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Outline 
•  Introduction – Motivation 
•  Task 1: Node importance  
•  Task 2: Recommendations 
•  Task 3: Connection sub-graphs 
•  Conclusions 
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Node importance - Motivation: 

•  Given a graph (eg., web pages containing 
the desirable query word) 

•  Q: Which node is the most important? 
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Node importance - Motivation: 

•  Given a graph (eg., web pages containing 
the desirable query word) 

•  Q: Which node is the most important? 
•  A1: HITS (SVD = Singular Value 

Decomposition) 
•  A2: eigenvector (PageRank) 
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Node importance - motivation 

•  SVD and eigenvector analysis: very closely 
related 
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SVD - Detailed outline 

•  Motivation 
•  Definition - properties 
•  Interpretation 
•  Complexity 
•  Case studies 
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SVD - Motivation 

•  problem #1: text - LSI: find ‘concepts’ 
•  problem #2: compression / dim. reduction 
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SVD - Motivation 

•  problem #1: text - LSI: find ‘concepts’ 
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SVD - Motivation 

•  Customer-product, for recommendation 
system: 

vegetarians 

meat eaters 
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SVD - Motivation 

•  problem #2: compress / reduce 
dimensionality 
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Problem - specs 

•  ~10**6 rows; ~10**3 columns; no updates; 
•  random access to any cell(s) ; small error: OK 
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SVD - Motivation 
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SVD - Motivation 
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SVD - Detailed outline 

•  Motivation 
•  Definition - properties 
•  Interpretation 
•  Complexity 
•  Case studies 
•  Additional properties 
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SVD - Definition 

(reminder: matrix multiplication 

x 

3 x 2 2 x 1 

= 
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SVD - Definition 

(reminder: matrix multiplication 

x = 
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SVD - Definition 

A[n x m] = U[n x r] Λ [ r x r] (V[m x r])T 

•  A: n x m matrix (eg., n documents, m terms) 
•   U: n x r matrix (n documents, r concepts) 
•   Λ: r x r diagonal matrix (strength of each 

‘concept’) (r : rank of the matrix) 
•   V: m x r matrix (m terms, r concepts) 
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SVD - Definition 

•  A = U Λ VT - example: 
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SVD - Properties 

THEOREM [Press+92]: always possible to 
decompose matrix A into A = U Λ VT , where 

•  U, Λ, V: unique (*) 
•  U, V: column orthonormal (ie., columns are unit 

vectors, orthogonal to each other) 
–  UT U = I; VT V = I (I: identity matrix) 

•   Λ: singular are positive, and sorted in decreasing 
order 
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SVD - Example 

•  A = U Λ VT - example: 

data 
inf. 

retrieval 
brain lung 

= 
CS 

MD 

x x 
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SVD - Example 

•  A = U Λ VT - example: 

data 
inf. 

retrieval 
brain lung 

= 
CS 

MD 

x x 

CS-concept 
MD-concept 
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SVD - Example 

•  A = U Λ VT - example: 

data 
inf. 

retrieval 
brain lung 

= 
CS 

MD 

x x 

CS-concept 
MD-concept 

doc-to-concept  
similarity matrix 
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SVD - Example 

•  A = U Λ VT - example: 

data 
inf. 

retrieval 
brain lung 

= 
CS 

MD 

x x 

‘strength’ of CS-concept 
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SVD - Example 

•  A = U Λ VT - example: 

data 
inf. 

retrieval 
brain lung 

= 
CS 

MD 

x x 

term-to-concept 
similarity matrix 

CS-concept 
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SVD - Example 

•  A = U Λ VT - example: 

data 
inf. 

retrieval 
brain lung 

= 
CS 

MD 

x x 

term-to-concept 
similarity matrix 

CS-concept 
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SVD - Detailed outline 

•  Motivation 
•  Definition - properties 
•  Interpretation 
•  Complexity 
•  Case studies 
•  Additional properties 
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SVD - Interpretation #1 

‘documents’, ‘terms’ and ‘concepts’: 
•  U: document-to-concept similarity matrix 
•  V: term-to-concept sim. matrix 
•   Λ: its diagonal elements: ‘strength’ of each 

concept 
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SVD – Interpretation #1 

‘documents’, ‘terms’ and ‘concepts’: 
Q: if A is the document-to-term matrix, what 

is AT A? 
A: 
Q: A AT ? 
A: 
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SVD – Interpretation #1 

