Talk 2: Graph Mining Tools SVD, ranking, proximity

Christos Faloutsos
CMU

Outline

- Introduction - Motivation Task 1: Node importance
- Task 2: Recommendations
- Task 3: Connection sub-graphs
- Conclusions

Node importance - Motivation:

- Given a graph (eg., web pages containing the desirable query word)
- Q: Which node is the most important?

Node importance - Motivation:

- Given a graph (eg., web pages containing the desirable query word)
- Q: Which node is the most important?
- A1: HITS (SVD = Singular Value Decomposition)
- A2: eigenvector (PageRank)

Node importance - motivation

- SVD and eigenvector analysis: very closely related

SVD - Detailed outline

- Motivation
- Definition - properties
- Interpretation
- Complexity
- Case studies

SVD - Motivation

- problem \#1: text - LSI: find 'concepts'
- problem \#2: compression / dim. reduction

SVD - Motivation

- problem \#1: text - LSI: find 'concepts'

terma	data	information	retrieval	brain	lung
document					

SVD - Motivation

- Customer-product, for recommendation system:

SVD - Motivation

- problem \#2: compress / reduce dimensionality

Problem - specs

- $\sim 10^{* *} 6$ rows; $\sim 10^{* *} 3$ columns; no updates;
- random access to any cell(s) ; small error: OK

${ }_{\text {customer }}^{\text {day }}$	$\begin{gathered} W \mathrm{Wc} \\ 7 / 10 / 96 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Th} \\ 7 / 11 / 96 \end{gathered}$	$\begin{gathered} \mathbf{F r} \\ 7 / 12 / 96 \end{gathered}$	$\begin{gathered} \mathrm{Sa} \\ \mathrm{7} / 13 / 96 \end{gathered}$	$\begin{gathered} \text { Su } \\ 7 / 14 / 96 \\ \hline \end{gathered}$
ABC Inc.	1	1	1	0	0
DEF Ltd.	2	2	2	0	0
GHI Inc.	1	1	1	0	0
KLM Co.	5	5	5	0	0
Smith	0	0	0	2	2
Johason	0	0	0	3	3
Thompson	0	0		1	1

SVD - Motivation

SVD - Motivation

SVD - Detailed outline

- Motivation
- Definition - properties
- Interpretation
- Complexity
- Case studies
- Additional properties

SVD - Definition

(reminder: matrix multiplication

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \times\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=[} \\
& 3 \times 2 \quad 2 \times 1
\end{aligned}
$$

SVD - Definition

(reminder: matrix multiplication

$$
\xrightarrow{\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \times\left[\begin{array}{c}
1 \\
-1
\end{array}\right]}=\left[\begin{array}{l}
2 \times 1 \\
\hline \text { KAIST-2011 } 2 \\
\longleftrightarrow
\end{array}\right.
$$

SVD - Definition

(reminder: matrix multiplication

$$
\left.\begin{array}{c}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \times\left[\begin{array}{l}
1 \\
-1
\end{array}\right]} \\
\overleftrightarrow{3 \times 2} 2 \times 1 \\
2 \times 1 \\
\longleftrightarrow
\end{array}\right]
$$

SVD - Definition

(reminder: matrix multiplication

SVD - Definition

(reminder: matrix multiplication

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \times\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right]
$$

SVD - Definition

$\mathbf{A}_{[n \times m]}=\mathbf{U}_{[n \times r]} \Lambda_{[r x r]}\left(\mathbf{V}_{[m \times r]}\right)^{T}$

- A: $\mathrm{n} \times \mathrm{m}$ matrix (eg., n documents, m terms)
- U: n x r matrix (n documents, r concepts)
- Λ : rxr diagonal matrix (strength of each 'concept') (r : rank of the matrix)
- \mathbf{V} : m x r matrix (m terms, r concepts)

SVD - Definition

- $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:
A \downarrow Lombid

Nos No ro nes

SVD - Properties

THEOREM [Press + 92]: always possible to decompose matrix \mathbf{A} into $\mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\mathrm{T}}$, where

- $\mathbf{U}, \mathbf{\Lambda}, \mathbf{V}$: unique (${ }^{*}$)
- \mathbf{U}, \mathbf{V} : column orthonormal (ie., columns are unit vectors, orthogonal to each other)
$-\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{I} ; \mathbf{V}^{\mathrm{T}} \mathbf{V}=\mathbf{I}$ (I: identity matrix)
- Λ : singular are positive, and sorted in decreasing order

SVD - Example

- $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

retrieval
data $^{\text {inf. }} \downarrow$ brain ${ }^{\text {lung }}$

SVD - Example

- $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

SVD - Example

- $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example: retrieval CS-concept inf. bring lung

KAIST-2011

SVD - Example

- $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:
data $^{\begin{array}{c}\text { inf. } \\ \downarrow\end{array} \text { brain }}$ brain lung 'strength' of CS-concept

SVD - Example

- $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

SVD - Example

- $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:
retrieval inf. ${ }^{\square}$ brain lung
term-to-concept
similarity matrix

SVD - Detailed outline

- Motivation
- Definition - properties
- Interpretation
- Complexity
- Case studies
- Additional properties

SVD - Interpretation \#1

'documents', 'terms' and 'concepts':

- U: document-to-concept similarity matrix
- V: term-to-concept sim. matrix
- Λ : its diagonal elements: 'strength' of each concept

SVD - Interpretation \#1

'documents', 'terms' and 'concepts':
Q: if \mathbf{A} is the document-to-term matrix, what is $\mathbf{A}^{\mathrm{T}} \mathbf{A}$?
A:
$\mathrm{Q}: \mathbf{A} \mathbf{A}^{\mathrm{T}}$?
A:

SVD - Interpretation \#1

'documents', 'terms' and 'concepts':
Q : if \mathbf{A} is the document-to-term matrix, what is $\mathbf{A}^{\mathrm{T}} \mathbf{A}$?
A: term-to-term ([m x m]) similarity matrix $\mathrm{Q}: \mathbf{A ~}^{\mathrm{T}}$?
A: document-to-document ([n x n]) similarity matrix

SVD properties

- \mathbf{V} are the eigenvectors of the covariance matrix $\mathbf{A}^{\mathrm{T}} \mathbf{A}$
- \mathbf{U} are the eigenvectors of the Gram (innerproduct) matrix $\mathbf{A A}^{\mathrm{T}}$

Further reading:

1. Ian T. Jolliffe, Principal Component Analysis (2 ${ }^{\text {nd }}$ ed), Springer, 2002.
2. Gilbert Strang, Linear Algebra and Its Applications (4 ${ }^{\text {th }} \mathrm{ed}$), Brooks Cole, 2005.

