

CMU SCS

Large Graph Mining: Power Tools and a Practitioner's Guide

Christos Faloutsos

Gary Miller

Charalampos (Babis) Tsourakakis

CMU

Outline

➡ Reminders

- Adjacency matrix
 - Intuition behind eigenvectors: Eg., Bipartite Graphs
 - Walks of length k
- Laplacian
 - Connected Components
 - Intuition: Adjacency vs. Laplacian
 - Cheeger Inequality and Sparsest Cut:
 - Derivation, intuition
 - Example
- Normalized Laplacian

Matrix Representations of $G(V,E)$

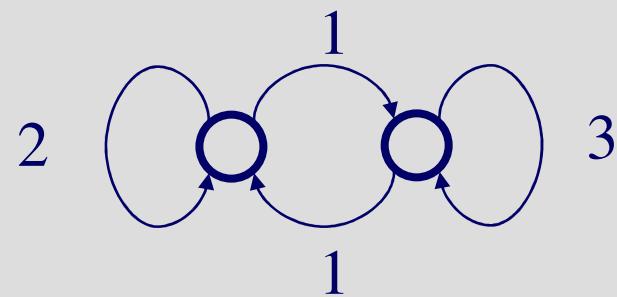
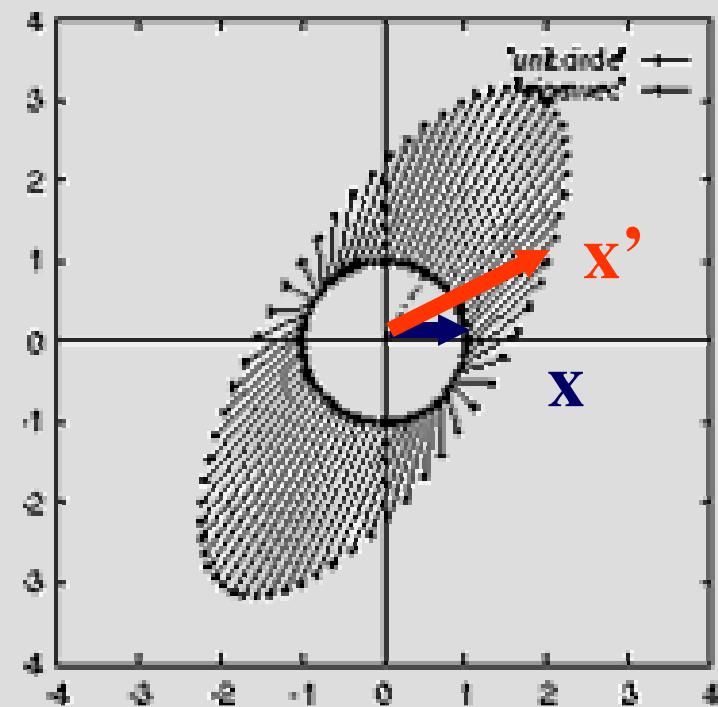
Associate a matrix to a graph:

- Adjacency matrix
 - Laplacian
 - Normalized Laplacian
-
- Main focus

Recall: Intuition

- A as vector transformation

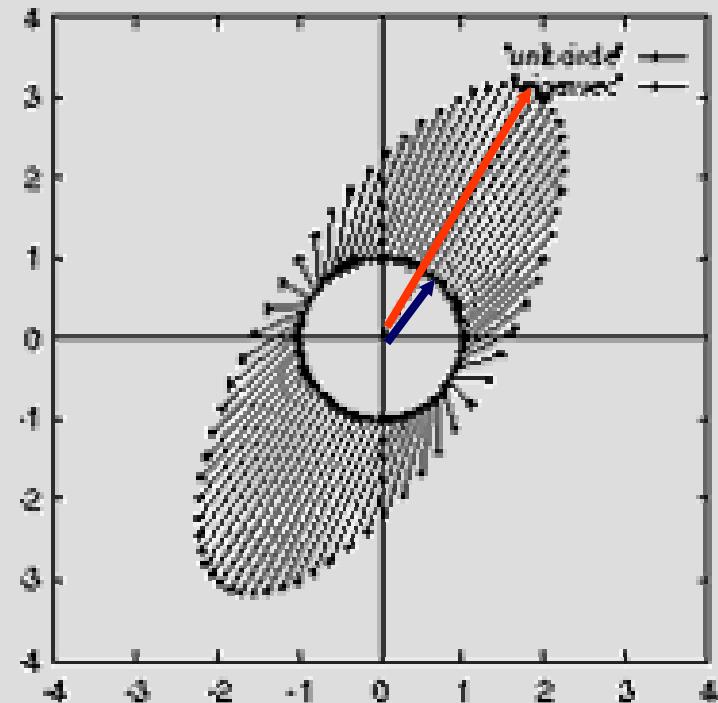
$$\begin{bmatrix} x' \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ 0 \end{bmatrix}$$



Intuition

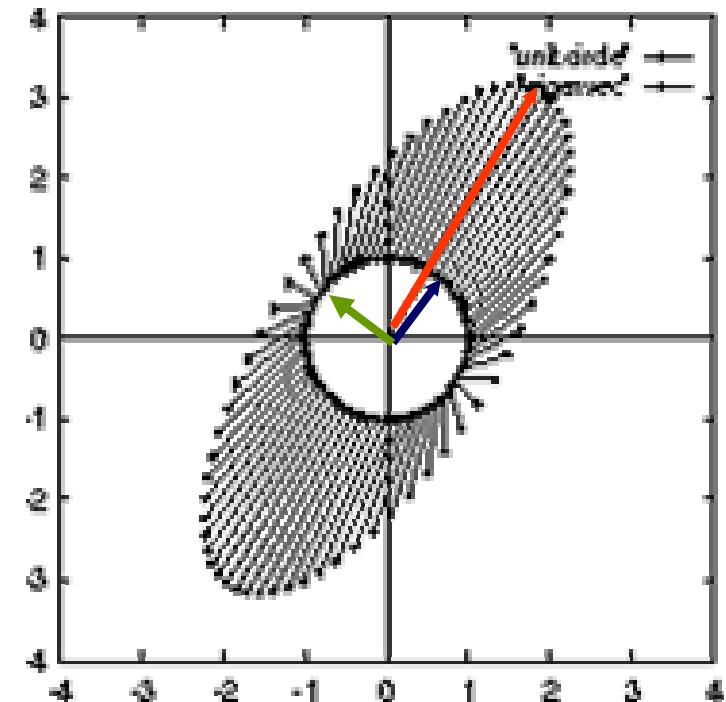
- By defn., eigenvectors remain parallel to themselves ('fixed points')

$$\lambda_1 \begin{bmatrix} \mathbf{v}_1 \\ 0.52 \\ 0.85 \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \\ 0.52 \\ 0.85 \end{bmatrix}$$



Intuition

- By defn., eigenvectors remain parallel to themselves ('**fixed points**')
- And orthogonal to each other



Keep in mind!

- For the rest of slides we will be talking for square $n \times n$ matrices

$$M = \begin{bmatrix} m_{11} & & m_{1n} \\ & \dots & \\ m_{n1} & & m_{nn} \end{bmatrix}$$

and symmetric ones, i.e,

$$M = M^T$$

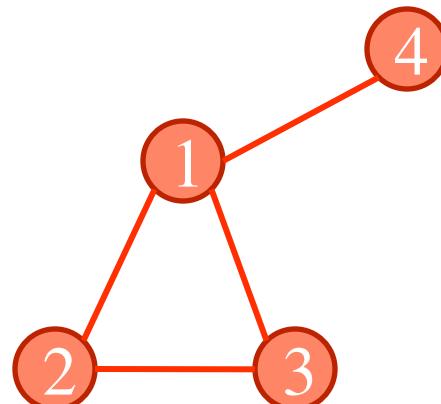
Outline

- Reminders
- **Adjacency matrix**
 - Intuition behind eigenvectors: Eg., Bipartite Graphs
 - Walks of length k
- Laplacian
 - Connected Components
 - Intuition: Adjacency vs. Laplacian
 - Cheeger Inequality and Sparsest Cut:
 - Derivation, intuition
 - Example
- Normalized Laplacian

Adjacency matrix

Undirected

$$A_{uv} = \begin{cases} 1 & \text{if } (u, v) \in E(G) \\ 0 & \text{otherwise} \end{cases}$$

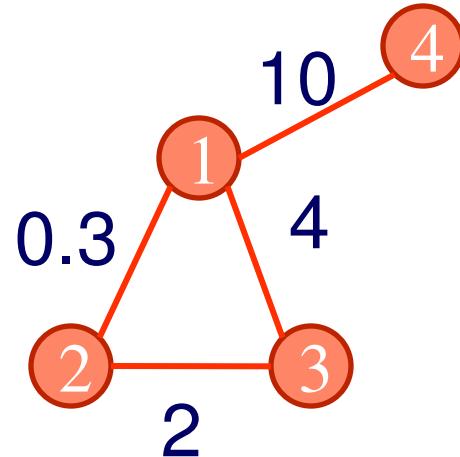


$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Adjacency matrix

Undirected Weighted

$$A_{uv} = \begin{cases} w_{uv} & \text{if } (u, v) \in E(G) \\ 0 & \text{otherwise} \end{cases}$$

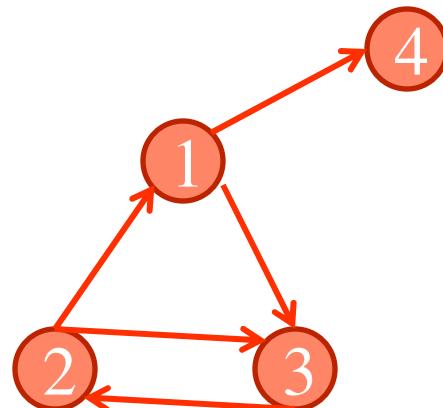


$$A = \begin{pmatrix} 0 & 0.3 & 4 & 10 \\ 0.3 & 0 & 2 & 0 \\ 4 & 2 & 0 & 0 \\ 10 & 0 & 0 & 0 \end{pmatrix}$$

Adjacency matrix

Directed

$$A_{uv} = \begin{cases} 1 & \text{if } (u, v) \in E(G) \\ 0 & \text{otherwise} \end{cases}$$



Observation
If G is undirected,
 $A = A^T$

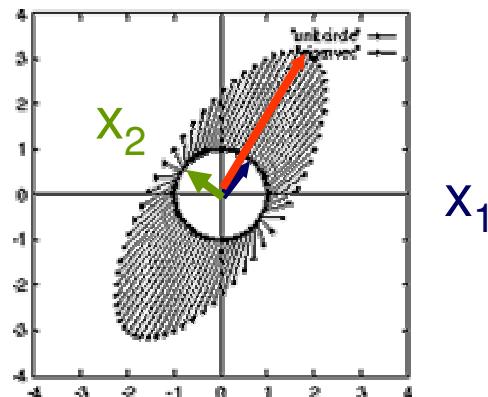
$$A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Spectral Theorem

Theorem [Spectral Theorem]

- If $M=M^T$, then

$$M = \begin{bmatrix} | & & | \\ x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & 0 \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix} = \lambda_1 x_1 x_1^T + \dots + \lambda_n x_n x_n^T$$



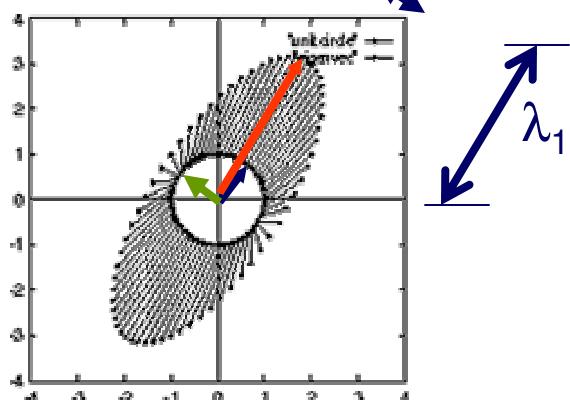
Reminder 1:
 x_i, x_j orthogonal

Spectral Theorem

Theorem [Spectral Theorem]