‘documents’, ‘terms’ and ‘concepts’: 
Q: if A is the document-to-term matrix, what 

is AT A? 
A: term-to-term ([m x m]) similarity matrix 
Q: A AT ? 
A: document-to-document ([n x n]) similarity 

matrix 
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SVD properties 

•  V are the eigenvectors of the covariance 
matrix ATA 

•  U are the eigenvectors of the Gram (inner-
product) matrix AAT 

Further reading: 
1. Ian T. Jolliffe, Principal Component Analysis (2nd ed), Springer, 2002. 
2. Gilbert Strang, Linear Algebra and Its Applications (4th ed), Brooks Cole, 2005. 
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SVD - Interpretation #2 

•  best axis to project on: (‘best’ = min sum of 
squares of projection errors) 
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SVD - Motivation 
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SVD - interpretation #2 

•  minimum RMS error 

SVD: gives 
best axis to project 

v1 

first singular 

vector 
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SVD - Interpretation #2 
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SVD - Interpretation #2 

•  A = U Λ VT - example: 

= x x 
v1 
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SVD - Interpretation #2 

•  A = U Λ VT - example: 

= x x 

variance (‘spread’) on the v1 axis 
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SVD - Interpretation #2 

•  A = U Λ VT - example: 
– U Λ     gives the coordinates of the points in the 

projection axis 

= x x 
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SVD - Interpretation #2 

•  More details 
•  Q: how exactly is dim. reduction done? 

= x x 
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SVD - Interpretation #2 

•  More details 
•  Q: how exactly is dim. reduction done? 
•  A: set the smallest singular values to zero: 

= x x 
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SVD - Interpretation #2 

~ x x 
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SVD - Interpretation #2 

~ x x 
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SVD - Interpretation #2 

~ x x 
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SVD - Interpretation #2 

~ 
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SVD - Interpretation #2 

Exactly equivalent: 
‘spectral decomposition’ of the matrix: 

= x x 
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SVD - Interpretation #2 

Exactly equivalent: 
‘spectral decomposition’ of the matrix: 

= x x u1 u2 
λ1 

λ2 

v1 
v2 
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SVD - Interpretation #2 

Exactly equivalent: 
‘spectral decomposition’ of the matrix: 

= u1 λ1 vT
1 u2 λ2 vT

2 + +... n 

m 
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SVD - Interpretation #2 

Exactly equivalent: 
‘spectral decomposition’ of the matrix: 

= u1 λ1 vT
1 u2 λ2 vT

2 + +... n 

m 

n x 1 1 x m 

r terms 



KAIST-2011 (C) 2011, C. Faloutsos 51 

SVD - Interpretation #2 

approximation / dim. reduction: 
by keeping the first few terms (Q: how many?) 

= u1 λ1 vT
1 u2 λ2 vT

2 + +... n 

m 

assume: λ1 >= λ2 >= ... 
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SVD - Interpretation #2 

A (heuristic - [Fukunaga]): keep 80-90% of 
‘energy’ (= sum of squares of λi ’s) 

= u1 λ1 vT
1 u2 λ2 vT

2 + +... n 

m 

assume: λ1 >= λ2 >= ... 
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SVD - Detailed outline 

•  Motivation 
•  Definition - properties 
•  Interpretation 

–  #1: documents/terms/concepts 
–  #2: dim. reduction 
–  #3: picking non-zero, rectangular ‘blobs’ 

•  Complexity 
•  Case studies 
•  Additional properties 
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SVD - Interpretation #3 

•  finds non-zero ‘blobs’ in  a data matrix 

= x x 
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SVD - Interpretation #3 

•  finds non-zero ‘blobs’ in  a data matrix 

= x x 
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SVD - Interpretation #3 

•  finds non-zero ‘blobs’ in  a data matrix = 
•  ‘communities’ (bi-partite cores, here) 

Row 1 

Row 4 

Col 1 

Col 3 

Col 4 Row 5 

Row 7 
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SVD - Detailed outline 

•  Motivation 
•  Definition - properties 
•  Interpretation 
•  Complexity 
•  Case studies 
•  Additional properties 
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SVD - Complexity 

•  O( n * m * m) or O( n * n * m) (whichever 
is less) 

•  less work, if we just want singular values 
•       or if we want first k singular vectors 
•       or if the matrix is sparse [Berry] 
•  Implemented: in any linear algebra package 

(LINPACK, matlab, Splus, mathematica ...) 