SVD - Interpretation \#2

- best axis to project on: ('best' = min sum of squares of projection errors)

SVD - Motivation

SVD - interpretation \#2

SVD: gives
best axis to project

- minimum RMS error

SVD - Interpretation \#2

day customer	Wc $7 / 10 / 96$	Th $7 / 11 / 96$	Fr $7 / 12 / 96$	Sa $7 / 13 / 96$	Su $7 / 14 / 96$
ABC Inc.	1	1	1	0	0
DEF Ltd.	2	2	2	0	0
GHI Inc.	1	1	1	0	0
KLM Co.	5	5	5	0	0
Smith	0	0	0	2	2
Johnson	0	0	0	3	3
Thompson	0	0	0	1	1

SVD - Interpretation \#2

- $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

SVD - Interpretation \#2

- $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

SVD - Interpretation \#2

- $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:
$-\mathbf{U} \Lambda$ gives the coordinates of the points in the projection axis

$$
\begin{aligned}
& \left.\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \times\left[\begin{array}{lll}
9.64 & 0 \\
0 & 5.29 \\
0 & & \\
\mathrm{X} \\
\text { KAIST-2011 }
\end{array}\right] \begin{array}{lllll}
0.58 & 0.58 & 0.58 & 0 & 0 \\
0 & 0 & 0 & 0.71 & 0.71
\end{array}\right]
\end{aligned}
$$

SVD - Interpretation \#2

- More details
- Q: how exactly is dim. reduction done?

$$
\begin{aligned}
& \left.\left.\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \times \mathbf{X} \begin{array}{lll}
9.64 & 0 \\
0 & 5.29
\end{array}\right] \begin{array}{l}
\mathrm{X} \\
\text { KAIST-2011 }
\end{array} \begin{array}{lllll}
0.58 & 0.58 & 0.58 & 0 & 0 \\
0 & 0 & 0 & 0.71 & 0.71
\end{array}\right] \\
& \\
& \text { (C) } 2011, \text { C. Faloutsos }
\end{aligned}
$$

SVD - Interpretation \#2

- More details
- Q: how exactly is dim. reduction done?
- A: set the smallest singular values to zero:
$\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27\end{array}\right] \times\left[\begin{array}{lll}9.64 & 0 & \\ 0 & 5.89\end{array}\right] \mathrm{x}$

SVD - Interpretation \#2

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

SVD - Interpretation \#2

Exactly equivalent:

'spectral decomposition' of the matrix:

$$
\begin{aligned}
& \left.\left.\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \times\left[\begin{array}{lll}
9.64 & 0 \\
0 & 5.29
\end{array}\right] \begin{array}{l}
\mathrm{X} \\
0
\end{array}\right] \begin{array}{lllll}
0.58 & 0.58 & 0.58 & 0 & 0 \\
0 & 0 & 0 & 0.71 & 0.71
\end{array}\right] \\
& \text { KAIST-2011 }
\end{aligned}
$$

SVD - Interpretation \#2

Exactly equivalent:

'spectral decomposition' of the matrix:

SVD - Interpretation \#2

Exactly equivalent:

'spectral decomposition' of the matrix:

SVD - Interpretation \#2

Exactly equivalent:

'spectral decomposition' of the matrix:

SVD - Interpretation \#2

approximation / dim. reduction: by keeping the first few terms (Q : how many?)

SVD - Interpretation \#2

A (heuristic - [Fukunaga]): keep 80-90\% of 'energy' (= sum of squares of λ_{i} 's)

SVD - Detailed outline

- Motivation
- Definition - properties
- Interpretation
- \#1: documents/terms/concepts
- \#2: dim. reduction
- \#3: picking non-zero, rectangular 'blobs'
- Complexity
- Case studies
- Additional properties

SVD - Interpretation \#3

- finds non-zero 'blobs' in a data matrix

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \mathrm{X}\left[\begin{array}{ll}
9.64 & 0 \\
0 & 5.29
\end{array}\right] \mathrm{X}
$$

SVD - Interpretation \#3

- finds non-zero 'blobs' in a data matrix

$$
\left[\begin{array}{lll|ll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
\hline 0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \mathrm{X}\left[\begin{array}{ll}
9.64 & 0 \\
0 & 5.29
\end{array}\right] \mathrm{X}
$$

SVD - Interpretation \#3

- finds non-zero 'blobs' in a data matrix =
- 'communities' (bi-partite cores, here)
$\left[\begin{array}{lll|ll}1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ \hline 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]$

Row 1

Row 5

SVD - Detailed outline

- Motivation
- Definition - properties
- Interpretation
- Complexity
- Case studies
- Additional properties

SVD - Complexity

- $\mathrm{O}(\mathrm{n} * \mathrm{~m} * \mathrm{~m})$ or $\mathrm{O}(\mathrm{n} * \mathrm{n} * \mathrm{~m})$ (whichever is less)
- less work, if we just want singular values
- or if we want first k singular vectors
- or if the matrix is sparse [Berry]
- Implemented: in any linear algebra package (LINPACK, matlab, Splus, mathematica ...)

SVD - conclusions so far

- SVD: $\mathbf{A}=\mathbf{U} \Lambda \mathbf{V}^{\mathbf{T}}$: unique (*)
- U: document-to-concept similarities
- \mathbf{V} : term-to-concept similarities
- $\quad \Lambda$: strength of each concept
- dim. reduction: keep the first few strongest singular values ($80-90 \%$ of 'energy')
- SVD: picks up linear correlations
- SVD: picks up non-zero 'blobs’

SVD - Detailed outline

- Motivation
- Definition - properties
- Interpretation
- Complexity
- SVD properties
- Case studies
- Conclusions

SVD - Other properties - summary

- can produce orthogonal basis (obvious) (who cares?)
- can solve over- and under-determined linear problems (see $\mathrm{C}(1)$ property)
- can compute 'fixed points' (= 'steady state prob. in Markov chains') (see C(4) property)

SVD -outline of properties

- (A): obvious
- (B): less obvious
- (C): least obvious (and most powerful!)

