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Outline

B Reminders
e Adjacency matrix

— Intuition behind eigenvectors: Eg., Bipartite Graphs
— Walks of length k

e Laplacian
— Connected Components
— Intuition: Adjacency vs. Laplacian

— Cheeger Inequality and Sparsest Cut:
e Derivation, intuition
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Matrix Representations of G(V,E)

Associate a matrix to a graph:

—

e Adjacency matrix

, — Main focus
e Laplacian

J

e Normalized Laplacian

KDD'09 Faloutsos, Miller, Tsourakakis P7-3
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Recall: Intuition

e A as vector transformation
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Intuition

* By defn., eigenvectors remain parallel to
themselves (‘fixed points’)
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Intuition

By defn., eigenvectors remain parallel to
themselves (‘fixed points’)

* And orthogonal to each other

= L K - =] —_ [ L




Keep in mind!

e For the rest of slides we will be talking for
square nxn matrices

m m

n

M =

mnl mnn

and symmetric ones, 1.€,

M=M"
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Adjacency matrix

Undirected
o 1 if (u,v) € E(G)
Y 0 otherwise
O 1 1 1
Al 1010
1 0 O
0O 0 O

KDD'09 Faloutsos, Miller, Tsourakakis P7-9
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Adjacency matrix

Undirected Weighted
o <K Wyy  if (u,v) € E(G)
e 0 otherwise
10 0 03 4 10
0.3 0 2 0
0.3/ \4 A
4 2 0 0
5 10 0 0 0

KDD'09 Faloutsos, Miller, Tsourakakis P7-10
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Adjacency matrix

Directed
v) € B(G)
0therw1se
0
Observation A — 1
If G is undirected, 0
0N A=A 0
KDD'09 Faloutsos, Miller, Tsourakakis

o = O O

O O V=)

P7-11
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Spectral Theorem

Theorem [Spectral Theorem]
o If M=M", then
i 14 |— ="

. T T
M=|x .. x g =Axx +-+Axx

Reminder 1:
X;,X; orthogonal

4 L L L M M M
4 & 2 -1 0 | 2 3 4
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Spectral Theorem

Theorem [Spectral Theorem]
o If M=M", then

_ T
M = . =Axx ++Axx’'
_ an
Reminder 2:
X; I-th principal axis
A length of i-th principal
axis

4 L L L M M M
4 & 2 -1 0 | 2 3 4

KDD'09 Faloutsos, Miller, Tsourakakis P7-13
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Eigenvectors:

e Give groups

e Specifically for bi-partite graphs, we get
each of the two sets of nodes

e Details:



'g CMU SCS
Bipartite Graphs

Any graph with no cycles of odd length is bipartite

B 0

K3,3 A:(o BT)

Q1: Can we check if a graph is bipartite
via its spectrum?

Q2: Can we get the partition of the vertices
in the two sets of nodes?

KDD'09 Faloutsos, Miller, Tsourakakis P7-16
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Bipartite Graphs
| (0 BT
Adjacency matrix — B 0
K3,3
where B =

Eigenvalues: A=[3,-3,0,0,0,0]

KDD'09 Faloutsos, Miller, Tsourakakis P7-17
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Bipartite Graphs
(5 )
Adjacency matrix A = B 0
K3,3
where B =
Why A,=-A,=37

Recall: Ax=Ax, (A,x) eigenvalue-eigenvector

KDD'09 Faloutsos, Miller, Tsourakakis P7-18



'g CMU SCS

Bipartite Graphs
1 1 3=§>@ 1
1 1 1

o

AM=3,u =1 :['_

L 1,1, 1,1, 1]

Value @ each node: eg., enthusiasm about a product

KDD'09 Faloutsos, Miller, Tsourakakis P7-19
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Bipartite Graphs
1 1 3=3x1 1
1 1 1
1 1 1

M=3u=1=[1,1,1,1,1, 1]*
1-vector remains unchanged (just grows by ‘3’ = A, )

KDD'09 Faloutsos, Miller, Tsourakakis P7-20
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Bipartite Graphs
1 1 3=3x1 1
1 1 1
1 1 1

M=3u=1=[1,1,1,1,1, 1]*
Which other vector remains unchanged?

KDD'09 Faloutsos, Miller, Tsourakakis P7-21
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Bipartite Graphs
1 -1 -3=(-3)x3 -1
1 -1 -1
1 -1 # -1

Ao =—-3u=1=[1,1,1,-1, -1, -1]*

KDD'09 Faloutsos, Miller, Tsourakakis P7-22
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Bipartite Graphs

e Observation
u, gives the partition of the nodes in the two

sets S, V-S! OOO O O O

)\2 = —S,UQ = 1= 17 17 17 _\17 _17 _}1]T
' |

S V-S
Question: Were we just “lucky”? Answer: No

Theorem: A,=-A, iff G bipartite. u, gives the partition.