KAIST-2011 (C) 2011, C. Faloutsos 59 

SVD - conclusions so far 

•  SVD: A= U Λ VT : unique (*) 
•       U: document-to-concept similarities 
•       V: term-to-concept similarities 
•       Λ: strength of each concept 
•  dim. reduction: keep the first few strongest 

singular values (80-90% of ‘energy’) 
– SVD: picks up linear correlations 

•  SVD: picks up non-zero ‘blobs’ 
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SVD - Detailed outline 

•  Motivation 
•  Definition - properties 
•  Interpretation 
•  Complexity 
•  SVD properties 
•  Case studies 
•  Conclusions 
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SVD - Other properties - summary 

•  can produce orthogonal basis (obvious) 
(who cares?) 

•  can solve over- and under-determined linear 
problems (see C(1) property) 

•  can compute ‘fixed points’ (= ‘steady state 
prob. in Markov chains’) (see C(4) 
property) 
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SVD -outline of properties 
•  (A): obvious 
•  (B): less obvious 
•  (C): least obvious (and most powerful!) 
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Properties - by defn.: 

A(0): A[n x m] = U [ n x r ] Λ [ r x r ] VT [ r x m]  

A(1): UT
 [r x n] U [n x r ] = I [r x r ] (identity matrix) 

A(2): VT
 [r x n] V [n x r ] = I [r x r ]  

A(3): Λk = diag( λ1
k, λ2

k, ... λr
k ) (k: ANY real 

number) 
A(4): AT = V Λ UT 
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Less obvious properties 

A(0): A[n x m] = U [ n x r ] Λ [ r x r ] VT [ r x m]  

B(1): A [n x m] (AT) [m x n] = ?? 
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Less obvious properties 

A(0): A[n x m] = U [ n x r ] Λ [ r x r ] VT [ r x m]  
B(1): A [n x m] (AT) [m x n] = U Λ2 UT 

symmetric; Intuition? 
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Less obvious properties 

A(0): A[n x m] = U [ n x r ] Λ [ r x r ] VT [ r x m]  
B(1): A [n x m] (AT) [m x n] = U Λ2 UT 

symmetric; Intuition? 
‘document-to-document’ similarity matrix 

B(2): symmetrically, for ‘V’  
 (AT) [m x n] A [n x m] = V L2 VT 

      Intuition? 
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Less obvious properties 

A: term-to-term similarity matrix 

B(3): ( (AT) [m x n] A [n x m] ) 
k= V Λ2k VT 

 and 
B(4): (AT

 A ) 
k  ~ v1 λ1

2k  v1
T for k>>1 

   where 
    v1: [m x 1] first column (singular-vector) of V 
    λ1: strongest singular value 
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Less obvious properties 

B(4): (AT
 A ) 

k  ~ v1 λ1
2k  v1

T for k>>1 
B(5): (AT

 A ) 
k  v’ ~ (constant) v1

 

 ie., for (almost) any v’, it converges to a 
vector parallel to v1 

Thus, useful to compute first singular vector/
value (as well as the next ones, too...) 
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Less obvious properties - repeated: 

A(0): A[n x m] = U [ n x r ] Λ [ r x r ] VT [ r x m]  

B(1): A [n x m] (AT) [m x n] = U Λ2 UT 

B(2): (AT) [m x n] A [n x m] = V Λ2 VT 
B(3): ( (AT) [m x n] A [n x m] ) 

k= V Λ2k VT 

B(4): (AT
 A ) 

k  ~ v1 λ1
2k  v1

T  
B(5): (AT

 A ) 
k  v’ ~ (constant) v1 
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Least obvious properties - cont’d 

A(0): A[n x m] = U [ n x r ] Λ [ r x r ] VT [ r x m]  

C(2): A [n x m] v1 [m x 1] = λ1 u1 [n x 1]  

 where v1 , u1 the first (column) vectors of  V, U. (v1 
== right-singular-vector) 

C(3): symmetrically: u1
T A = λ1 v1

T 

  u1 == left-singular-vector 
Therefore: 
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Least obvious properties - cont’d 

A(0): A[n x m] = U [ n x r ] Λ [ r x r ] VT [ r x m]  

C(4): AT A v1 = λ1
2 v1 

(fixed point - the dfn of eigenvector for a 
symmetric matrix) 
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Least obvious properties - 
altogether 

A(0): A[n x m] = U [ n x r ] Λ [ r x r ] VT [ r x m]  

C(1): A [n x m] x [m x 1] = b [n x 1]  
 then, x0 = V Λ(-1) UT b: shortest, actual or least-
squares solution 

C(2): A [n x m] v1 [m x 1] = λ1 u1 [n x 1]  
C(3): u1

T A = λ1 v1
T 

C(4): AT A v1 = λ1
2 v1 
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Properties - conclusions 