Properties - by defn.:

$$
\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}_{[\mathrm{rxm}]}^{\mathbf{T}}
$$

$\mathrm{A}(1): \mathbf{U}^{\mathrm{T}}{ }_{[\mathrm{rxn}]} \mathbf{U}_{[\mathrm{nxr}]}=\mathbf{I}_{[\mathrm{rxr}]}$ (identity matrix) $\mathrm{A}(2): \mathbf{V}^{\mathrm{T}}{ }_{[\mathrm{rxn}]} \mathbf{V}_{[\mathrm{nxr}]}=\mathbf{I}_{[\mathrm{rxr}]}$
A(3): $\Lambda^{\mathrm{k}}=\operatorname{diag}\left(\lambda_{1}{ }^{\mathrm{k}}, \lambda_{2}{ }^{\mathrm{k}}, \ldots \lambda_{\mathrm{r}}{ }^{\mathrm{k}}\right)(\mathrm{k}$: ANY real number)
$\mathrm{A}(4): \mathbf{A}^{\mathbf{T}}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{U}^{\mathbf{T}}$

Less obvious properties

$$
\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}_{[\mathrm{rxm}]}^{\mathbf{T}}
$$

$$
\mathrm{B}(1): \mathbf{A}_{[\mathrm{nxm]}}\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{mxn}]}=? ?
$$

Less obvious properties

$$
\begin{aligned}
& \mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}^{\mathbf{T}}[\mathrm{rxm}] \\
& \mathrm{B}(1): \mathbf{A}_{[\mathrm{nxm}]}\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{mxn}]}=\mathbf{U} \boldsymbol{\Lambda}^{2} \mathbf{U}^{\mathrm{T}} \\
& \quad \text { symmetric; Intuition? }
\end{aligned}
$$

Less obvious properties

$\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}^{\mathbf{T}}{ }_{[\mathrm{rxm}]}$ $B(1): \mathbf{A}_{[n \times m]}\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{mxn}]}=\mathbf{U} \Lambda^{2} \mathbf{U}^{\mathrm{T}}$
symmetric; Intuition?
'document-to-document' similarity matrix
$B(2)$: symmetrically, for ' V '
(AT) $[\mathrm{m} x \mathrm{n}] \mathrm{A}[\mathrm{nx} \mathrm{m}]=\mathrm{V}$ L2 VT
Intuition?

Less obvious properties

A: term-to-term similarity matrix

and
$\mathrm{B}(4):\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \sim \mathbf{v}_{1} \lambda_{1}{ }^{2 \mathrm{k}} \mathbf{v}_{1}{ }^{\mathrm{T}}$ for $\mathrm{k} \gg 1$ where
\mathbf{v}_{1} : [m x 1] first column (singular-vector) of \mathbf{V} λ_{1} : strongest singular value

Less obvious properties

$B(4):\left(A^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \sim \mathbf{v}_{1} \lambda_{1}{ }^{2 \mathrm{k}} \mathbf{v}_{1}{ }^{\mathrm{T}}$ for $\mathrm{k} \gg 1$
B(5): $\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \mathbf{v}^{\mathbf{\prime}} \sim($ constant $) \mathbf{v}_{1}$
ie., for (almost) any \mathbf{v}^{\prime}, it converges to a vector parallel to \mathbf{v}_{1}
Thus, useful to compute first singular vector/ value (as well as the next ones, too...)

Less obvious properties - repeated:

$$
\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \Lambda_{[\mathrm{rxr}]} \mathbf{V}^{\mathbf{T}}{ }_{[\mathrm{rxm}]}
$$

$$
\mathrm{B}(1): \mathbf{A}_{[\mathrm{nxm]}}\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{m} \times \mathrm{n}]}=\mathbf{U} \boldsymbol{\Lambda}^{2} \mathbf{U}^{\mathrm{T}}
$$

$$
\mathrm{B}(2):\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{m} \times \mathrm{n}]} \mathbf{A}_{[\mathrm{n} \times \mathrm{m}]}=\mathbf{V} \Lambda^{2} \mathbf{V}^{\mathrm{T}}
$$

$$
\mathrm{B}(3):\left(\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{mxn]}} \mathbf{A}_{[\mathrm{n} \times \mathrm{m}]}\right)^{\mathrm{k}}=\mathbf{V} \Lambda^{2 \mathrm{k}} \mathbf{V}^{\mathrm{T}}
$$

$$
\mathrm{B}(4):\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \sim \mathrm{v}_{1} \lambda_{1}{ }^{2 \mathrm{k}} \mathrm{v}_{1}{ }^{\mathrm{T}}
$$

$$
\mathrm{B}(5):\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \mathbf{v}^{\prime} \sim(\text { constant }) \mathbf{v}_{1}
$$

Least obvious properties - cont'd

$\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}^{\mathbf{T}}{ }_{[\mathrm{rxm}]}$
$\mathrm{C}(2): \mathbf{A}_{[\mathrm{nx} \mathrm{m}]} \mathbf{v}_{\mathbf{1}[\mathrm{m} \mathrm{x} \mathrm{1]}}=\boldsymbol{\lambda}_{\mathbf{1}} \mathbf{u}_{\mathbf{1 [n \times 1]}}$ where $\mathbf{v}_{\mathbf{1}}, \mathbf{u}_{\mathbf{1}}$ the first (column) vectors of \mathbf{V}, \mathbf{U}. ($\mathbf{v}_{\mathbf{1}}$
$==$ right-singular-vector)
$\mathrm{C}(3)$: symmetrically: $\mathbf{u}_{\mathbf{1}}{ }^{\mathbf{T}} \mathbf{A}=\boldsymbol{\lambda}_{\mathbf{1}} \mathbf{v}_{\mathbf{1}}{ }^{\mathbf{T}}$
$\mathbf{u}_{\mathbf{1}}==$ left-singular-vector
Therefore:

Least obvious properties - cont'd

$$
\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}_{[\mathrm{rxm}]}^{\mathbf{T}}
$$

$\mathrm{C}(4): \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{v}_{1}=\boldsymbol{\lambda}_{1}{ }^{2} \mathbf{v}_{1}$
(fixed point - the dfn of eigenvector for a symmetric matrix)