KDD'09 Faloutsos, Miller, Tsourakakis P7-23
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Walks

e A walk of length r 1n a directed graph:
Ug — UL — ... — Uy

where a node can be used more than once.
e Closed walk when: U = Uy

Closed walk of length 3

Mk of length 2
2-1-4

KDD'09 Faloutsos, Miller, Tsourakakis P7-25
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Walks

Theorem: G(V.E) directed graph, adjacency
matrix A. The number of walks from node u
to node v in G with length r 1s (A"),,

Proof: Induction on k. See Doyle-Snell, p.165

KDD'09 Faloutsos, Miller, Tsourakakis P7-26
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Walks

Theorem: G(V.E) directed graph, adjacency
matrix A. The number of walks from node u
to node v in G with length r 1s (A"),,

(_l,j) (Is i1)=(i1=j) (i_’i1)='-=(ir-1=j)

KDD'09 Faloutsos, Miller, Tsourakakis P7-27
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Walks

»
O
=2, % -

KDD'09 Faloutsos, Miller, Tsourakakis P7-28

o = O
OO =
O = = O




'g CMU SCS
Walks

01 0 0
01 1 1

2
% A_l() 1
@ 0 0/0 O

KDD'09 Faloutsos, Miller, Tsourakakis P7-29
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Walks
1 1 2
2 2 3
6 __
A7 = 1 2 2
O_ 0O 0 O
Always 0,

node 4 is a sink

S

KDD'09 Faloutsos, Miller, Tsourakakis P7-30
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Walks

Corollary: If A is the adjacency matrix of
undirected G(V,E) (no self loops), e edges
and t triangles. Then the following hold:
a) trace(A) =0

b) trace(A?) = 2e Cj”

c) trace(A>) = 6t

0>

—

Yy

KDD'09 Faloutsos, Miller, Tsourakakis P7-31
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Walks

Corollary: If A is the adjacency matrix of
undirected G(V,E) (no self loops), e edges
and t triangles. Then the following hold:
a) trace(A) =0
b) trace(A?) = 2e

c) trace(A>) = 6t Computing A" may be
expensive!

KDD'09 Faloutsos, Miller, Tsourakakis P7-32
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Remark: virus propagation

The earlier result makes sense now:

e The higher the first eigenvalue, the more
paths available ->

o FEasier for a virus to survive
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Main upcoming result

the second eigenvector of the Laplacian (u,)

gives a good cut:

Nodes with positive scores should go to one

group
And the rest to the other
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KDD'09

Laplacian
d, it u—=wo
—1 if (u,v) € E(G)
0 otherwise

L= D-A=

J

—1 —1

\ -1 0

Diagonal matrix, d.=d.

Faloutsos, Miller, Tsourakakis

(3 —1 —1 —1\

-1 0
2 0
0 1 J

P7-36
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Weighted Laplacian
dy = ) ., Wan if u=v
Lyy = ¢ —Wyy if (u,v) € E(G)
0 otherwise
10 ( 143 —0.3 —4 —10 \

—0.3 23 -2 0
-4 -2 6 0
\ =10 0 0 10 J

KDD'09 Faloutsos, Miller, Tsourakakis P7-37
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Connected Components

e Lemma: Let G be a graph with n vertices
and ¢ connected components. If L 1s the
Laplacian of G, then rank(L)= n-c.

e Proof: see p.279, Godsil-Royle

KDD'09 Faloutsos, Miller, Tsourakakis P7-39
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Connected Components

G(V,E) ( 1 -1 0 0 0 0 )

1 2 -1 0 0 0 0

O—0O—O 0 -1 1 0 0 0 0
I_= 0O 0 0 0 0 0 0

0O 0 0 0 2 -1 —1

O O 0 0 0 —1 2 -1
\ 0 0 0 0 -1 -1 2

#zeros, = #components

eig(L)=(0 0 0 1 3 3 3)

KDD'09 Faloutsos, Miller, Tsourakakis P7-40
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Connected Components
G(V,E) 3
O 5 0 : 0
= 0.01\\ L= 8 0 8

0 O U L

elg(L) 0 0 0.0066 1.006 3 3 30084)

KDD'09 Faloutsos, Miller, Tsourakakis P7-41
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Adjacency vs. Laplacian
Intuition

Let X be an indicator vector:
x,=1,ifie S
x.=0,ifi¢ S

Consider now y=Lx k-th coordinate

ye = (La)g = dpap — Y w;
J:(J,k)EE(G)