A(0): A[n x m] = U [ n x r ] Λ [ r x r ] VT [ r x m]  

B(5): (AT
 A ) 

k  v’ ~ (constant) v1 
C(1): A [n x m] x [m x 1] = b [n x 1]  

 then, x0 = V Λ(-1) UT b: shortest, actual or least-
squares solution 

C(4): AT A v1 = λ1
2 v1 
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SVD - detailed outline 

•  ... 
•  SVD properties 
•  case studies 

– Kleinberg’s algorithm 
– Google’s algorithm 

•  Conclusions 



KAIST-2011 (C) 2011, C. Faloutsos 75 

Kleinberg’s algo (HITS) 

Kleinberg, Jon (1998). 
Authoritative sources in a 
hyperlinked environment. 
Proc. 9th ACM-SIAM 
Symposium on Discrete 
Algorithms. 
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Recall: problem dfn 

•  Given a graph (eg., web pages containing 
the desirable query word) 

•  Q: Which node is the most important? 
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Kleinberg’s algorithm 
•  Problem dfn: given the web and a query 
•  find the most ‘authoritative’ web pages for 

this query 

Step 0: find all pages containing the query 
terms 

Step 1: expand by one move forward and 
backward 
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Kleinberg’s algorithm 
•  Step 1: expand by one move forward and 

backward 
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Kleinberg’s algorithm 
•  on the resulting graph, give high score (= 

‘authorities’) to nodes that many important 
nodes point to 

•  give high importance score (‘hubs’) to 
nodes that point to good ‘authorities’) 

hubs authorities 
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Kleinberg’s algorithm 
observations 
•  recursive definition! 
•  each node (say, ‘i’-th node) has both an 

authoritativeness score ai and a hubness 
score hi 
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Kleinberg’s algorithm 
Let E be the set of edges and A be the 

adjacency matrix:  
the (i,j) is 1 if the edge from i to j exists 

Let h and a be  [n x 1] vectors with the 
‘hubness’ and ‘authoritativiness’ scores. 

Then: 
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Kleinberg’s algorithm 
Then: 

ai = hk + hl + hm 

that is 
ai = Sum (hj)     over all j that 

(j,i) edge exists 
or 
a = AT h 

k 
l 

m 

i 
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Kleinberg’s algorithm 
symmetrically, for the ‘hubness’: 

hi = an + ap + aq 

that is 
hi = Sum (qj)     over all j that 

(i,j) edge exists 
or 
h = A a 

p 

n 

q 

i 
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Kleinberg’s algorithm 
In conclusion, we want vectors h and a such 

that: 
h = A a 
a = AT h 

Recall properties: 
C(2): A [n x m] v1 [m x 1] = λ1 u1 [n x 1]  
C(3): u1

T A = λ1 v1
T 

= 



KAIST-2011 (C) 2011, C. Faloutsos 85 

Kleinberg’s algorithm 
In short, the solutions to 

h = A a 
a = AT h 

are the left- and right- singular-vectors of the 
adjacency matrix A. 

Starting from random a’ and iterating, we’ll 
eventually converge 

(Q: to which of all the singular-vectors? why?) 
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Kleinberg’s algorithm 
(Q: to which of all the singular-vectors? 

why?) 
A: to the ones of the strongest singular-value, 

because of property B(5): 
B(5): (AT

 A ) 
k  v’ ~ (constant) v1
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Kleinberg’s algorithm - results 
Eg., for the query ‘java’: 
0.328 www.gamelan.com 
0.251 java.sun.com 
0.190 www.digitalfocus.com (“the java 

developer”) 
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Kleinberg’s algorithm - discussion 
•  ‘authority’ score can be used to find ‘similar 

pages’ (how?) 
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SVD - detailed outline 

•  ... 
•  Complexity 
•  SVD properties 
•  Case studies 

– Kleinberg’s algorithm (HITS) 
– Google’s algorithm 

•  Conclusions 
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PageRank (google) 

• Brin, Sergey and Lawrence 
Page (1998). Anatomy of a 
Large-Scale Hypertextual 
Web Search Engine. 7th Intl 
World Wide Web Conf. 