Least obvious properties altogether

$\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \Lambda_{[\mathrm{rxr}]} \mathbf{V}^{\mathbf{T}}{ }_{[\mathrm{rxm}]}$
$\mathrm{C}(1): \mathbf{A}_{[\mathrm{nxm}]} \mathbf{x}_{[\mathrm{m} \times 1]}=\mathbf{b}_{[\mathrm{n} \times 1]}$
then, $\mathbf{x}_{0}=\mathbf{V} \boldsymbol{\Lambda}^{(-1)} \mathbf{U}^{\mathbf{T}} \mathbf{b}$: shortest, actual or leastsquares solution
C (2): $\mathbf{A}_{[\mathrm{nxm}]} \mathbf{v}_{1[\mathrm{~m} \mathrm{\times 1]}}=\boldsymbol{\lambda}_{\mathbf{1}} \mathbf{u}_{\mathbf{1 n x}_{[\mathrm{x} 1]}}$
C(3): $\mathbf{u}_{1}{ }^{\mathbf{T}} \mathbf{A}=\boldsymbol{\lambda}_{1} \mathbf{v}_{\mathbf{1}}{ }^{\mathbf{T}}$
$\mathrm{C}(4): \mathbf{A}^{\mathbf{T}} \mathbf{A} \mathbf{v}_{\mathbf{1}}=\boldsymbol{\lambda}_{\mathbf{1}}{ }^{\mathbf{2}} \mathbf{v}_{\mathbf{1}}$

Properties - conclusions

$$
\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}_{[\mathrm{rxm}]}^{\mathbf{T}}
$$

$\mathrm{B}(5):\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \mathbf{v}^{\boldsymbol{\prime}} \sim($ constant $) \mathbf{v}_{1}$
$\mathrm{C}(1): \mathbf{A}_{[\mathrm{nx} \mathrm{m}]} \mathbf{x}_{[\mathrm{m} \times 1]}=\mathbf{b}_{[\mathrm{nx} 1]}$
then, $\mathbf{x}_{0}=\mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$: shortest, actual or leastsquares solution
$\mathrm{C}(4): \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{v}_{\mathbf{1}}=\boldsymbol{\lambda}_{\mathbf{1}}{ }^{\mathbf{2}} \mathbf{v}_{\mathbf{1}}$

SVD - detailed outline

- SVD properties
- case studies
- Kleinberg's algorithm
- Google's algorithm
- Conclusions

Kleinberg's algo (HITS)

Kleinberg, Jon (1998).
Authoritative sources in a hyperlinked environment.
Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.

Recall: problem dfn

- Given a graph (eg., web pages containing the desirable query word)
- Q: Which node is the most important?

Kleinberg's algorithm

- Problem dfn: given the web and a query
- find the most 'authoritative' web pages for this query

Step 0: find all pages containing the query terms
Step 1: expand by one move forward and backward

Kleinberg's algorithm

- Step 1: expand by one move forward and backward

Kleinberg's algorithm

- on the resulting graph, give high score (= 'authorities') to nodes that many important nodes point to
- give high importance score ('hubs') to nodes that point to good 'authorities')

Kleinberg's algorithm

observations

- recursive definition!
- each node (say, ' i '-th node) has both an authoritativeness score a_{i} and a hubness score h_{i}

Kleinberg's algorithm

Let E be the set of edges and \mathbf{A} be the adjacency matrix: the (i, j) is 1 if the edge from i to j exists
Let h and a be [$\mathrm{n} \times 1$] vectors with the 'hubness' and 'authoritativiness' scores.
Then:

Kleinberg's algorithm

Then:

$$
a_{i}=h_{k}+h_{l}+h_{m}
$$

m

that is
$a_{i}=\operatorname{Sum}\left(h_{j}\right) \quad$ over all j that (j, i) edge exists
or
$\mathbf{a}=\mathbf{A}^{\mathrm{T}} \mathbf{h}$

Kleinberg's algorithm

symmetrically, for the 'hubness':
n

$$
h_{i}=a_{n}+a_{p}+a_{q}
$$

that is
$h_{i}=\operatorname{Sum}\left(q_{j}\right) \quad$ over all j that
(i, j) edge exists
or
$\mathbf{h}=\mathbf{A} \mathbf{a}$

Kleinberg's algorithm

In conclusion, we want vectors h and a such that:

$$
\begin{aligned}
\mathbf{h} & =\mathbf{A} \mathbf{a} \\
\mathbf{a} & =\mathbf{A}^{\mathrm{T}} \mathbf{h}
\end{aligned}
$$

Recall properties:
$\mathrm{C}(2): \mathbf{A}_{[\mathrm{nx} \mathrm{m}]} \mathbf{v}_{\mathbf{1}_{[\mathrm{m} \mathrm{x} 1]}}=\boldsymbol{\lambda}_{1} \mathbf{u}_{\mathbf{1 [n \times 1]}}$
$\mathrm{C}(3): \mathbf{u}_{\mathbf{1}}{ }^{\mathbf{T}} \mathbf{A}=\boldsymbol{\lambda}_{1} \mathbf{v}_{\mathbf{1}}{ }^{\mathbf{T}}$

Kleinberg's algorithm

In short, the solutions to

$$
\begin{gathered}
\mathbf{h}=\mathbf{A} \mathbf{a} \\
\mathbf{a}=\mathbf{A}^{\mathrm{T}} \mathbf{h}
\end{gathered}
$$

are the left- and right- singular-vectors of the adjacency matrix \mathbf{A}.
Starting from random a' and iterating, we'll eventually converge
(Q: to which of all the singular-vectors? why?)

Kleinberg's algorithm

(Q: to which of all the singular-vectors? why?)
A: to the ones of the strongest singular-value, because of property $\mathrm{B}(5)$:

$$
\mathrm{B}(5):\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \mathbf{v}^{\prime} \sim(\text { constant }) \mathbf{v}_{1}
$$

Kleinberg's algorithm - results

Eg., for the query 'java':
0.328 www.gamelan.com
0.251 java.sun.com
0.190 www.digitalfocus.com ("the java developer")

Kleinberg's algorithm - discussion

- 'authority' score can be used to find 'similar pages’ (how?)

