston, <u>Benjamin Reed</u>, <u>Utkarsh Srivastava</u>, <u>Ravi Kumar</u>, <u>Andrew Tomkins</u>: *Pig latin: a not-so-foreign language for data processing*. <u>SIGMOD 2008</u>: 1099-1110

KAIST-2011 (C) 2011, C. Faloutsos P8-153

Overall Conclusions

- Real graphs exhibit surprising **patterns** (power laws, shrinking diameter, superlinearity on edge weights, triangles etc)
- SVD: a powerful tool (HITS, PageRank)
- Several other tools: tensors, METIS, ...
 - But: good communities might **not** exist...
- Immunization: first eigenvalue
- Scalability: hadoop/parallelism

Our goal:

Open source system for mining huge graphs:

PEGASUS project (PEta GrAph mining System)

- www.cs.cmu.edu/~pegasus
- code and papers

Project info

www.cs.cmu.edu/~pegasus

Chau, Polo

Koutra, Danae

Prakash, Aditya

Akoglu, Leman

Kang, U

McGlohon, Mary

Tong, Hanghang

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Extra material

- E-bay fraud detection
- Outlier detection

Detailed outline

- Fraud detection in e-bay
 - Anomaly detection

E-bay Fraud detection

w/ Polo Chau & Shashank Pandit, CMU

NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks, S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos (WWW'07), pp. 201-210

E-bay Fraud detection

- lines: positive feedbacks
- would you buy from him/her?

E-bay Fraud detection

- lines: positive feedbacks
- would you buy from him/her?

E-bay Fraud detection - NetProbe

Belief Propagation gives:

Popular press

Ios Angeles Times

And less desirable attention:

• E-mail from 'Belgium police' ('copy of your code?')

163

Extra material

- E-bay fraud detection
- Outlier detection

OddBall: Spotting Anomalies in Weighted Graphs

Leman Akoglu, Mary McGlohon, Christos Faloutsos

> Carnegie Mellon University School of Computer Science

PAKDD 2010, Hyderabad, India

Main idea

For each node,

- extract 'ego-net' (=1-step-away neighbors)
- Extract features (#edges, total weight, etc etc)
- Compare with the rest of the population

Carnegie Mellon

What is an egonet?

KAIST-2011 (C) 2011, C. Faloutsos 167

Selected Features

- N_i : number of neighbors (degree) of ego i
- E_i : number of edges in egonet i
- W_i : total weight of egonet i
- $\lambda_{w,i}$: principal eigenvalue of the weighted adjacency matrix of egonet I

Near-Clique/Star

Near-Clique/Star

KAIST-2011 (C) 2011, C. Faloutsos 170