Larry 
Page 

Sergey 
Brin 
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Problem: PageRank 

Given a directed graph, find its most 
interesting/central node 

A node is important, 
if it is connected  
with important nodes 
(recursive, but OK!) 
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Problem: PageRank -  solution 

Given a directed graph, find its most 
interesting/central node 

Proposed solution: Random walk; spot most 
‘popular’ node (-> steady state prob. (ssp)) 

A node has high ssp, 
if it is connected  
with high ssp nodes 
(recursive, but OK!) 
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(Simplified) PageRank algorithm 

•  Let A be the adjacency matrix; 
•   let B be the transition matrix: transpose, column-normalized - then 

1 2 3 

4 
5 

= 

To   
From B 
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(Simplified) PageRank algorithm 
•  B p = p 

= 

B                     p    =      p 

1 2 3 

4 
5 
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Definitions 

A  Adjacency matrix (from-to) 
D  Degree matrix = (diag ( d1, d2, …, dn) ) 
B  Transition matrix: to-from, column 

 normalized 
   B = AT D-1 
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(Simplified) PageRank algorithm 
•  B p = 1 * p 
•  thus, p is the eigenvector that corresponds 

to the highest eigenvalue (=1, since the matrix is 
column-normalized) 

•  Why does such a p exist?  
– p exists if B is nxn, nonnegative, irreducible 

[Perron–Frobenius theorem] 
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(Simplified) PageRank algorithm 
•  In short: imagine a particle randomly 

moving along the edges 
•  compute its steady-state probabilities (ssp) 

Full version of algo:  with occasional random 
jumps 

Why? To make the matrix irreducible 
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Full Algorithm 
•  With probability 1-c, fly-out to a random 

node 
•  Then, we have 

p = c B p + (1-c)/n 1 => 
p = (1-c)/n  [I - c B] -1  1 
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Alternative notation 

M   Modified transition matrix 
   M = c B + (1-c)/n  1  1T 

Then 
   p = M p 

That is: the steady state probabilities = 
PageRank scores form the first eigenvector of 

the ‘modified transition matrix’ 
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Parenthesis: intuition behind 
eigenvectors 
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Formal definition 

If A is a (n x n) square matrix 
(λ , x) is an eigenvalue/eigenvector pair  
of A if 

                     A x = λ x 

CLOSELY related to singular values: 
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Property #1: Eigen- vs singular-values 

if  
B[n x m] = U[n x r] Λ [ r x r] (V[m x r])T 

then A = (BTB) is symmetric and 
C(4): BT B vi = λi

2 vi 

ie, v1 , v2 , ...: eigenvectors of  A = (BTB)  
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Property #2 
•  If A[nxn] is a real, symmetric matrix 
•  Then it has n real eigenvalues 

(if A is not symmetric, some eigenvalues may 
be complex) 
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Property #3 
•  If A[nxn] is a real, symmetric matrix 
•  Then it has n real eigenvalues 
•  And they agree with its n singular values, 

except possibly for the sign 
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Intuition 

•  A as vector transformation 

A x x’ 

= x 

x’ 

2 

1 

1 

3 
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Intuition 

•  By defn., eigenvectors remain parallel to 
themselves (‘fixed points’) 

A v1 v1 

= 3.62 * 

λ1 
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Convergence 

•  Usually, fast: 
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Convergence 

•  Usually, fast: 
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Convergence 

•  Usually, fast: 
•  depends on ratio 

λ1 : λ2 
λ1 

λ2 
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Kleinberg/google - conclusions 
SVD helps in graph analysis: 
hub/authority scores: strongest left- and right- 

singular-vectors of the adjacency matrix 
random walk on a graph: steady state 

probabilities are given by the strongest 
eigenvector of the (modified) transition 
matrix 
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Conclusions 
•  SVD: a valuable tool 
•  given a document-term matrix, it finds 

‘concepts’ (LSI) 
•  ... and can find fixed-points or steady-state 

probabilities (google/ Kleinberg/ Markov 
Chains) 
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Conclusions cont’d 
(We didn’t discuss/elaborate, but, SVD 
•  ...  can reduce dimensionality (KL) 
•  ... and can find rules (PCA; RatioRules) 
•  ... and can solve optimally over- and under-

constraint linear systems (least squares / 
query feedbacks) 
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Outline 
•  Introduction – Motivation 
•  Task 1: Node importance  
•  Task 2: Recommendations & proximity 
•  Task 3: Connection sub-graphs 
•  Conclusions 
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Detailed outline 

•  Problem dfn and motivation 
•  Solution: Random walk with restarts 
•  Efficient computation 
•  Case study: image auto-captioning 
•  Extensions: bi-partite graphs; tracking 
•  Conclusions 
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A 

B i 

i i 

i 

Motivation: Link Prediction 

Should we introduce 
Mr. A to Mr. B? 