- If $M=M^T$, then

$$M = \begin{bmatrix} | & & | \\ x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & 0 \\ & & 0 & \\ & & & \lambda_n \end{bmatrix} \begin{bmatrix} x_1^T \\ \dots \\ x_n^T \end{bmatrix} = \lambda_1 x_1 x_1^T + \dots + \lambda_n x_n x_n^T$$



Reminder 2:

x_i

i-th principal axis

λ_i

length of i-th principal axis

Outline

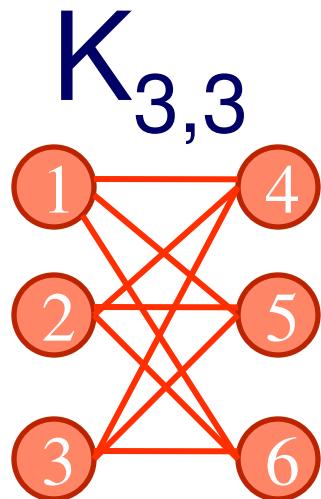
- Reminders
- Adjacency matrix
- - **Intuition behind eigenvectors:** Eg., Bipartite Graphs
 - Walks of length k
- Laplacian
 - Connected Components
 - Intuition: Adjacency vs. Laplacian
 - Cheeger Inequality and Sparsest Cut:
 - Derivation, intuition
 - Example
- Normalized Laplacian

Eigenvectors:

- Give groups
- Specifically for bi-partite graphs, we get each of the two sets of nodes
- Details:

Bipartite Graphs

Any graph with no cycles of odd length is bipartite



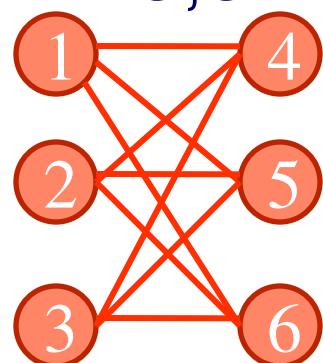
$$A = \begin{pmatrix} 0 & B^T \\ B & 0 \end{pmatrix}$$

- Q1: Can we check if a graph is bipartite via its spectrum?
- Q2: Can we get the partition of the vertices in the two sets of nodes?

Bipartite Graphs

Adjacency matrix $A = \begin{pmatrix} 0 & B^T \\ B & 0 \end{pmatrix}$

$K_{3,3}$



where

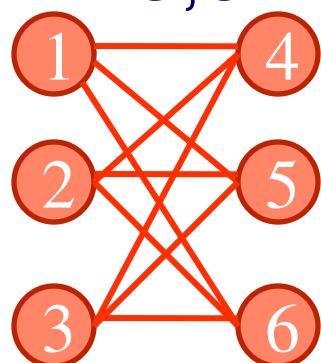
$$B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Eigenvalues: $\Lambda = [3, -3, 0, 0, 0, 0]$

Bipartite Graphs

Adjacency matrix $A = \begin{pmatrix} 0 & B^T \\ B & 0 \end{pmatrix}$

$K_{3,3}$

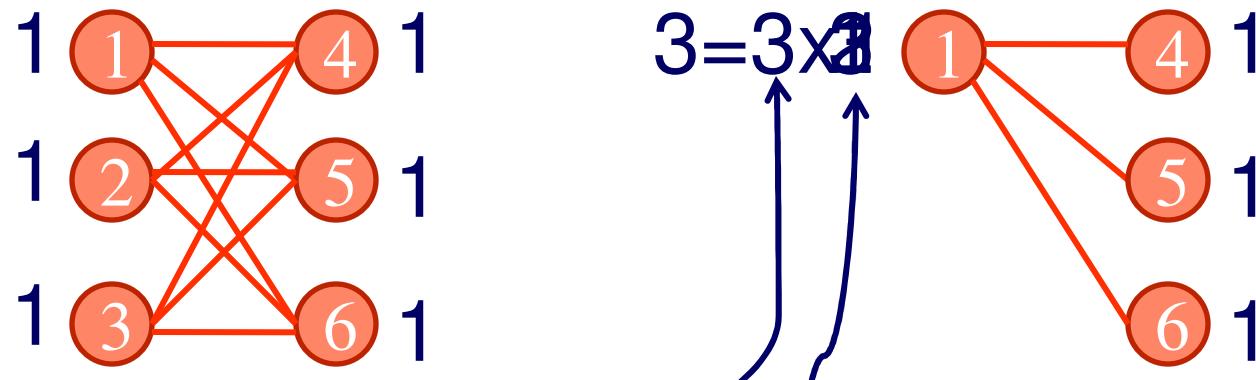


where $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

Why $\lambda_1 = -\lambda_2 = 3$?

Recall: $Ax = \lambda x$, (λ, x) eigenvalue-eigenvector

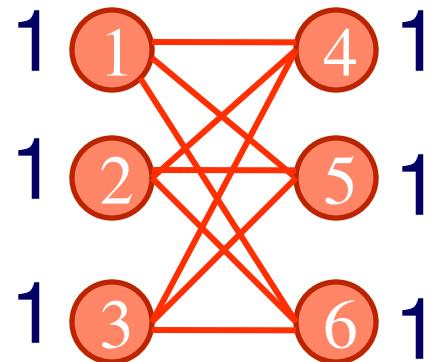
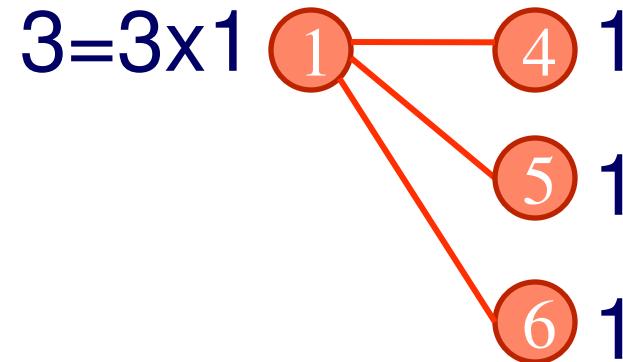
Bipartite Graphs



$$\lambda_1 = 3, u_1 = 1 = [1, 1, 1, 1, 1, 1, 1]^T$$

Value @ each node: eg., enthusiasm about a product

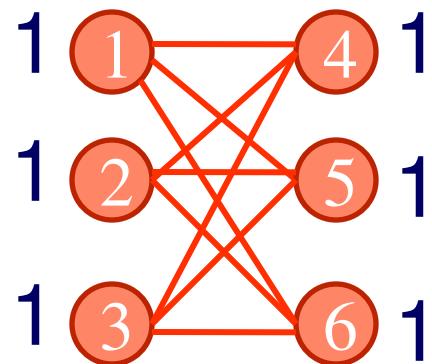
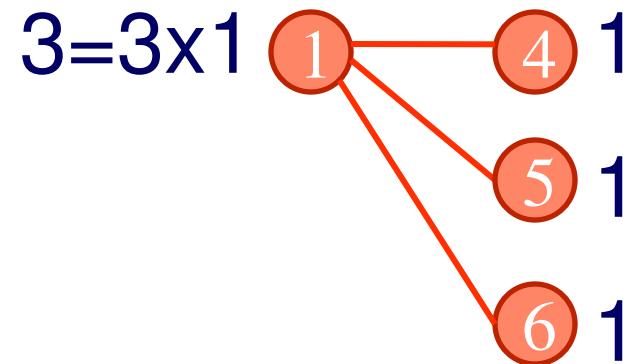
Bipartite Graphs



$$\lambda_1 = 3, u_1 = \mathbf{1} = [1, 1, 1, 1, 1, 1]^T$$

1-vector remains unchanged (just grows by ' $3 = \lambda_1$ ')

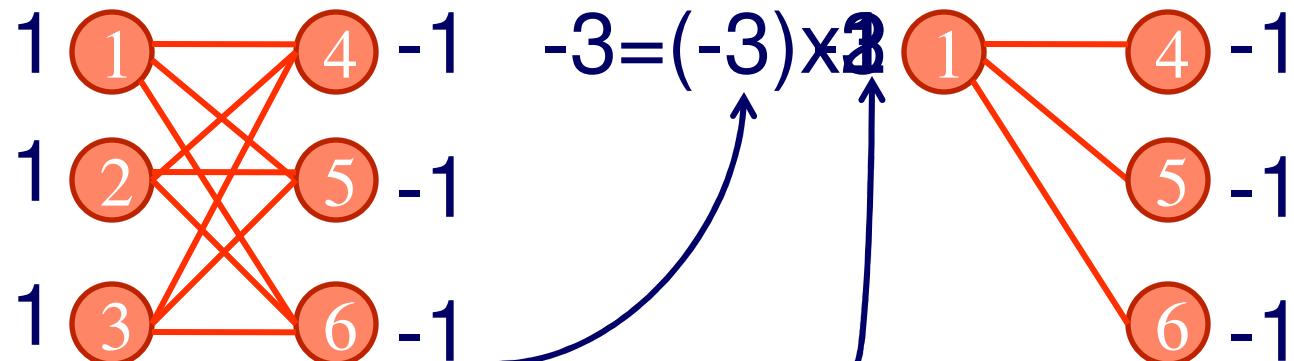
Bipartite Graphs



$$\lambda_1 = 3, u_1 = \mathbf{1} = [1, 1, 1, 1, 1, 1]^T$$

Which other vector remains unchanged?

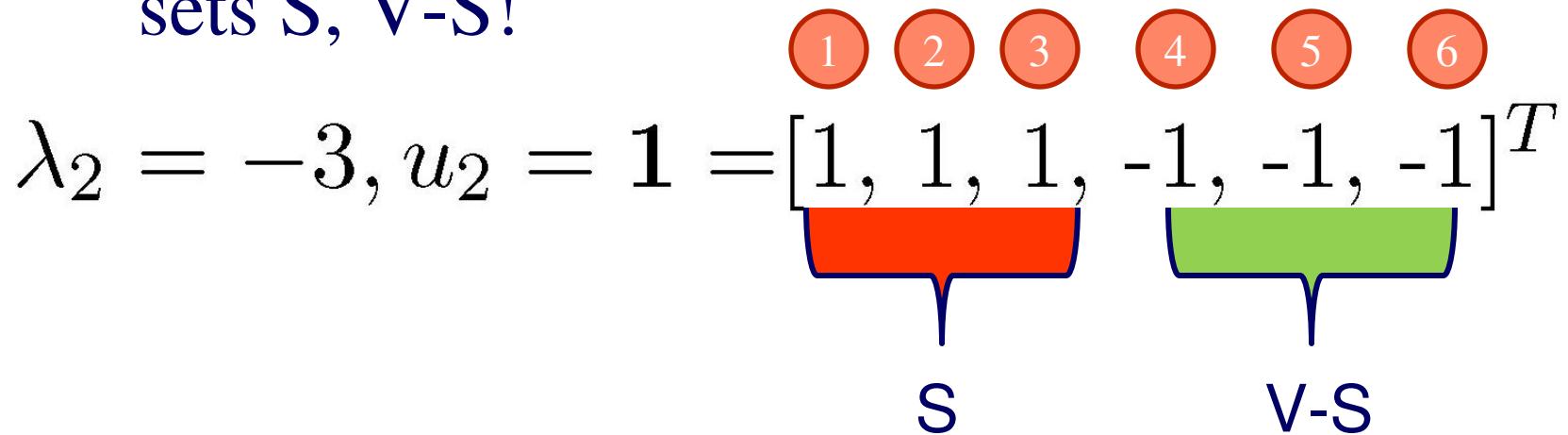
Bipartite Graphs



$$\lambda_2 = -3, u_2 = 1 = [1, 1, 1, -1, -1, -1]^T$$

Bipartite Graphs

- Observation
 - u_2 gives the partition of the nodes in the two sets $S, V-S$!



Question: Were we just “lucky”? Answer: No

Theorem: $\lambda_2 = -\lambda_1$ iff G bipartite. u_2 gives the partition.