SVD - detailed outline

- Complexity
- SVD properties
- Case studies
- Kleinberg's algorithm (HITS)
- Google's algorithm
- Conclusions

PageRank (google)

-Brin, Sergey and Lawrence Page (1998). Anatomy of a Large-Scale Hypertextual Web Search Engine. 7th Intl World Wide Web Conf.
$\begin{array}{cc}\text { Larry } & \text { Sergey } \\ \text { Page } & \text { Brin }\end{array}$

Problem: PageRank

Given a directed graph, find its most interesting/central node

A node is important, if it is connected with important nodes (recursive, but OK!)

Problem: PageRank - solution

Given a directed graph, find its most interesting/central node
Proposed solution: Random walk; spot most 'popular' node (-> steady state prob. (ssp))

A node has high ssp, if it is connected with high ssp nodes (recursive, but OK!)

(Simplified) PageRank algorithm

- Let \mathbf{A} be the adjacency matrix;
- let \mathbf{B} be the transition matrix: transpose, column-normalized - then

From
B

KAIST-2011
(C) 2011, C. Faloutsos

(Simplified) PageRank algorithm

- $\mathbf{B} \mathbf{p}=\mathbf{p}$

$$
\begin{aligned}
& \mathbf{B} \quad \mathbf{p}=\mathbf{p} \\
& \text { (C) 2011, C. Faloutsos }
\end{aligned}
$$

Definitions

A Adjacency matrix (from-to)
D \quad Degree matrix $=(\operatorname{diag}(d 1, d 2, \ldots, d n))$
B Transition matrix: to-from, column normalized

$$
\mathbf{B}=\mathbf{A}^{\mathrm{T}} \mathbf{D}^{-1}
$$

(Simplified) PageRank algorithm

- $\mathbf{B} \mathbf{p}=1$ * \mathbf{p}
- thus, \mathbf{p} is the eigenvector that corresponds to the highest eigenvalue $(=1$, since the matrix is column-normalized)
- Why does such a \mathbf{p} exist?
$-\mathbf{p}$ exists if \mathbf{B} is nxn, nonnegative, irreducible [Perron-Frobenius theorem]

(Simplified) PageRank algorithm

- In short: imagine a particle randomly moving along the edges
- compute its steady-state probabilities (ssp)

Full version of algo: with occasional random jumps
Why? To make the matrix irreducible

Full Algorithm

- With probability $1-c$, fly-out to a random node
- Then, we have

$$
\begin{aligned}
& \mathbf{p}=\mathrm{c} \mathbf{B} \mathbf{p}+(1-\mathrm{c}) / \mathrm{n} \mathbf{1}=> \\
& \mathbf{p}=(1-\mathrm{c}) / \mathrm{n}[\mathbf{I}-\mathrm{c} \mathbf{B}]^{-1} \mathbf{1}
\end{aligned}
$$

Alternative notation

M
Modified transition matrix
$\mathbf{M}=\mathrm{c} \mathbf{B}+(1-\mathrm{c}) / \mathrm{n} \quad \mathbf{1} \mathbf{1}^{\mathrm{T}}$

Then

$$
\mathbf{p}=\mathbf{M} \mathbf{p}
$$

That is: the steady state probabilities $=$
PageRank scores form the first eigenvector of the 'modified transition matrix'

Parenthesis: intuition behind eigenvectors

Formal definition

If \mathbf{A} is a ($\mathrm{n} \times \mathrm{n}$) square matrix
(λ, \mathbf{x}) is an eigenvalue/eigenvector pair of \mathbf{A} if

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

CLOSELY related to singular values:

Property \#1: Eigen- vs singular-values

if

$$
\mathbf{B}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \Lambda_{[r x r]}\left(\mathbf{V}_{[\mathrm{mxr}]}\right)^{\mathrm{T}}
$$

then $\mathbf{A}=\left(\mathbf{B}^{\mathbf{T}} \mathbf{B}\right)$ is symmetric and

$$
C(4): \mathbf{B}^{T} \mathbf{B} \mathbf{v}_{\mathbf{i}}=\lambda_{\mathbf{i}}^{2} \mathbf{v}_{\mathbf{i}}
$$

ie, $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots$: eigenvectors of $\mathbf{A}=\left(\mathbf{B}^{\mathbf{T}} \mathbf{B}\right)$

Property \#2

- If $\mathbf{A}_{[\mathbf{n x n}]}$ is a real, symmetric matrix
- Then it has n real eigenvalues
(if \mathbf{A} is not symmetric, some eigenvalues may be complex)

Property \#3

- If $\mathbf{A}_{[\mathbf{n x n}]}$ is a real, symmetric matrix
- Then it has n real eigenvalues
- And they agree with its n singular values, except possibly for the sign

Intuition

- A as vector transformation

Intuition

- By defn., eigenvectors remain parallel to themselves ('fixed points')

Convergence

- Usually, fast:

Convergence

- Usually, fast:

Convergence

- Usually, fast:
- depends on ratio
$\lambda 1: \lambda 2$
(C) 2011, C. Faloutsos

Kleinberg/google - conclusions

SVD helps in graph analysis:
hub/authority scores: strongest left- and right-singular-vectors of the adjacency matrix
random walk on a graph: steady state probabilities are given by the strongest eigenvector of the (modified) transition matrix

Conclusions

- SVD: a valuable tool
- given a document-term matrix, it finds 'concepts' (LSI)
- ... and can find fixed-points or steady-state probabilities (google/ Kleinberg/ Markov Chains)

Conclusions cont'd

(We didn't discuss/elaborate, but, SVD

- ... can reduce dimensionality (KL)
- ... and can find rules (PCA; RatioRules)
- ... and can solve optimally over- and underconstraint linear systems (least squares / query feedbacks)

References

- Berry, Michael: http://www.cs.utk.edu/~1si/
- Brin, S. and L. Page (1998). Anatomy of a Large-Scale Hypertextual Web Search Engine. 7th Intl World Wide Web Conf.

References

- Christos Faloutsos, Searching Multimedia Databases by Content, Springer, 1996. (App. D)
- Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, Academic Press.
- I.T. Jolliffe Principal Component Analysis Springer, 2002 (2 ${ }^{\text {nd }}$ ed.)