? 
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Motivation - recommendations 

customers Products / movies 

‘smith’ 

Terminator 2 ?? 
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Answer: proximity 
•  ‘yes’, if ‘A’ and ‘B’ are ‘close’ 
•  ‘yes’, if ‘smith’ and ‘terminator 2’ are 

‘close’ 

QUESTIONS in this part: 
-  How to measure ‘closeness’/proximity? 
-  How to do it quickly? 
-  What else can we do, given proximity 

scores? 
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How close is ‘A’ to ‘B’? 

a.k.a Relevance, Closeness, ‘Similarity’… 
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Why is it useful? 
•  Recommendation 
And many more 
•  Image captioning [Pan+] 
•  Conn. / CenterPiece subgraphs [Faloutsos+], [Tong+], [Koren

+] 
and 
•  Link prediction [Liben-Nowell+], [Tong+] 
•  Ranking [Haveliwala], [Chakrabarti+] 
•  Email Management [Minkov+] 
•  Neighborhood Formulation [Sun+] 
•  Pattern matching [Tong+] 
•  Collaborative Filtering [Fouss+] 
•  … 
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Test Image 

Sea Sun Sky Wave Cat Forest Tiger Grass 

Image 

Keyword 

Region Automatic Image Captioning 

Q: How to assign keywords to the test image? 
A: Proximity! [Pan+ 2004]  



KAIST-2011 (C) 2011, C. Faloutsos 125 

Center-Piece Subgraph(CePS) 

Original Graph CePS 

Q: How to find hub for the black nodes? 
A: Proximity! [Tong+ KDD 2006] 

CePS guy 

Input Output 



Detailed outline 

•  Problem dfn and motivation 
•  Solution: Random walk with restarts 
•  Efficient computation 
•  Case study: image auto-captioning 
•  Extensions: bi-partite graphs; tracking 
•  Conclusions 
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How close is ‘A’ to ‘B’? 

Should be close, if they have  
-  many,  
-  short 
-  ‘heavy’ paths 
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Why not shortest path? 

A: ‘pizza delivery guy’ problem 

Some ``bad’’ proximities 
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Why not max. netflow? 

A: No penalty for long paths 

Some ``bad’’ proximities 
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What is a ``good’’ Proximity? 

•  Multiple Connections 

•   Quality of connection 

• Direct & In-directed Conns 

• Length, Degree, Weight… 

… 
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1 

4 

3 

2 

5 
6 

7 

9 
10 

8 
11 

12 

Random walk with restart 

[Haveliwala’02] 
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Random walk with restart 
Node 4 

Node 1 
Node 2 
Node 3 
Node 4 
Node 5 
Node 6 
Node 7 
Node 8 
Node 9 
Node 10 
Node 11 
Node 12 

0.13 
0.10 
0.13 
0.22 
0.13 
0.05 
0.05 
0.08 
0.04 
0.03 
0.04 
0.02 

1 

4 

3 

2 

5 
6 

7 

9 
10 

8 
11 

12 
0.13 

0.10 

0.13 

0.13 

0.05 

0.05 

0.08 

0.04 

0.02 

0.04 

0.03 

Ranking vector  
More red, more relevant 
Nearby nodes, higher scores 
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Why RWR is a good score? 

all paths from i  
to j with length 1 

all paths from i  
to j with length 2 

all paths from i  
to j with length 3 

       : adjacency matrix.  
c: damping factor 

i 

j 



Detailed outline 

•  Problem dfn and motivation 
•  Solution: Random walk with restarts 

–  variants 

•  Efficient computation 
•  Case study: image auto-captioning 
•  Extensions: bi-partite graphs; tracking 
•  Conclusions 
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Variant: escape probability 
•  Define Random Walk (RW) on the graph 
•  Esc_Prob(CMUParis) 

–  Prob (starting at CMU, reaches Paris before returning to CMU) 

CMU Paris the remaining  
graph 

Esc_Prob = Pr (smile before cry) 
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Other Variants 
•  Other measure by RWs 

– Community Time/Hitting Time [Fouss+] 
– SimRank [Jeh+] 

•  Equivalence of Random Walks 
– Electric Networks:  

•  EC [Doyle+]; SAEC[Faloutsos+]; CFEC[Koren+]  
– Spring Systems 

•  Katz [Katz], [Huang+], [Scholkopf+] 
•  Matrix-Forest-based Alg [Chobotarev+] 
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Other Variants 
•  Other measure by RWs 

– Community Time/Hitting Time [Fouss+] 
– SimRank [Jeh+] 

•  Equivalence of Random Walks 
– Electric Networks:  

•  EC [Doyle+]; SAEC[Faloutsos+]; CFEC[Koren+]  
– Spring Systems 

•  Katz [Katz], [Huang+], [Scholkopf+] 
•  Matrix-Forest-based Alg [Chobotarev+] 

All are “related to” or “similar to”  
random walk with restart! 
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Map of proximity measurements 

RWR 

Esc_Prob  
+ Sink 

Hitting Time/ 
Commute Time 

Effective Conductance 

String System 

Regularized  
Un-constrained 
Quad Opt. 