Outline

- Reminders
- Adjacency matrix
 - Intuition behind eigenvectors: Eg., Bipartite Graphs
 - **Walks of length k**
- Laplacian
 - Connected Components
 - Intuition: Adjacency vs. Laplacian
 - Cheeger Inequality and Sparsest Cut:
 - Derivation, intuition
 - Example
- Normalized Laplacian

Walks

- A walk of length r in a directed graph:

$$u_0 \rightarrow u_1 \rightarrow \dots \rightarrow u_r$$

where a node can be used more than once.

- Closed walk when: $u_0 = u_r$



Walks

Theorem: $G(V, E)$ directed graph, adjacency matrix A . The number of walks from node u to node v in G with length r is $(A^r)_{uv}$

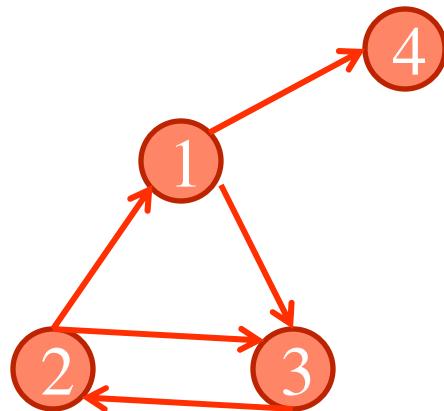
Proof: Induction on k . See Doyle-Snell, p.165

Walks

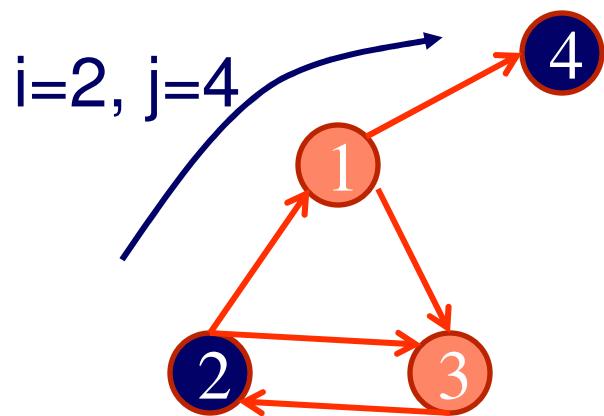
Theorem: $G(V, E)$ directed graph, adjacency matrix A . The number of walks from node u to node v in G with length r is $(A^r)_{uv}$

$$A = \begin{bmatrix} & \xrightarrow{(i,j)} \\ \xleftarrow{a_{ij}^1} & \end{bmatrix}, \quad A^2 = \begin{bmatrix} & \xrightarrow{(i, i_1), (i_1, j)} \\ \xleftarrow{a_{ij}^2} & \end{bmatrix}, \dots, A^r = \begin{bmatrix} & \xrightarrow{(i, i_1), \dots, (i_{r-1}, j)} \\ \xleftarrow{a_{ij}^r} & \end{bmatrix}$$

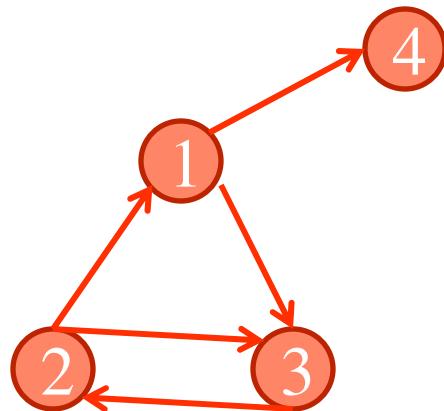
Walks



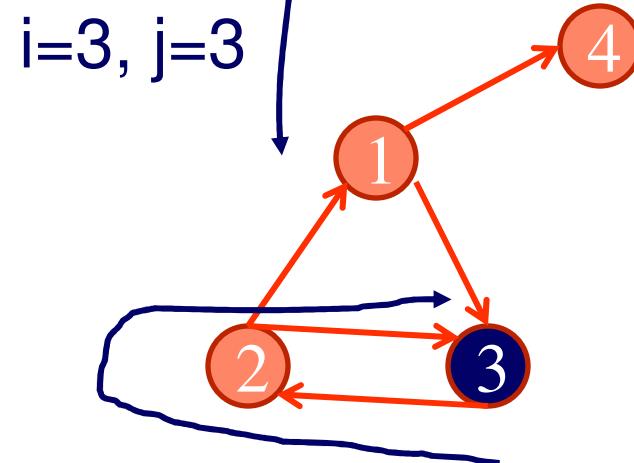
$$A^2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$



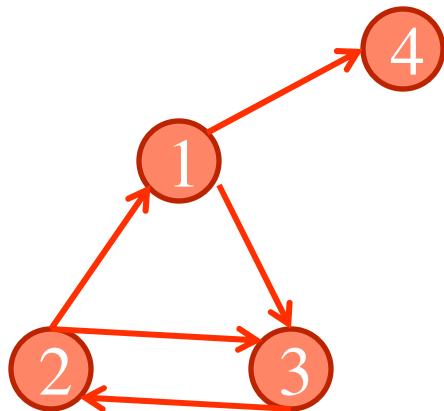
Walks



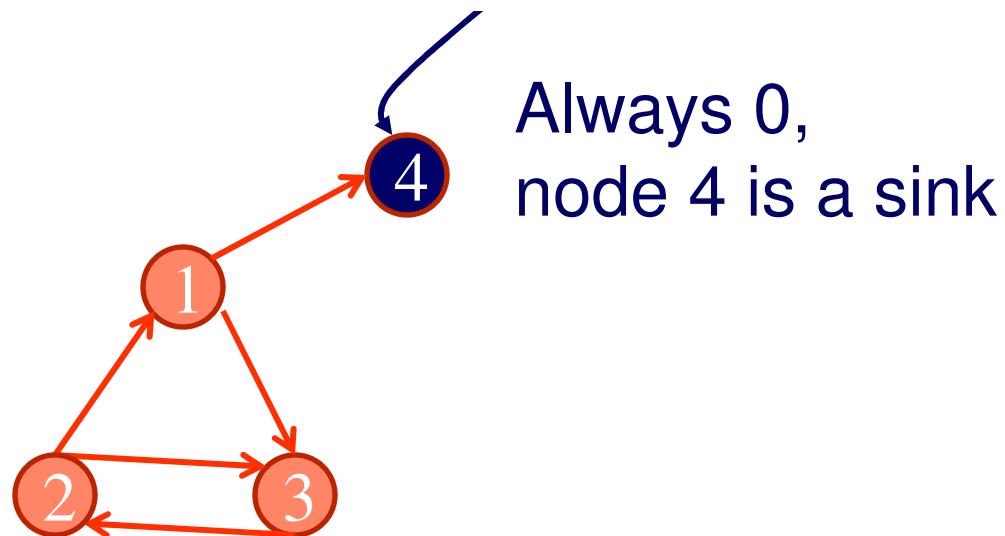
$$A^2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$



Walks



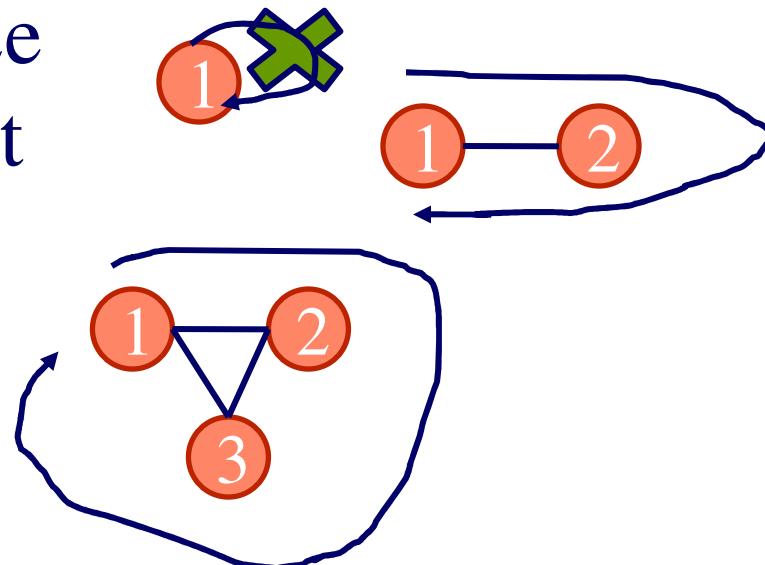
$$A^6 = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 2 & 2 & 3 & 1 \\ 1 & 2 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$



Walks

Corollary: If A is the adjacency matrix of undirected $G(V,E)$ (no self loops), e edges and t triangles. Then the following hold:

- a) $\text{trace}(A) = 0$
 - b) $\text{trace}(A^2) = 2e$
 - c) $\text{trace}(A^3) = 6t$



Walks

Corollary: If A is the adjacency matrix of undirected $G(V, E)$ (no self loops), e edges and t triangles. Then the following hold:

- a) $\text{trace}(A) = 0$
- b) $\text{trace}(A^2) = 2e$
- c) $\text{trace}(A^3) = 6t$

Computing A^r may be expensive!

Remark: virus propagation

The earlier result makes sense now:

- The higher the first eigenvalue, the more paths available ->
- Easier for a virus to survive

Outline

- Reminders
- Adjacency matrix
 - Intuition behind eigenvectors: Eg., Bipartite Graphs
 - Walks of length k

→ Laplacian

- Connected Components
- Intuition: Adjacency vs. Laplacian
- Cheeger Inequality and Sparsest Cut:
 - Derivation, intuition
 - Example
- Normalized Laplacian

Main upcoming result

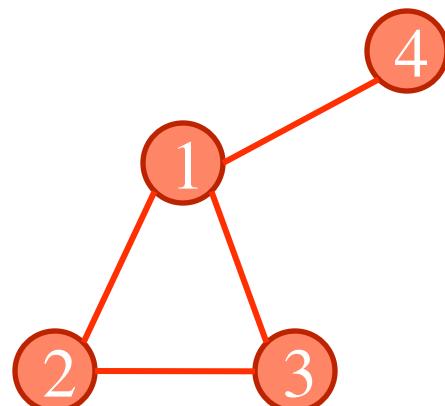
the second eigenvector of the Laplacian (u_2)
gives a good cut:

Nodes with positive scores should go to one
group

And the rest to the other

Laplacian

$$L_{uv} = \begin{cases} d_u & \text{if } u = v \\ -1 & \text{if } (u, v) \in E(G) \\ 0 & \text{otherwise} \end{cases}$$

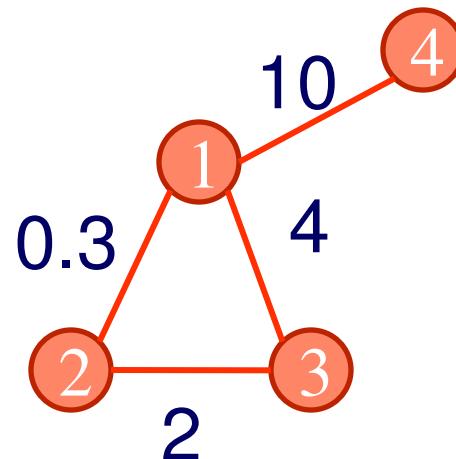


$$L = D - A = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Diagonal matrix, $d_{ii} = d_i$

Weighted Laplacian

$$L_{uv} = \begin{cases} d_u = \sum_v w_{uv} & \text{if } u = v \\ -w_{uv} & \text{if } (u, v) \in E(G) \\ 0 & \text{otherwise} \end{cases}$$



$$L = \begin{pmatrix} 14.3 & -0.3 & -4 & -10 \\ -0.3 & 2.3 & -2 & 0 \\ -4 & -2 & 6 & 0 \\ -10 & 0 & 0 & 10 \end{pmatrix}$$