References cont'd

- Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.
- Press, W. H., S. A. Teukolsky, et al. (1992). Numerical Recipes in C, Cambridge University Press. www. nr. com

Outline

- Introduction - Motivation
- Task 1: Node importance Task 2: Recommendations \& proximity
- Task 3: Connection sub-graphs
- Conclusions

Acknowledgement:

Most of the foils in 'Task 2' are by

Hanghang TONG www.cs.cmu.edu/~htong

Detailed outline

- Problem dfn and motivation
- Solution: Random walk with restarts
- Efficient computation
- Case study: image auto-captioning
- Extensions: bi-partite graphs; tracking
- Conclusions

Motivation: Link Prediction

Should we introduce
Mr. A to Mr. B?

Motivation - recommendations

Answer: proximity

- 'yes', if 'A' and ' B ' are 'close'
- 'yes', if 'smith' and 'terminator 2 ' are 'close'

QUESTIONS in this part:

- How to measure 'closeness'/proximity?
- How to do it quickly?
- What else can we do, given proximity scores?

How close is ' A ' to ' B '?

a.k.a Relevance, Closeness, 'Similarity'...

Why is it useful?

- Recommendation

And many more

- Image captioning [Pan+]
- Conn. / CenterPiece subgraphs [Faloutsos+], [Tong+], [Koren +]
and
- Link prediction [Liben-Nowell+], [Tong+]
- Ranking [Haveliwala], [Chakrabarti ${ }^{+}$]
- Email Management [Minkov+]
- Neighborhood Formulation [Sun+]
- Pattern matching [Tong+]
- Collaborative Filtering [Fouss+]
- ...

Automatic Image Captioning

Test Image

Q: How to assign keywords to the test image? A: Proximity! [Pan+ 2004]

Center-Piece Subgraph(CePS)

Input

Original Graph
Q: How to find hub for the black nodes?
A: Proximity! [Tong+ KDD 2006]

Detailed outline

- Problem dfn and motivation
- Solution: Random walk with restarts
- Efficient computation
- Case study: image auto-captioning
- Extensions: bi-partite graphs; tracking
- Conclusions

How close is ' \mathbf{A} ' to ' \mathbf{B} '?

Should be close, if they have

- many,
- short
- 'heavy' paths

Some "'bad" proximities

Why not shortest path?

Why not max. netflow?

A: No penalty for long paths

What is a "good" Proximity?

- Multiple Connections
- Quality of connection
-Direct \& In-directed Conns
-Length, Degree, Weight...

Random walk with restart

Random walk with restart

Nearby nodes, higher scores
More red, more relevant

	Node 4
Node 1	0.13
Node 2	0.10
Node 3	0.13
Node 4	0.22
Node 5	0.13
Node 6	0.05
Node 7	0.05
Node 8	0.08
Node 9	0.04
Node 10	0.03
Node 11	0.04
Node 12	0.02

Ranking vector \vec{r}_{4}

Why RWR is a good score?

$$
Q=(I-c \tilde{W})^{-1}= \begin{cases}j_{j} \\ -i(i, j) \propto r_{i, j} \\ & \tilde{W}: \text { adjacency matrix. } \\ c: \text { damping factor }\end{cases}
$$

$$
Q=c \sqrt{\tilde{W} \uparrow+c^{2} \tilde{W}^{2} \uparrow+c^{3} \tilde{W}^{3} \uparrow+\cdots}
$$

all paths from i to j with length 1
all paths from i
to j with length 2
all paths from i
to j with length 3

Detailed outline

- Problem dfn and motivation
- Solution: Random walk with restarts
- variants
- Efficient computation
- Case study: image auto-captioning
- Extensions: bi-partite graphs; tracking
- Conclusions

Variant: escape probability

- Define Random Walk (RW) on the graph
- Esc_Prob(CMU \rightarrow Paris)
- Prob (starting at CMU, reaches Paris before returning to CMU)

${ }^{\text {KAIST-2011 }}$ Esc_Prob $=\operatorname{Pr}($ smile before cry $)$

Other Variants

- Other measure by RWs
- Community Time/Hitting Time [Fouss+]
- SimRank [Jeh+]
- Equivalence of Random Walks
- Electric Networks:
- EC [Doyle+]; SAEC[Faloutsos+]; CFEC[Koren+]
- Spring Systems
- Katz [Katz], [Huang+], [Scholkopf+]
- Matrix-Forest-based Alg [Chobotarev+]

Other Variants

- Other measure by RWs
- Community Time/Hitting Time [Fouss+]
- SimRank [Jeh+]

All are "related to" or "similar to" random walk with restart!

Npilig Nysicins

- Katz [Katz], [Huang+], [Scholkopf+]
- Matrix-Forest-based Alg [Chobotarev+]

Map of proximity measurements

Notice: Asymmetry (even in undirected graphs)

Summary of Proximity Definitions

- Goal: Summarize multiple relationships
- Solutions
- Basic: Random Walk with Restarts
- [Haweliwala'02] [Pan+ 2004][Sun+ 2006][Tong+ 2006]
- Properties: Asymmetry
- [Koren+ 2006][Tong+ 2007] [Tong+ 2008]
- Variants: Esc_Prob and many others.
- [Faloutsos+ 2004] [Koren+ 2006][Tong+ 2007]

Detailed outline

- Problem dfn and motivation
- Solution: Random walk with restarts
- Efficient computation
- Case study: image auto-captioning
- Extensions: bi-partite graphs; tracking
- Conclusions

Reminder: PageRank

- With probability $1-c$, fly-out to a random node
- Then, we have

$$
\begin{aligned}
& \mathbf{p}=\mathrm{c} \mathbf{B} \mathbf{p}+(1-\mathrm{c}) / \mathrm{n} \mathbf{1}=> \\
& \mathbf{p}=(1-\mathrm{c}) / \mathrm{n}[\mathbf{I}-\mathrm{c} \mathbf{B}]^{-1} \mathbf{1}
\end{aligned}
$$

$\mathrm{p}=\mathrm{c} \mathbf{B} \mathbf{p}+(1-\mathrm{c}) / \mathrm{n} \mathbf{1}$
 Computing RWR