Harmonic Func.  
Constrained 
Quad Opt. 

Mathematic Tools 

X out-degree 

“voltage = position” 

relax 

4 ssp decides 1 esc_prob 

Katz Norma 
lize 

Physical Models 



KAIST-2011 (C) 2011, C. Faloutsos 139 

Notice: Asymmetry (even in 
undirected graphs) 

A 

B C 

D 
E 

C-> A : high 
A-> C: low 
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Summary of Proximity Definitions 
•  Goal: Summarize multiple relationships  

•  Solutions 
– Basic: Random Walk with Restarts 

•  [Haweliwala’02] [Pan+ 2004][Sun+ 2006][Tong+ 2006] 

– Properties: Asymmetry 
•  [Koren+ 2006][Tong+ 2007] [Tong+ 2008] 

– Variants: Esc_Prob and many others. 
•  [Faloutsos+ 2004] [Koren+ 2006][Tong+ 2007] 



Detailed outline 

•  Problem dfn and motivation 
•  Solution: Random walk with restarts 
•  Efficient computation 
•  Case study: image auto-captioning 
•  Extensions: bi-partite graphs; tracking 
•  Conclusions 
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Reminder: PageRank 
•  With probability 1-c, fly-out to a random 

node 
•  Then, we have 

p = c B p + (1-c)/n 1 => 
p = (1-c)/n  [I - c B] -1  1 
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Ranking vector Starting vector Adjacency matrix Restart p 

p = c B p + (1-c)/n 1 
The only 
difference 
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Computing RWR 

1 

4 
3 

2 

5 6 

7 

9 10 

8 
11 

12 

n x n n x 1 n x 1 

Ranking vector Starting vector Adjacency matrix 

1 

Restart p 

p = c B p + (1-c)/n 1 
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Q: Given query i, how to solve it? �

? ? 

Adjacency matrix Starting vector Ranking vector Ranking vector 

Query 
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1 
4 

3 
2 

5 6 

7 

9 10 

8 11 
12 0.13 

0.10 

0.13 

0.13 
0.05 

0.05 

0.08 

0.04 

0.02 

0.04 

0.03 

OntheFly: 

1 

4 
3 

2 

5 6 

7 

9 10 

8 11 

12 

No pre-computation/ light storage 

Slow on-line response O(mE) 
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4 

PreCompute 

1 
4 

3 
2 

5 6 

7 

9 10 

8 11 
12 0.13 

0.10 

0.13 

0.13 
0.05 

0.05 

0.08 

0.04 

0.02 

0.04 

0.03 

1 3 
2 

5 6 

7 

9 10 

8 11 

12 

R: 

c x Q 

Q   
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PreCompute: 

1 
4 

3 
2 

5 6 

7 

9 10 

8 11 
12 0.13 

0.10 

0.13 

0.13 
0.05 

0.05 

0.08 

0.04 

0.02 

0.04 

0.03 

1 

4 
3 

2 

5 6 

7 

9 10 

8 11 

12 

Fast on-line response 

Heavy pre-computation/storage cost 
O(n  ) O(n  ) 3 2 
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Q: How to Balance? 

On-line  
Off-line  
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How to balance? 

Idea (‘B-Lin’) 
•  Break into communities 
•  Pre-compute all, within a community 
•  Adjust (with S.M.) for ‘bridge edges’ 

H. Tong, C. Faloutsos, & J.Y. Pan. Fast Random Walk with 
Restart and Its Applications. ICDM, 613-622, 2006. 
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Detailed outline 

•  Problem dfn and motivation 
•  Solution: Random walk with restarts 
•  Efficient computation 
•  Case study: image auto-captioning 
•  Extensions: bi-partite graphs; tracking 
•  Conclusions 
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gCaP: Automatic Image Caption 
•  Q 

… 

Sea Sun Sky Wave { } { } Cat Forest Grass Tiger 

{?, ?, ?,} 

A: Proximity! 
       [Pan+ KDD2004]  
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Test Image 

Sea Sun Sky Wave Cat Forest Tiger Grass 

Image 

Keyword 

Region 
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Test Image 

Sea Sun Sky Wave Cat Forest Tiger Grass 

Image 

Keyword 

Region 

{Grass, Forest, Cat, Tiger} 
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C-DEM 
(Screen-shot) 