Outline

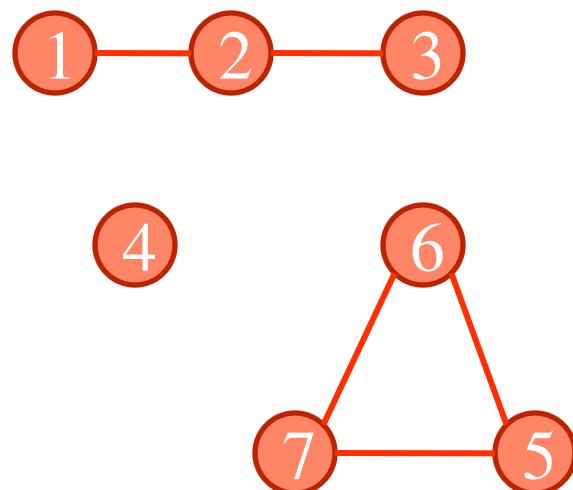
- Reminders
- Adjacency matrix
 - Intuition behind eigenvectors: Eg., Bipartite Graphs
 - Walks of length k
- Laplacian
- - Connected Components
 - Intuition: Adjacency vs. Laplacian
 - Cheeger Inequality and Sparsest Cut:
 - Derivation, intuition
 - Example
- Normalized Laplacian

Connected Components

- **Lemma:** Let G be a graph with n vertices and c connected components. If L is the Laplacian of G , then $\text{rank}(L) = n - c$.
- **Proof:** see p.279, Godsil-Royle

Connected Components

$$G(V, E)$$

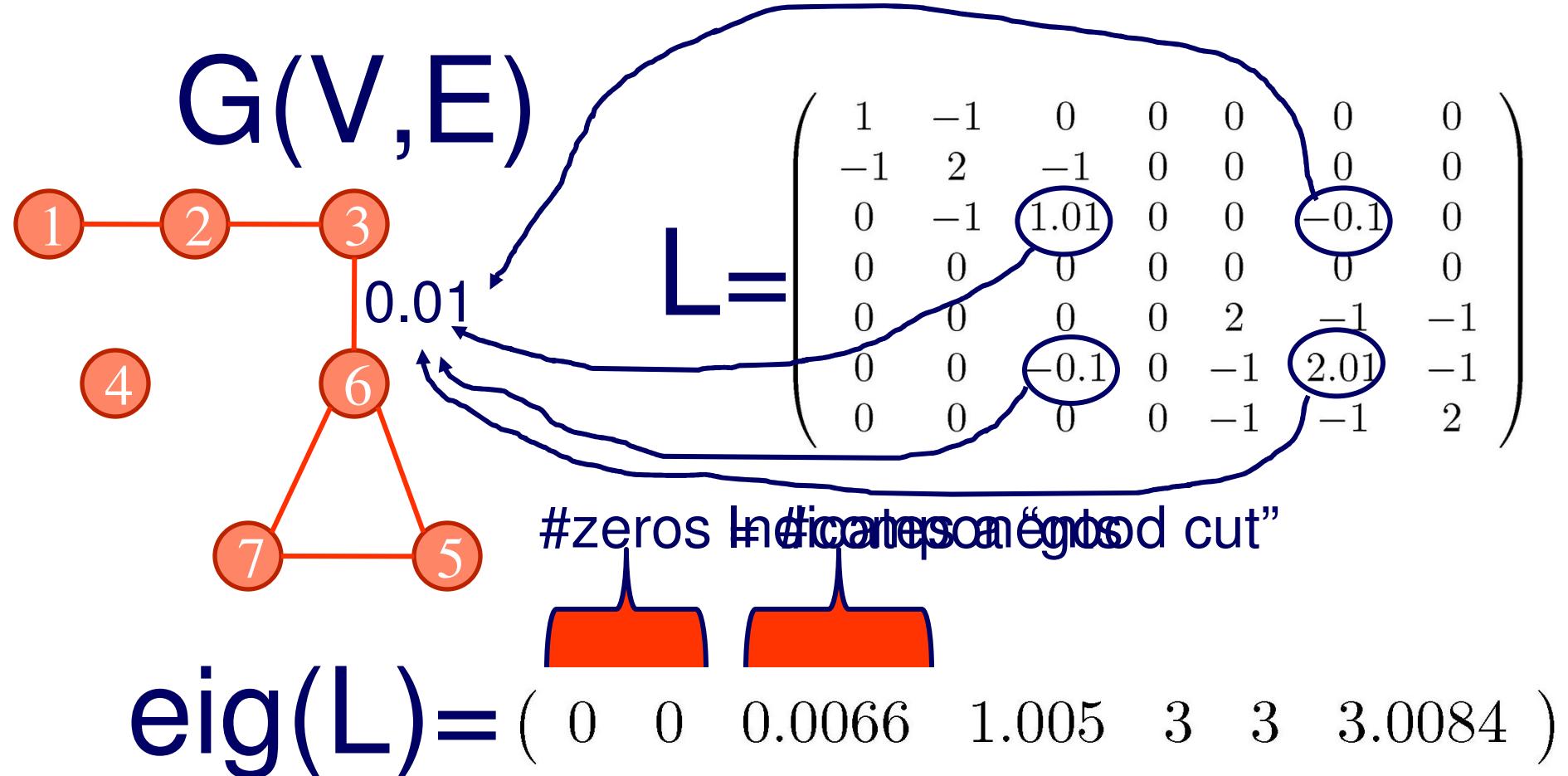


$$L = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 2 \end{pmatrix}$$

#zeros = #components

$$\text{eig}(L) = \left(\begin{array}{ccccccc} 0 & 0 & 0 & 1 & 3 & 3 & 3 \end{array} \right)$$

Connected Components



Outline

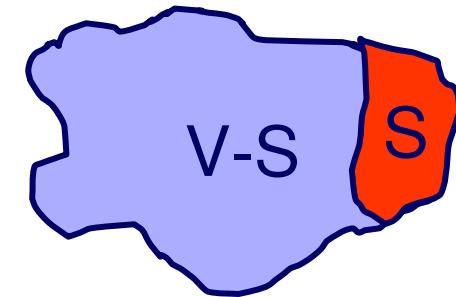
- Reminders
- Adjacency matrix
 - Intuition behind eigenvectors: Eg., Bipartite Graphs
 - Walks of length k
- Laplacian
 - Connected Components
 - **Intuition: Adjacency vs. Laplacian**
 - Cheeger Inequality and Sparsest Cut:
 - Derivation, intuition
 - Example
- Normalized Laplacian

Adjacency vs. Laplacian Intuition

Let \mathbf{x} be an indicator vector:

$$x_i = 1, \text{ if } i \in S$$

$$x_i = 0, \text{ if } i \notin S$$

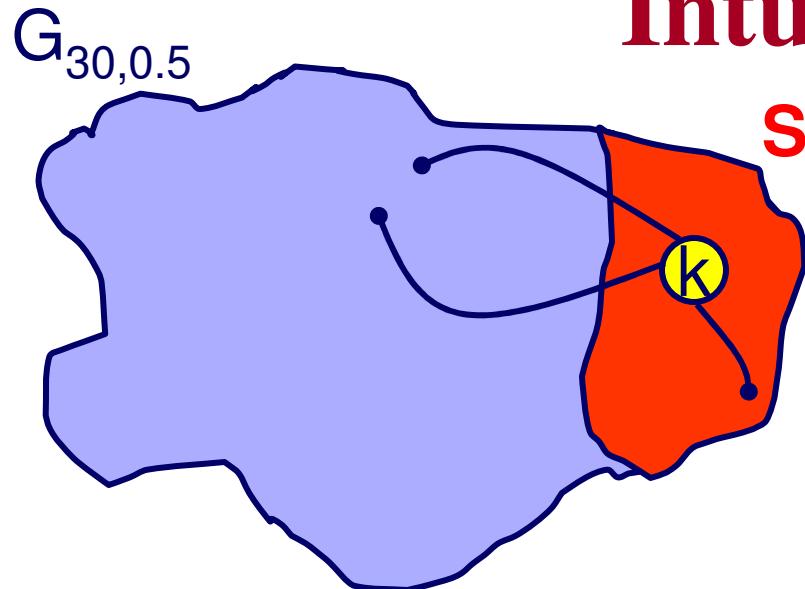


Consider now $\mathbf{y} = \mathbf{Lx}$

k-th coordinate

$$y_k = (Lx)_k = d_k x_k - \sum_{j:(j,k) \in E(G)} x_j$$

Adjacency vs. Laplacian Intuition

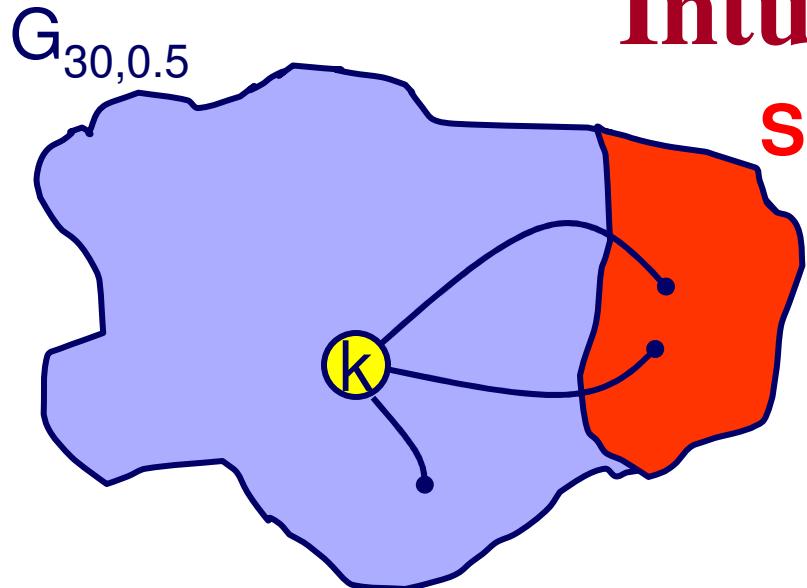


Consider now $y = Lx$

$$y_k > 0$$

$$y_k = (Lx)_k = d_k x_k - \sum_{j:(j,k) \in E(G)} x_j$$

Adjacency vs. Laplacian Intuition

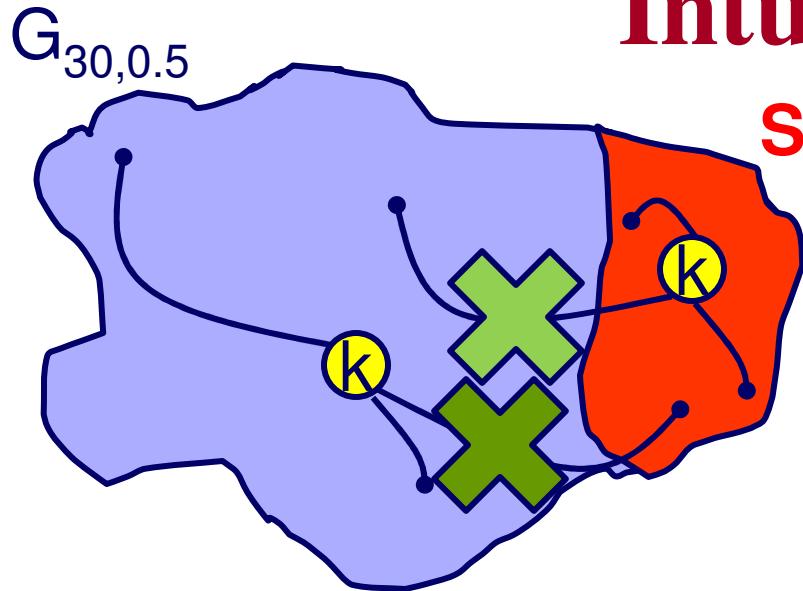


Consider now $y = Lx$

$$y_k < 0$$

$$y_k = (Lx)_k = d_k x_k - \sum_{j:(j,k) \in E(G)} x_j$$

Adjacency vs. Laplacian Intuition



Consider now $y = Lx$

$$y_k = 0$$

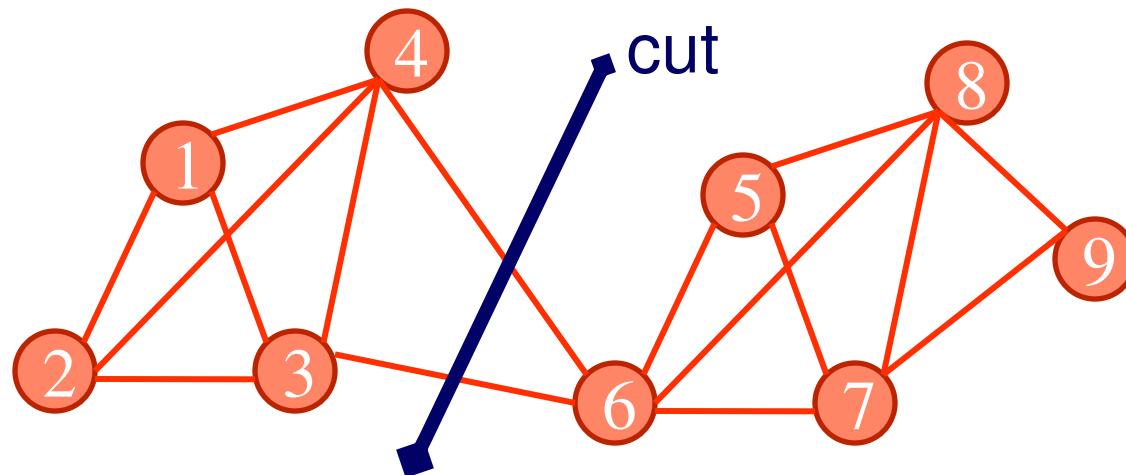
$$y_k = \underbrace{(Lx)_k}_{\text{Adjacency: #paths}} = \underbrace{d_k x_k}_{\text{Laplacian: connectivity}} \sum_{j:(j,k) \in E(G)} x_j$$

Outline

- Reminders
- Adjacency matrix
 - Intuition behind eigenvectors: Eg., Bipartite Graphs
 - Walks of length k
- Laplacian
 - Connected Components
 - Intuition: Adjacency vs. Laplacian
 - **Sparsest Cut and Cheeger inequality:**
 - Derivation, intuition
 - Example
- Normalized Laplacian

Why Sparse Cuts?