 Ranking vector Adjacency matrix Restart p
 Starting vector

$$
\left(\begin{array}{l}
0.13 \\
0.10 \\
0.13 \\
0.22 \\
0.13 \\
0.05 \\
0.05 \\
0.08 \\
0.04 \\
0.03 \\
0.04 \\
0.02
\end{array}\right)=0.9 \times\left(\begin{array}{cccccccccccc}
0 & 1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 1 / 3 & 0 & 0 & 0 & 0 & 1 / 4 & 0 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 0 & 1 / 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 1 / 3 & 0 & 1 / 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 / 2 & 1 / 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 / 4 & 0 & 1 / 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 / 4 & 1 / 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 / 3 & 0 & 0 & 1 / 4 & 0 & 0 & 0 & 1 / 2 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 4 & 0 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 2 & 0 & 1 / 3 & 1 / 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 4 & 0 & 1 / 3 & 0 & 1 / 2 \\
0.13 \\
0.22 \\
0.13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 \\
0.05 \\
0.05 \\
0.08 \\
0.04 \\
0.03 \\
0.04 \\
0.02
\end{array}\right)+0.1 \times\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

$\mathrm{n} \times 1$
n X n
$\mathrm{n} \times 1$

Q: Given query \boldsymbol{i}, how to solve it?

$$
\text { OntheFly: } \vec{r}_{i}[t+1]=c \tilde{W}_{\vec{r}}[t]+(1-c) \vec{e}_{i}
$$

No pre-computation/ light storage

Slow on-line response $O(m E)$

PreCompute

$$
\begin{aligned}
& R=c \times Q \\
& Q=(I-c \tilde{W})^{-1}
\end{aligned}
$$

(C) 2011, C. Faloutsos

147

PreCompute: $Q=(I-c \tilde{W})^{-1}$

(0.13)	Q	$=(I-c \tilde{W})^{-1}$
0	1.29	
${ }^{0.10}$	0.96	
${ }^{0.13}$	1.29	
${ }^{0.22}$	2.06	
${ }^{0.13}$	1.27	
${ }^{0.05} \leftarrow \mathbf{0 . 1} \times$	0.52	
0.05	0.52	
0.08	0.82	
0.04	0.28	
0.03	0.34	
0.04	0.38	
(0.02)	0.21	

Fast on-line response

Heavy pre-computation/storage cost $\mathrm{O}\left(\mathrm{n}^{3}\right)^{\text {c. Faloutos }}$
$\mathrm{O}\left(\mathrm{n}^{2}\right)$

Q: How to Balance?

How to balance?

Idea ('B-Lin')

- Break into communities
- Pre-compute all, within a community
- Adjust (with S.M.) for 'bridge edges’
H. Tong, C. Faloutsos, \& J.Y. Pan. Fast Random Walk with Restart and Its Applications. ICDM, 613-622, 2006.

Detailed outline

- Problem dfn and motivation
- Solution: Random walk with restarts
- Efficient computation
- Case study: image auto-captioning
- Extensions: bi-partite graphs; tracking
- Conclusions

gCaP: Automatic Image Caption

- Q

\{Sea Sun Sky Wave\}

A: Proximity!
 [Pan+ KDD2004]

Region

Region

C-DEM (Screen-shot)

$5 M$ - Mozilla Firefox

-

(a)

(b)

(c)

C-DEM: Multi-Modal Query System for Drosophila Embryo Databases [Fan+ VLDB 2008]

Detailed outline

- Problem dfn and motivation
- Solution: Random walk with restarts
- Efficient computation
- Case study: image auto-captioning
- Extensions: bi-partite graphs; tracking
- Conclusions

Problem: update

n authors

Solution:

- Use Sherman-Morrison Lemma to quickly update the inverse matrix

Fast-Single-Update

pTrack: Philip S. Yu's Top-5 conferences up to each year

ICDE	CIKM	KDD	ICDM
ICDCS	ICDCS	SIGMOD	KDD
SIGMETRICS	ICDE	ICDM	ICDE
PDIS	SIGMETRICS	CIKM	SDM
VLDB	ICMCS	ICDCS	VLDB
1992	1997	2002	2007

DBLP: (Au. x Conf.)

- 400k aus,
- 3.5k confs
- 20 yrs
pTrack: Philip S. Yu's Top-5 conferences up to each year

ICDE	CIKM ICDCS	KDD SIGMOD ICDCS	ICDM
SIGMETRICS			
PDIS	KDD		
VLDB	ICDM	ICDE	
1992	1997	CIKM	SDM
ICDCS	VLDB		

KDD's Rank wrt. VLDB over years

cTrack:10 most influential authors in NIPS community up to each year

T. Sejnowski

1987	1989	1991	1993	1995	1997	1999
${ }^{\top}$ Abbott L^{\top} ${ }^{\top}$ Burr_D ${ }^{\top}$ ${ }^{\text {D }}$ Denker_J" ${ }^{\circ}$ Scofield C ${ }^{\top}$ Bower_J ${ }^{\top}$ Brown_N ${ }^{\prime}$ "Carley_L" "Chou_P" ${ }^{\top}$ Chover_J ${ }^{\top}$ ${ }^{\top}$ Eecknan_F'	${ }^{\top}$ Bower_J ${ }^{1}$ ${ }^{\prime}$ Hinton_G' 'Tesauro G' ${ }^{\top}$ Denker J ${ }^{\top}$ ${ }^{\text {'Mead_ }}{ }^{\prime}{ }^{\prime}$ 'Tenorio ${ }^{\prime}{ }^{\prime}$ 'sejnowski_T" Llppmann_R 'Touretzky_D' 'Koch_C'	${ }^{\text {'Hinton_G }}{ }^{\top}$ 'Koch_C' 'Bower J' 'Sejnowski_T' Lecun_Y 'Mozer_M ${ }^{\top}$ ${ }^{\prime}$ Denker_J ${ }^{\prime}$ ' Naibel A . ${ }^{\prime}$ Moody_J ${ }^{\top}$ 'Lippmann_R"	${ }^{\top}$ Sejnowski T ${ }^{\top}$ ${ }^{\top}$ Koch_C" ${ }^{\prime}$ Hinton G^{\prime} 'Mozer_M' 'LeCun_Y' ${ }^{\circ}$ Denker_J" 'Bower J' ${ }^{\top}$ Kawato_M ${ }^{\top}$ ${ }^{\top}$ Waibel_A ${ }^{\top}$ 'Simard_P"	'Sejnowski Tr ${ }^{\top}$ Jordan ${ }^{\top}{ }^{\top}$ ${ }^{\top}$ Hinton_G ${ }^{\top}$ "Koch_C" ${ }^{\top}$ Mozec. M' ${ }^{\top}$ Bengio_ Y^{\top} ${ }^{7}$ Lippmann_R' "LeCun_Y" "Wa ibel_A" ${ }^{\top}$ Sinard $P{ }^{\top}$	${ }^{*}$ sejnowski T" ${ }^{\top}$ Jordan M^{\top} Koch_C ${ }^{*}$ Hinton_G" 'Mozer_M' 'Dayan_E' ${ }^{\top}$ Bengio_Y' ${ }^{\prime}$ Barto_A. 'Tresp_V' 'Moody_J'	