KAIST-2011 (C) 2011, C. Faloutsos 156 

C-DEM: Multi-Modal Query System for Drosophila 
Embryo Databases [Fan+ VLDB 2008] 



Detailed outline 

•  Problem dfn and motivation 
•  Solution: Random walk with restarts 
•  Efficient computation 
•  Case study: image auto-captioning 
•  Extensions: bi-partite graphs; tracking 
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Problem: update 
 E’ edges changed 
 Involves n’ authors, m’ confs. 

n authors 

m Conferences 
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Solution: 

•  Use Sherman-Morrison Lemma to quickly 
update the inverse matrix 
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Fast-Single-Update 

176x speedup 

40x speedup 

log(Time)  
(Seconds) 

Datasets 

Our method 

Our method 
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pTrack: Philip S. Yu’s Top-5 conferences up to each year 

ICDE 
ICDCS  

SIGMETRICS 
PDIS 

VLDB 

CIKM 
ICDCS 
ICDE 

SIGMETRICS 
ICMCS 

KDD 
SIGMOD 

ICDM 
CIKM 
ICDCS 

ICDM 
KDD 
ICDE 
SDM 

VLDB 
1992 1997 2002 2007 

Databases 
Performance 
Distributed Sys. 

Databases 
Data Mining 

DBLP: (Au. x Conf.) 
  - 400k aus,  
  - 3.5k confs  
  - 20 yrs 
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pTrack: Philip S. Yu’s Top-5 conferences up to each year 
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KAIST-2011 (C) 2011, C. Faloutsos 163 

KDD’s Rank wrt. VLDB over years 

Prox. 
Rank 

Year 

Data Mining and Databases  
are getting closer & closer 
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cTrack:10 most influential authors in  
NIPS community up to each year 

Author-paper bipartite graph from NIPS 1987-1999.  
3k. 1740 papers, 2037 authors, spreading over 13 years  

T. Sejnowski 

M. Jordan 
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Conclusions - Take-home messages 
•  Proximity Definitions  

– RWR 
–  and a lot of variants 

•  Computation 
– Sherman–Morrison Lemma 
– Fast Incremental Computation 

•  Applications 
–  Recommendations; auto-captioning;  tracking 
–  Center-piece Subgraphs (next) 
–  E-mail management; anomaly detection, … 
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•  www.cs.cmu.edu/~htong/soft.htm 

For software, papers, and ppt of presentations 
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Again, thanks to Hanghang TONG 
for permission to use his foils in this 
part 
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Outline 
•  Introduction – Motivation 
•  Task 1: Node importance  
•  Task 2: Recommendations & proximity 
•  Task 3: Connection sub-graphs 
•  Conclusions 
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Detailed outline 
•  Problem definition 
•  Solution 
•  Results 

H. Tong & C. Faloutsos Center-piece subgraphs: problem 
definition and fast solutions. In KDD, 404-413, 2006. 
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Center-Piece Subgraph(Ceps) 
•  Given Q query nodes 
•  Find Center-piece (       ) 

•  Input of Ceps 
–  Q Query nodes 
–  Budget b 
–  k softAnd number 

•  App. 
–  Social Network 
–  Law Inforcement 
–  Gene Network 
–  … 

B 

A 

C 

B 

A 

C 
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Challenges in Ceps 

• Q1: How to measure importance? 

•  (Q2: How to extract connection subgraph? 
•  Q3: How to do it efficiently?) 
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Challenges in Ceps 

• Q1: How to measure importance? 
• A: “proximity” – but how to combine 

scores? 
•  (Q2: How to extract connection subgraph? 
•  Q3: How to do it efficiently?) 
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AND: Combine Scores 
•  Q: How to combine 

scores? 
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AND: Combine Scores 
•  Q: How to combine 

scores? 
•  A: Multiply 
•  …= prob. 3 

random particles 
coincide on node j 
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Detailed outline 
•  Problem definition 
•  Solution 
•  Results 
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Case Study: AND query�
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Case Study: AND query�



KAIST-2011 (C) 2011, C. Faloutsos 184 

Conclusions 
Proximity (e.g., w/ RWR) helps answer 

‘AND’ and ‘k_softAnd’ queries 



Overall conclusions 
•  SVD: a powerful tool 

– HITS/ pageRank 
–  (dimensionality reduction) 

•  Proximity: Random Walk with Restarts 
– Recommendation systems 
– Auto-captioning 
– Center-Piece Subgraphs 
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