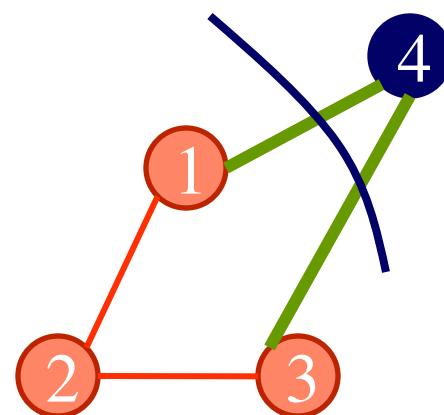
- Clustering, Community Detection



- And more: Telephone Network Design, VLSI layout, Sparse Gaussian Elimination, Parallel Computation

Quality of a Cut

- Isoperimetric number ϕ of a cut S :



#edges across $\phi(S) = \frac{e(S, V - S)}{\min(|S|, |V - S|)}$ **#nodes in smallest partition**

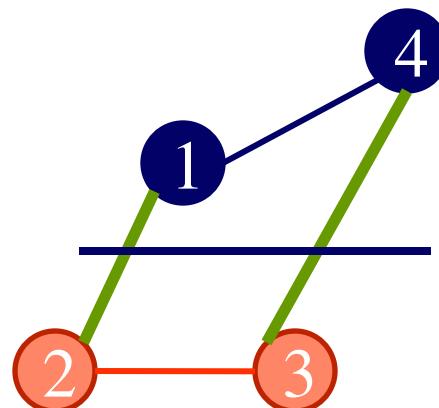
$$\phi(\{4\}) = \frac{2}{\min(1,3)} = 2$$

Quality of a Cut

- Isoperimetric number ϕ of a **graph** = score of best cut:

$$\phi(G) = \min_{S \subseteq V} \phi(S)$$

$$\phi(\{1, 4\}) = \frac{2}{\min(2, 2)} = 1$$

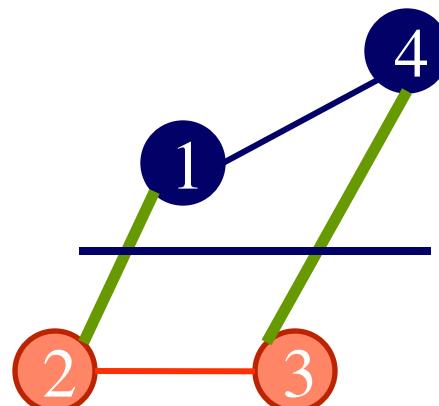


and thus $\phi(G) = 1$

Quality of a Cut

- Isoperimetric number φ of a **graph** = score of best cut:

Best cut: hard to find
BUT: Cheeger's inequality gives bounds
 λ_2 : Plays major role



Let's see the intuition behind λ_2

Laplacian and cuts - overview

- A cut corresponds to an indicator vector (ie., 0/1 scores to each node)
- Relaxing the 0/1 scores to real numbers, gives eventually an alternative definition of the eigenvalues and eigenvectors

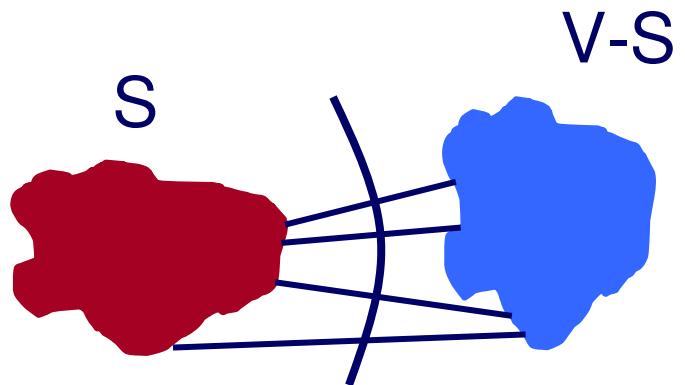
Why λ_2 ?

Characteristic Vector \mathbf{x}

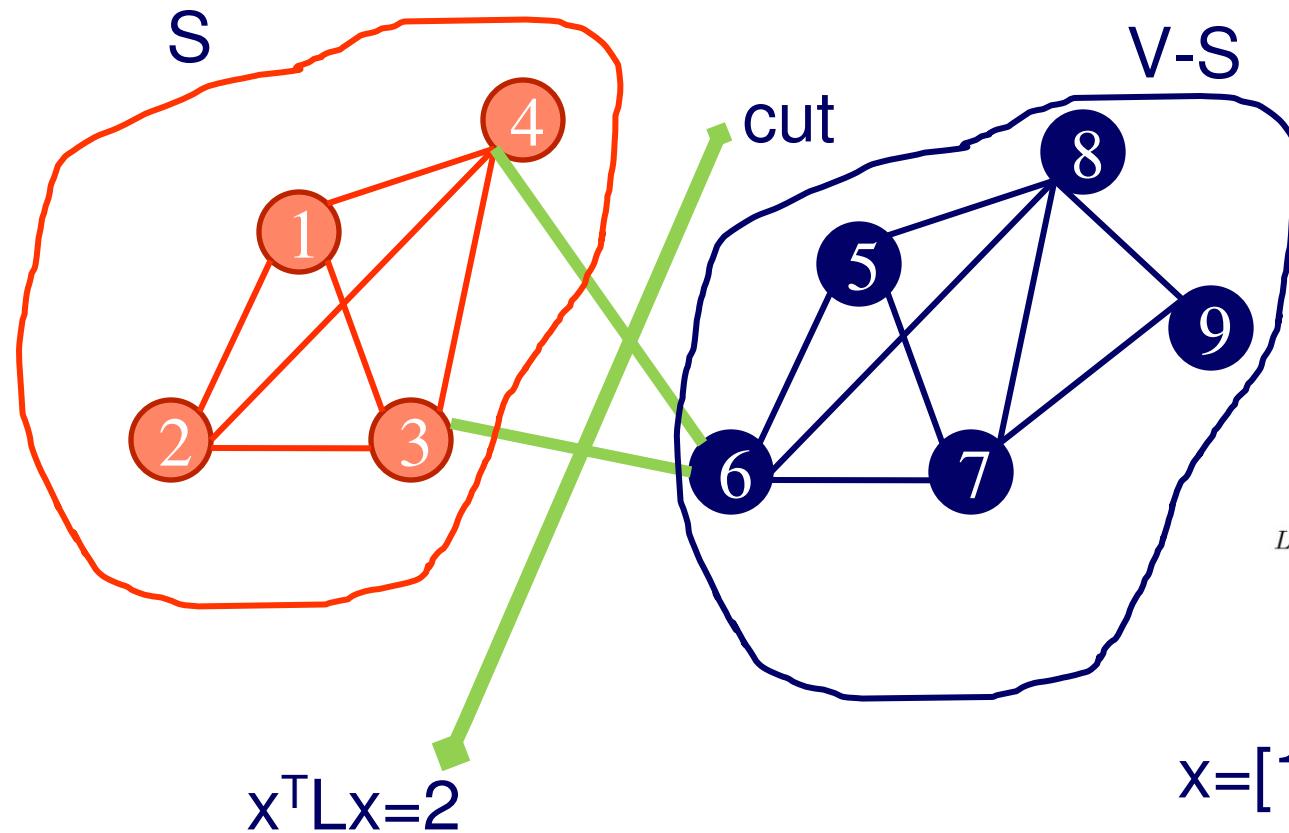
- $x_i = 1$, if $i \in S$
- $x_i = 0$, if $i \notin S$

Then:

$$\mathbf{x}^T L \mathbf{x} = \sum_{(i,j) \in E(G)} (x_i - x_j)^2 = e(S, V - S)$$



Why λ_2 ?



$$L = \begin{pmatrix} 3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & 4 & -1 & 0 & -1 & 0 & 0 & 0 \\ -1 & -1 & -1 & 4 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & -1 & -1 & -1 & 0 \\ 0 & 0 & -1 & -1 & -1 & 5 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & 4 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 2 \end{pmatrix}$$

$$x = [1, 1, 1, 1, 0, 0, 0, 0, 0]^T$$

Why λ_2 ?

$$r(S) = \frac{e(S, V-S)}{|S||V-S|} \rightarrow \frac{\phi(S)}{n} \leq r(S) \leq \frac{\phi(S)}{\frac{n}{2}}$$

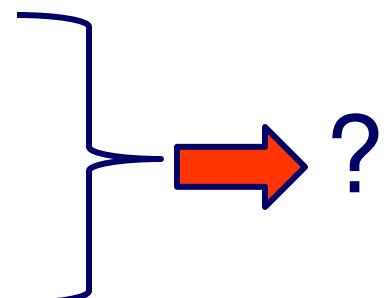
Ratio cut

Sparsest ratio cut $r(G) = \min_{S \subset V} r(S) = \min_{x \in \{0,1\}^n} \frac{1}{n} \frac{x^T L x}{x^T x}$

NP-hard

Relax the constraint: $x \in \{0, 1\}^n \rightarrow x \in \mathbb{R}^n$

Normalize: $\sum_i x_i = 0$



Why λ_2 ?

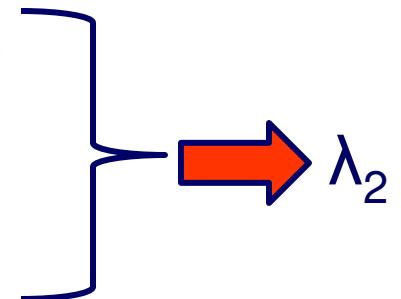
Sparsest ratio cut

$$r(G) = \min_{S \subset V} r(S) = \min_{x \in \{0,1\}^n} \frac{1}{n} \frac{x^T L x}{x^T x}$$

Relax the constraint: $x \in \{0, 1\}^n \rightarrow x \in \mathbb{R}^n$

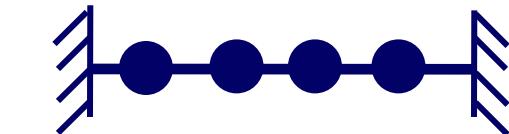
Normalize: $\sum_i x_i = 0$

NP-hard



because of the Courant-Fisher theorem (applied to L)

$$\lambda_2 = \min_{\sum_i u_i = 0, u \neq 0} \frac{u^T L u}{u^T u} = \min_{\sum_i u_i = 0, u \neq 0} \frac{\sum_{(i,j) \in E(G)} (u_i - u_j)^2}{\sum_i u_i^2}$$



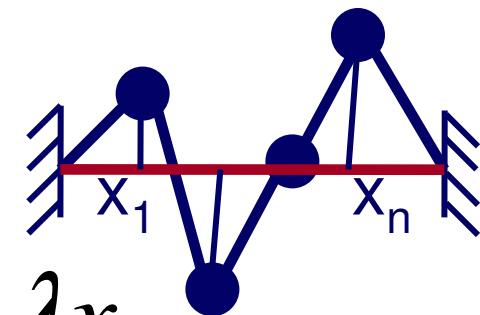
Each ball 1 unit of mass

Why λ_2 ?