M. Jordan

Author-paper bipartite graph from NIPS 1987-1999. 3k. 1740 papers, 2037 authors, spreading over 13 years

KAIST-2011
(C) 2011, C. Faloutsos

164

Conclusions - Take-home messages

- Proximity Definitions
- RWR

$$
\overrightarrow{r_{i}}=c * \tilde{\mathbf{W}} \overrightarrow{r_{i}}+(1-c) \overrightarrow{e_{i}}
$$

- and a lot of variants
- Computation
- Sherman-Morrison Lemma
- Fast Incremental Computation
- Applications
- Recommendations; auto-captioning; tracking
- Center-piece Subgraphs (next)
- E-mail management; anomaly detection, ...

References

- L. Page, S. Brin, R. Motwani, \& T. Winograd. (1998), The PageRank Citation Ranking: Bringing Order to the Web, Technical report, Stanford Library.
- T.H. Haveliwala. (2002) Topic-Sensitive PageRank. In WWW, 517-526, 2002
- J.Y. Pan, H.J. Yang, C. Faloutsos \& P. Duygulu. (2004) Automatic multimedia cross-modal correlation discovery. In KDD, 653-658, 2004.

References

- C. Faloutsos, K. S. McCurley \& A. Tomkins. (2002) Fast discovery of connection subgraphs. In KDD, 118-127, 2004.
- J. Sun, H. Qu, D. Chakrabarti \& C. Faloutsos. (2005) Neighborhood Formation and Anomaly Detection in Bipartite Graphs. In ICDM, 418-425, 2005.
- W. Cohen. (2007) Graph Walks and Graphical Models. Draft.

References

- P. Doyle \& J. Snell. (1984) Random walks and electric networks, volume 22. Mathematical Association America, New York.
- Y. Koren, S. C. North, and C. Volinsky. (2006) Measuring and extracting proximity in networks. In KDD, 245-255, 2006.
- A. Agarwal, S. Chakrabarti \& S. Aggarwal. (2006) Learning to rank networked entities. In KDD, 14-23, 2006.

References

- S. Chakrabarti. (2007) Dynamic personalized pagerank in entity-relation graphs. In WWW, 571-580, 2007.
- F. Fouss, A. Pirotte, J.-M. Renders, \& M. Saerens. (2007) Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation. IEEE Trans. Knowl. Data Eng. 19(3), 355-369 2007.

References

- H. Tong \& C. Faloutsos. (2006) Center-piece subgraphs: problem definition and fast solutions. In KDD, 404-413, 2006.
- H. Tong, C. Faloutsos, \& J.Y. Pan. (2006) Fast Random Walk with Restart and Its Applications. In ICDM, 613-622, 2006.
- H. Tong, Y. Koren, \& C. Faloutsos. (2007) Fast direction-aware proximity for graph mining. In KDD, 747-756, 2007.

References

- H. Tong, B. Gallagher, C. Faloutsos, \& T. EliassiRad. (2007) Fast best-effort pattern matching in large attributed graphs. In KDD, 737-746, 2007.
- H. Tong, S. Papadimitriou, P.S. Yu \& C. Faloutsos. (2008) Proximity Tracking on Time-Evolving Bipartite Graphs. SDM 2008.

References

- B. Gallagher, H. Tong, T. Eliassi-Rad, C. Faloutsos. Using Ghost Edges for Classification in Sparsely Labeled Networks. KDD 2008
- H. Tong, Y. Sakurai, T. Eliassi-Rad, and C. Faloutsos. Fast Mining of Complex Time-Stamped Events CIKM 08
- H. Tong, H. Qu, and H. Jamjoom. Measuring Proximity on Graphs with Side Information. ICDM 2008

Resources

- www.cs.cmu.edu/~htong/soft.htm

For software, papers, and ppt of presentations

- www.cs.cmu.edu/~htong/tut/cikm2008/ cikm tutorial.html
For the CIKM'08 tutorial on graphs and proximity

Again, thanks to Hanghang TONG for permission to use his foils in this part

Outline

- Introduction - Motivation
- Task 1: Node importance
- Task 2: Recommendations \& proximity Task 3: Connection sub-graphs
Conclusions

Detailed outline

- Problem definition
- Solution
- Results
H. Tong \& C. Faloutsos Center-piece subgraphs: problem definition and fast solutions. In KDD, 404-413, 2006.

Center-Piece Subgraph(Ceps)

- Given Q query nodes
- Find Center-piece ($\leq b$)
- Input of Ceps
- Q Query nodes
- Budget b
- k softAnd number
- App.
- Social Network
- Law Inforcement
- Gene Network

Challenges in Ceps

- Q1: How to measure importance?
- (Q2: How to extract connection subgraph?
- Q3: How to do it efficiently?)

Challenges in Ceps

- Q1: How to measure importance?
- A: "proximity" - but how to combine scores?
- (Q2: How to extract connection subgraph?
- Q3: How to do it efficiently?)

AND: Combine Scores

- Q: How to combine scores?

AND: Combine Scores

- Q: How to combine scores?
- A: Multiply
- ... $=$ prob. 3
random particles coincide on node j

Detailed outline

- Problem definition
- Solution
- Results

Case Study: AND query

Case Study: AND query

Conclusions

Proximity (e.g., w/ RWR) helps answer 'AND' and 'k_softAnd' queries

Overall conclusions

- SVD: a powerful tool
- HITS/ pageRank
- (dimensionality reduction)
- Proximity: Random Walk with Restarts
- Recommendation systems
- Auto-captioning
- Center-Piece Subgraphs