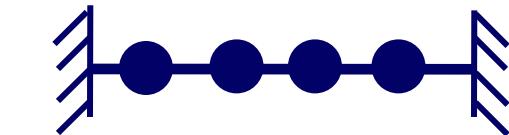
OSCILLATE

$$Lx = \lambda x$$

Dfn of eigenvector



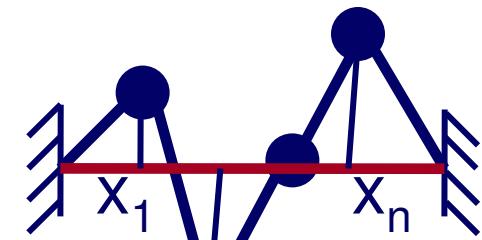
Matrix viewpoint:



Each ball 1 unit of mass

Why λ_2 ?

OSCILLATE



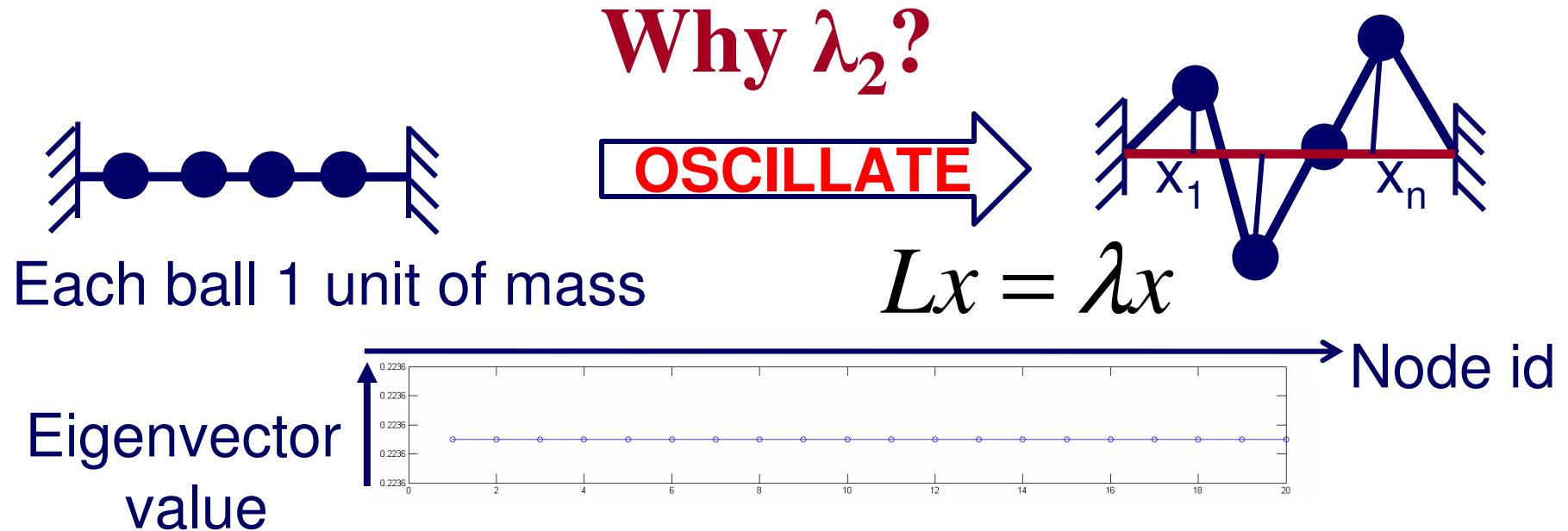
$$Lx = \lambda x$$

Force due to neighbors

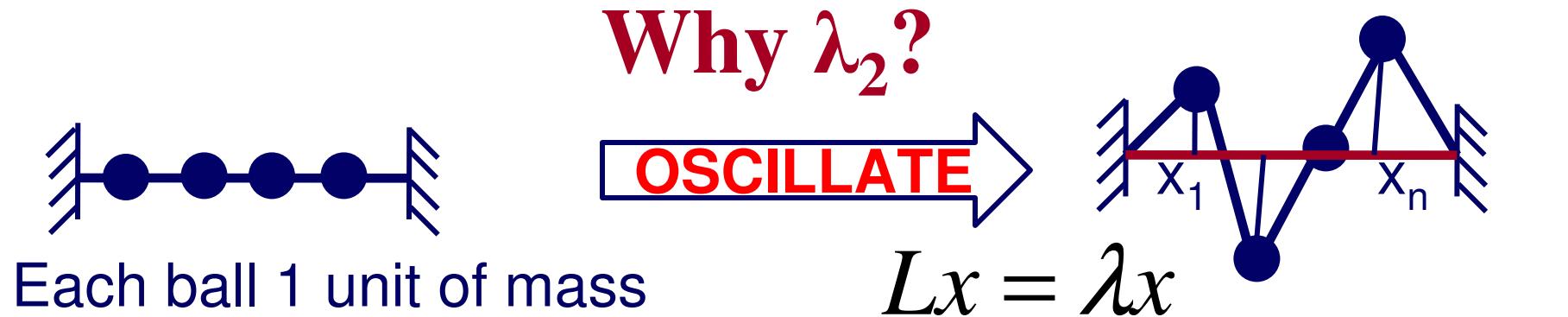
displacement

Physics viewpoint:

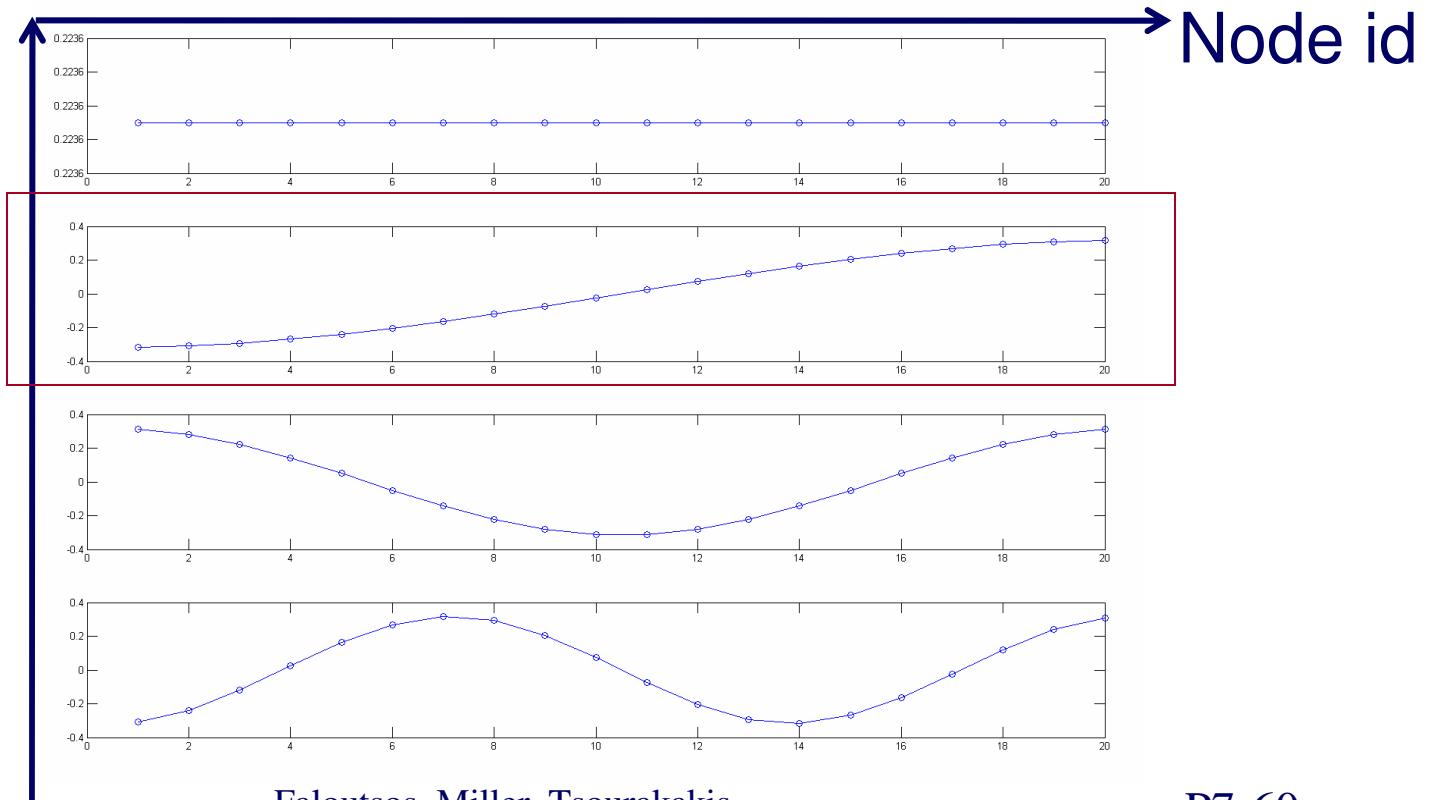
Hooke's constant



For the first eigenvector:
All nodes: same displacement (= value)

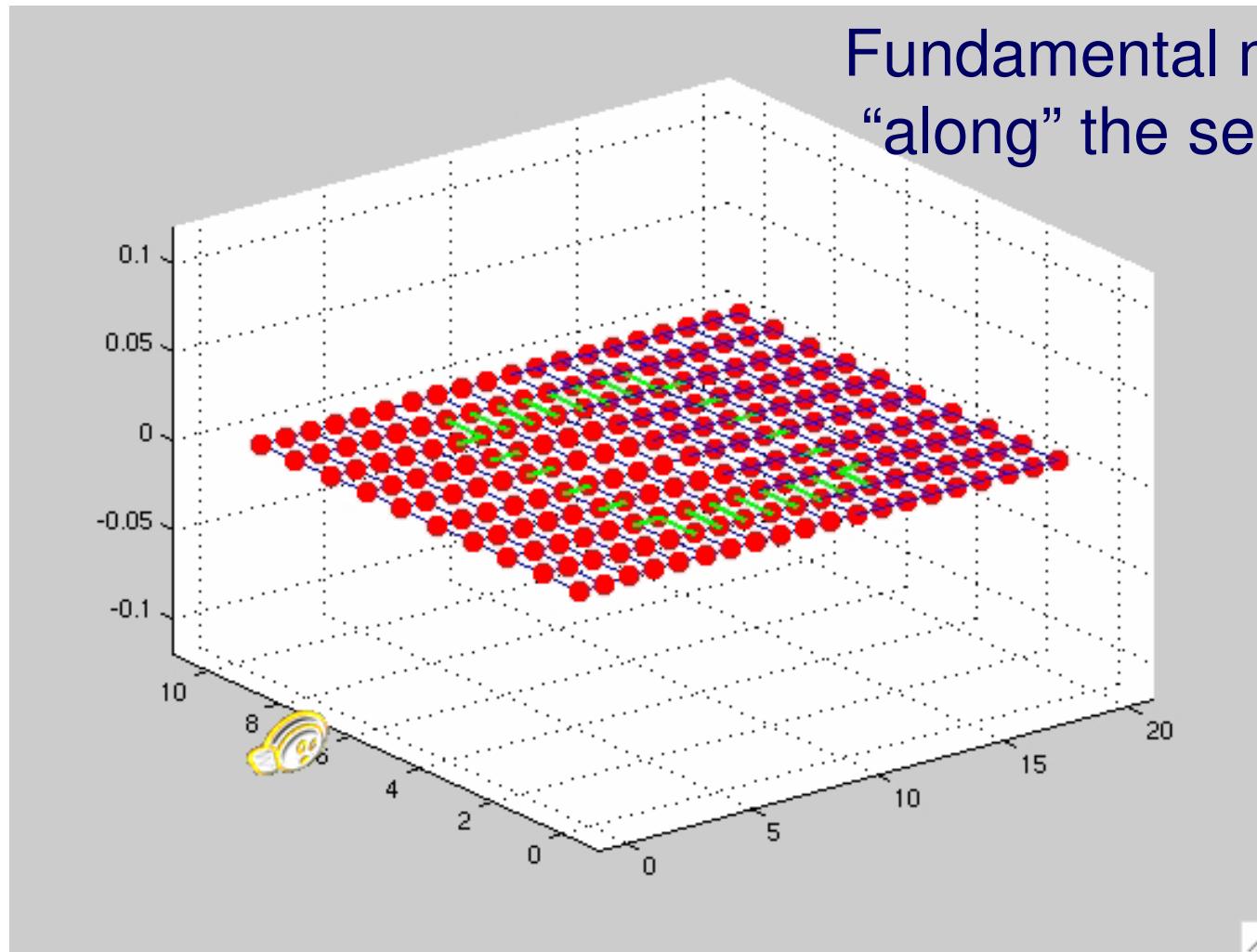


Eigenvector
value



Why λ_2 ?

Fundamental mode of vibration:
“along” the separator



Cheeger Inequality

Score of best cut
(**hard** to compute)

$$\frac{\phi^2}{2d_{max}} \leq \lambda_2 \leq 2\phi(G)$$

Max degree

2nd smallest eigenvalue
(**easy** to compute)

Cheeger Inequality and graph partitioning heuristic:

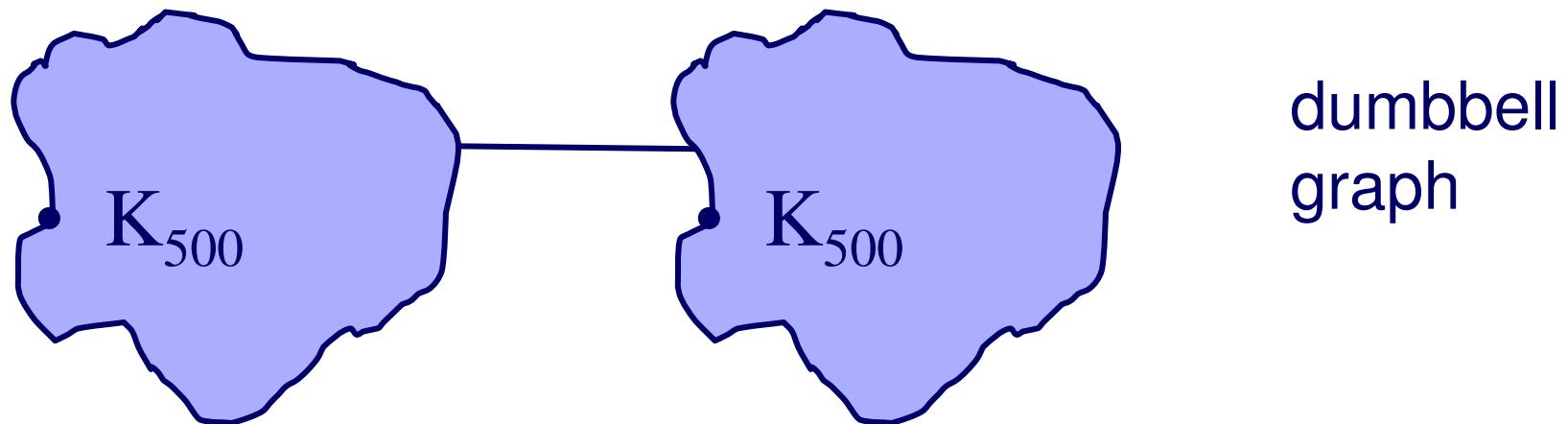
$$\frac{\phi^2}{2d_{max}} \leq \lambda_2 \leq 2\phi(G)$$

- Step 1: Sort vertices in non-decreasing order according to their score of the second eigenvector
 - Step 2: Decide where to cut.
 - Bisection
 - **Best ratio cut**
- Two common heuristics

Outline

- Reminders
- Adjacency matrix
- Laplacian
 - Connected Components
 - Intuition: Adjacency vs. Laplacian
 - Sparsest Cut and Cheeger inequality:
 - Derivation, intuition
 - **Example**
- Normalized Laplacian

Example: Spectral Partitioning



Algorithms (network analysis,

As (500,1:500) are ones(500)-eye(500);

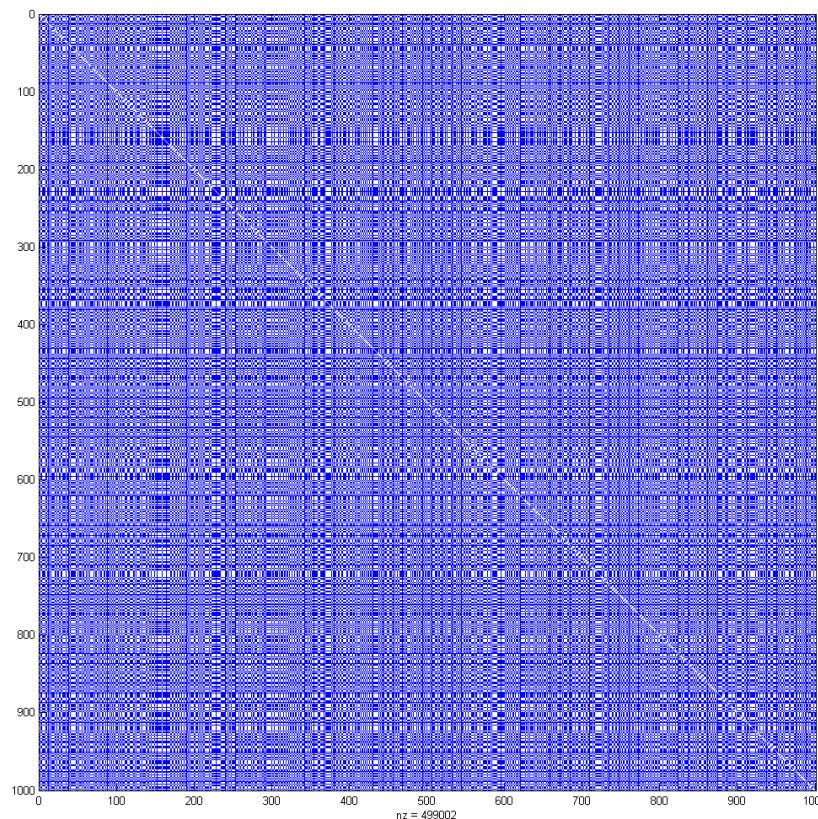
$A(501:1000,501:1000) = \text{ones}(500)-\text{eye}(500);$

$\text{myrandperm} = \text{randperm}(1000);$

$B = A(\text{myrandperm}, \text{myrandperm});$

Example: Spectral Partitioning

- This is how adjacency matrix of B looks



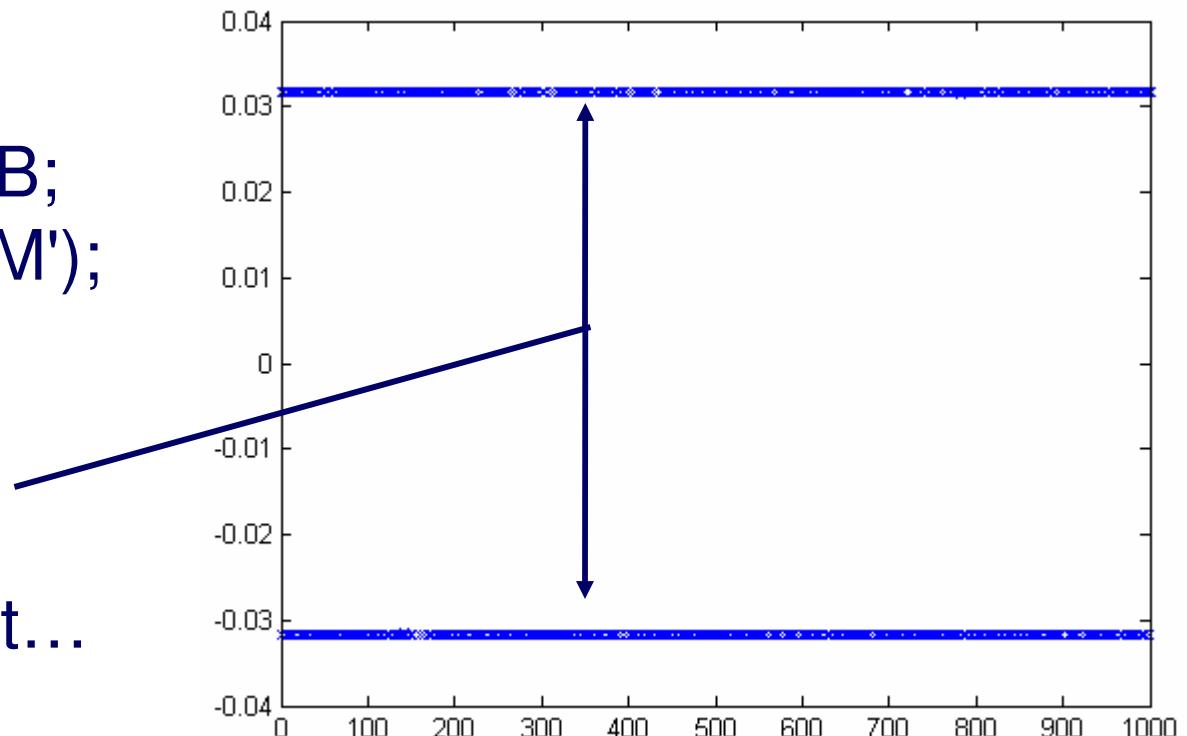
`spy(B)`

Example: Spectral Partitioning

- This is how the 2nd eigenvector of B looks like.

```
L = diag(sum(B))-B;  
[u v] = eigs(L,2,'SM');  
plot(u(:,1),'x')
```

Not so much
information yet...

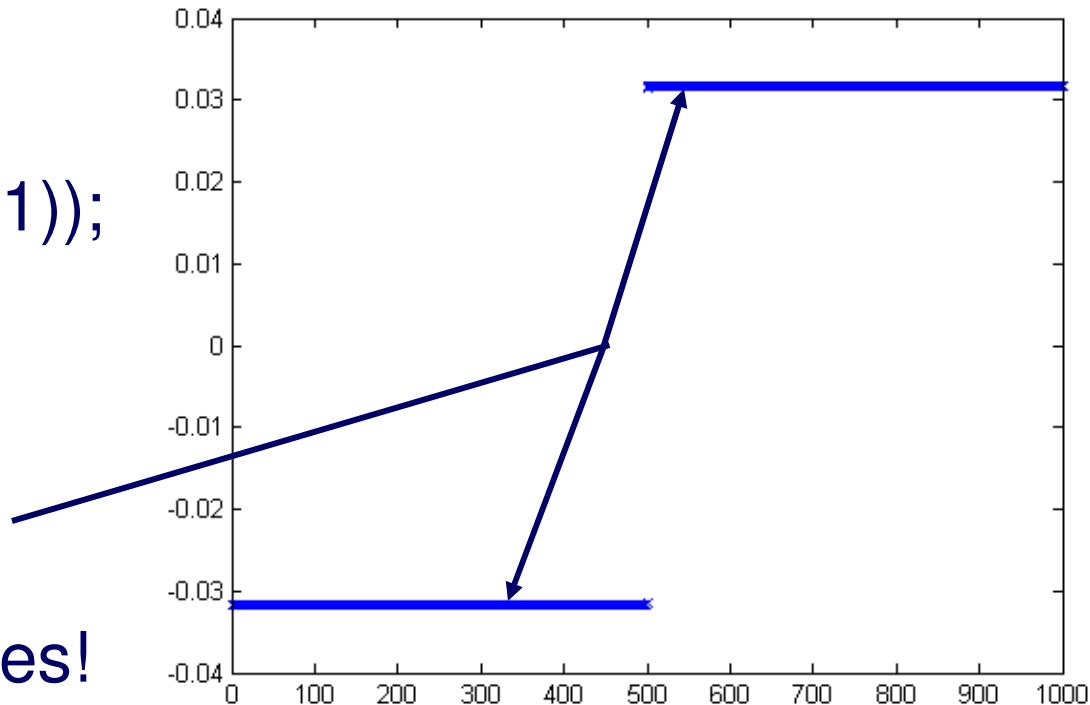


Example: Spectral Partitioning

- This is how the 2nd eigenvector looks if we sort it.

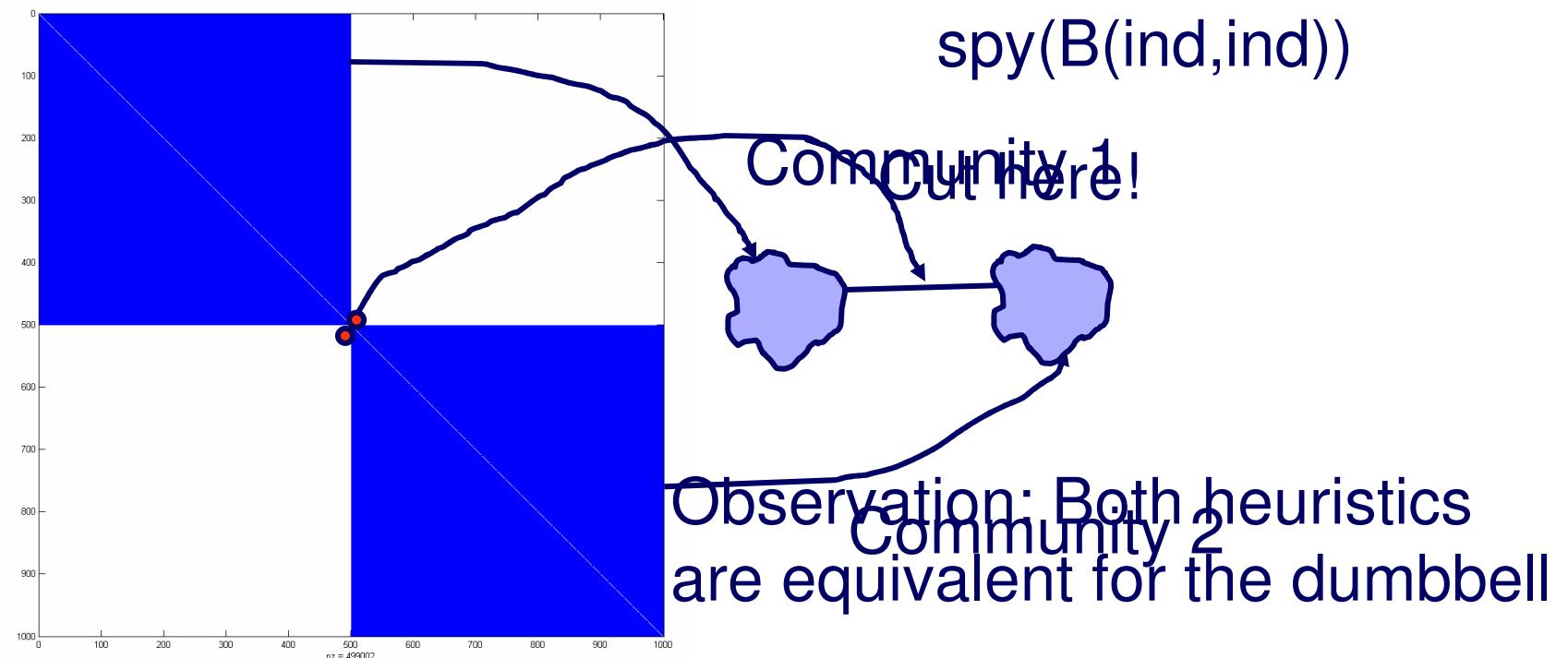
```
[ign ind] = sort(u(:,1));
plot(u(ind),'x')
```

But now we see
the two communities!



Example: Spectral Partitioning

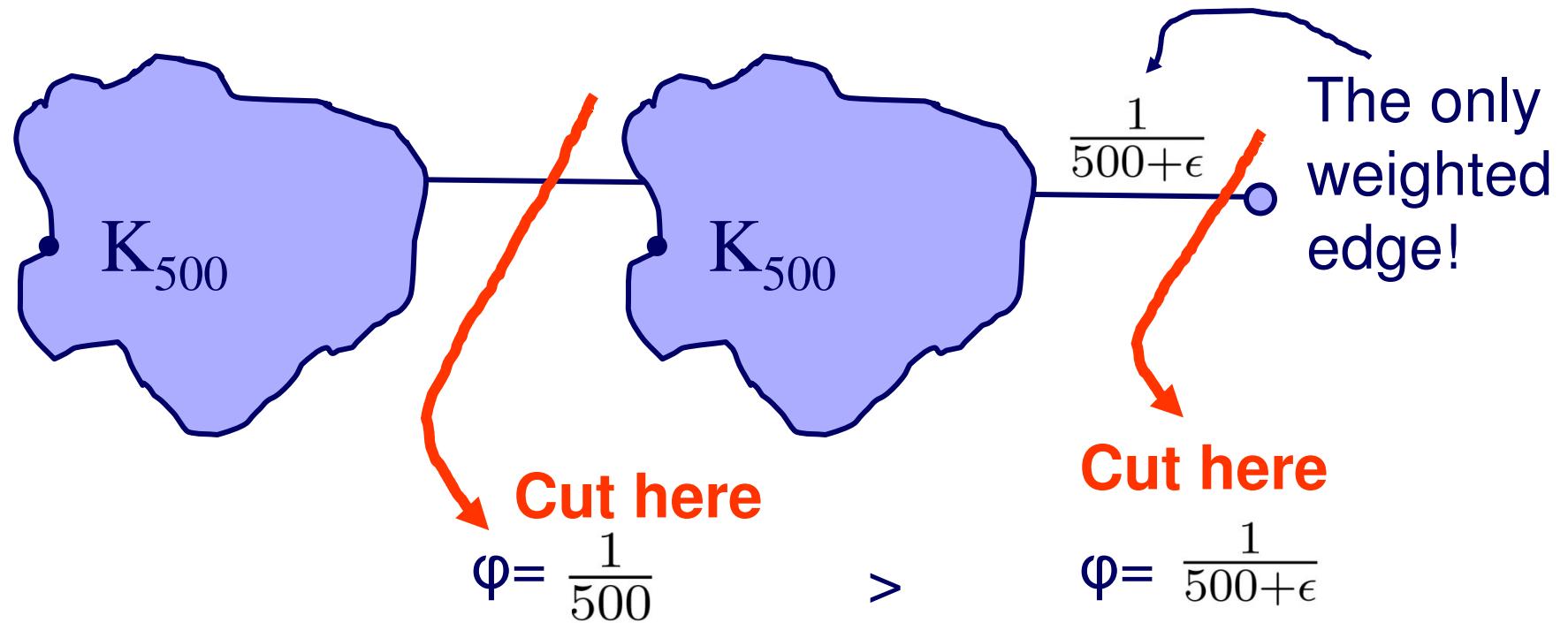
- This is how adjacency matrix of B looks now



Outline

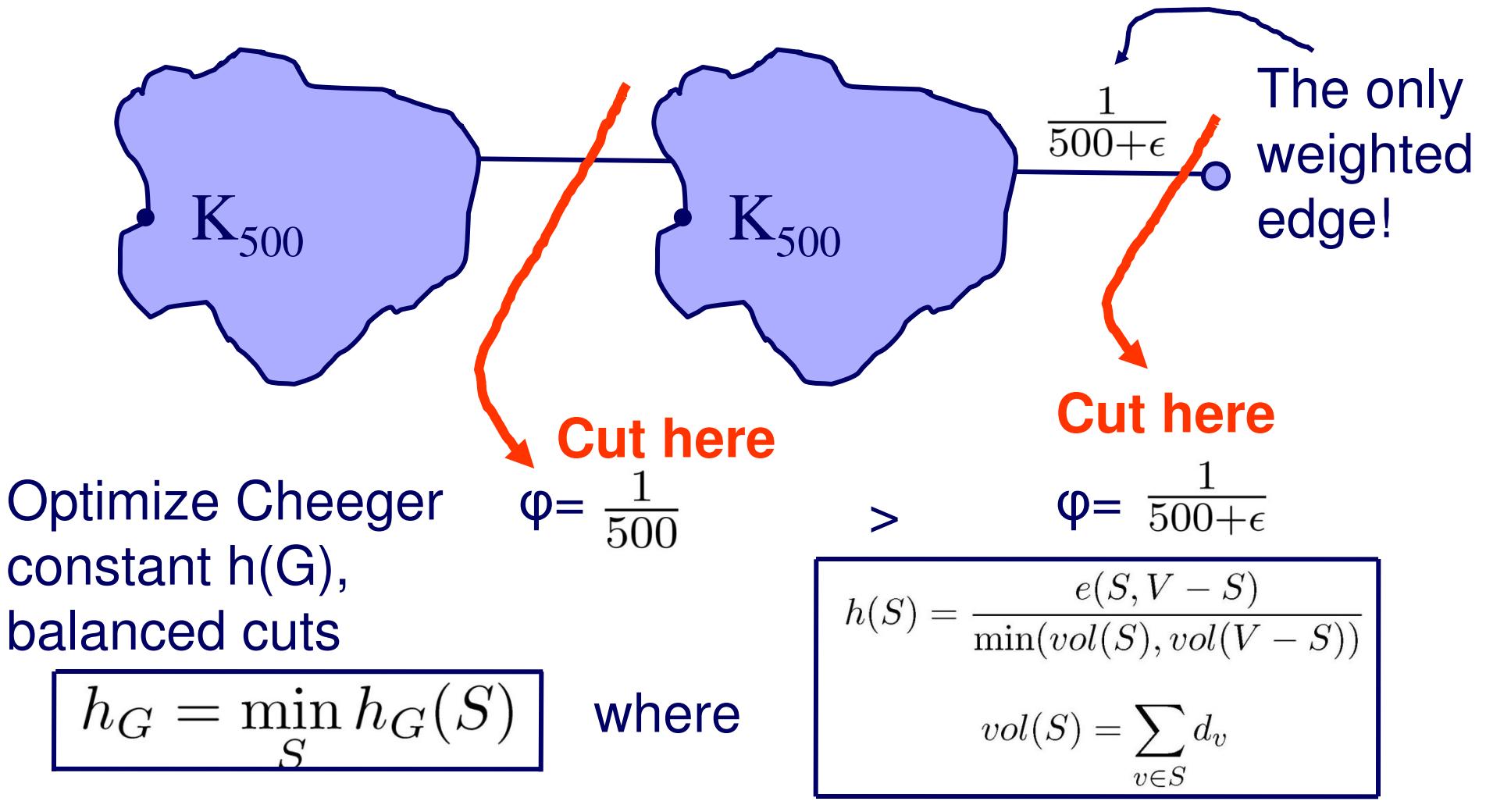
- Reminders
- Adjacency matrix
- Laplacian
 - Connected Components
 - Intuition: Adjacency vs. Laplacian
 - Sparsest Cut and Cheeger inequality:
- ➔ Normalized Laplacian

Why Normalized Laplacian



So, φ is not good here...

Why Normalized Laplacian



Extensions

- Normalized Laplacian
 - Ng, Jordan, Weiss Spectral Clustering
 - Laplacian Eigenmaps for Manifold Learning
 - Computer Vision and many more applications...

Standard reference: Spectral Graph Theory
Monograph by Fan Chung Graham

Conclusions

Spectrum tells us a lot about the graph:

- Adjacency: #Paths
- Laplacian: Sparse Cut
- Normalized Laplacian: Normalized cuts,
tend to avoid unbalanced cuts

References

- Fan R. K. Chung: *Spectral Graph Theory* (AMS)
- Chris Godsil and Gordon Royle: *Algebraic Graph Theory* (Springer)
- Bojan Mohar and Svatopluk Poljak: *Eigenvalues in Combinatorial Optimization*, IMA Preprint Series #939
- Gilbert Strang: *Introduction to Applied Mathematics* (Wellesley-Cambridge Press)