KDD'09 Faloutsos, Miller, Tsourakakis P7-43
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Adjacency vs. Laplacian
Intuition

GSO,O.S

S

Consider now y=Lx

Yy >0

yr = (Lx)g = dizg — Z L g
J:(J,k)EE(G)

KDD'09 Faloutsos, Miller, Tsourakakis P7-44
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Adjacency vs. Laplacian

Intuition
S

GSO,O.S

Consider now y=Lx

Yr < 0

yr = (Lx)g = dizg — Z L g
J:(J,k)EE(G)

KDD'09 Faloutsos, Miller, Tsourakakis P7-45
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Adjacency vs. Laplacian

Intuition
S

G30,0.5

Consider now y=Lx

Y, = 0

m :k%@@ﬁiaﬂi _&E@Qﬁ?twity, ik
jacency: #paths .. "= )

KDD'09 Faloutsos, Miller, Tsourakakis P7-46
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Why Sparse Cuts?

e Clustering, Community Detection
cut

 And more: Telephone Network Design,
VLSI layout, Sparse Gaussian Elimination,
Parallel Computation

KDD'09 Faloutsos, Miller, Tsourakakis P7-48
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Quality of a Cut

e [soperimetric number ¢ of a cut S:

#nodes in smallest
#edges across partition

o (S,V — S) )
(5) = min(\é\, vV —S|)

({4}) mzn(l 3) —

KDD'09 Faloutsos, Miller, Tsourakakis P7-49
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Quality of a Cut

e [soperimetric number ¢ of a graph = score
of best cut:

¢(G) = min ¢(5)

SCV

D({1,4}) = sy = 1

and thus Qb(G) =1

KDD'09 Faloutsos, Miller, Tsourakakis P7-50
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Quality of a Cut

e [soperimetric number ¢ of a graph = score
of best cut:

Best cut:  hard to find

BUT: Cheeger’s inequality
gives bounds
A,: Plays major role

Let’s see the intuition behind A,

KDD'09 Faloutsos, Miller, Tsourakakis P7-51
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Laplacian and cuts - overview

e A cut corresponds to an indicator vector
(1e., 0/1 scores to each node)

e Relaxing the 0/1 scores to real numbers,
gives eventually an alternative definition of
the eigenvalues and eigenvectors
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Why A,?
V-S
Characteristic Vector x S
m x =lifieS .%3
m x,=0,ifig S ’

Edges
Then: across cut

/
v Lr = Z(z’,j)eE(G) (@i — 373')2 = e(S5,V —5)

KDD'09 Faloutsos, Miller, Tsourakakis P7-53
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3 -1 -1 -1 0 0 0 0
-1 3 -1 -1 0 0 0 0
-1 -1 4 -1 0 -1 0 0
-1 -1 -1 4 0 -1 0 0
0 0 0 0 3 =1 —1 —1
0o 0 -1 -1 -1 5 -1 -1

0O 0 0 0 0 0 -1 -1 ¢

XTLx=2 x=[1,1,1,1,0,0,0,0,0]"

KDD'09 Faloutsos, Miller, Tsourakakis P7-54

0 0 0 0 -1 -1 4 -1 -1
0 0 0 0 -1 -1 -1 4 -1
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Why A,?
_ ASV=S) o H(5) $(5)
r(S) = Tsv—sr W~ < 7(5) < s
Ratio cut
. , 1 2! Lx
Sparsest ratio cut (&) =minr(S) = min =7
NP-hard

Relax the constraint: x € {0,1}" — z € R"

- ?
Normalize: ZZ x; =0 =

KDD'09 Faloutsos, Miller, Tsourakakis P7-55
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Why A,?
_ . B , 1 2! Lx
Sparsest ratio cut (&) =minr(S) = min =7
NP-hard

Relax the constraint:x € {0,1}" — z € R"

Normalize: » - x; = 0 DA

because of the Courant-Fisher theorem (applied to L)
A2 = _ min s —  min Z(M)EE(G)( j)
Siuwi=0u0 ulu > ui=0,u7#0 @U@Z

KDD'09 Faloutsos, Miller, Tsourakakis P7-56
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Why A,?
ﬁ-o—o—o—o—& OSCILLATE >
Each ball 1 unit of mass Lx=Ax
T

Din of eigenvector

Matrix viewpoint:

KDD'09 Faloutsos, Miller, Tsourakakis P7-57
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Why A,?
Je-e0-0-\ OSCILLATE >
Each ball 1 unit of mass Lx = Ax
e N
Force due to neighbors displacement

. . . Hooke’s constant
Physics viewpoint:

KDD'09 Faloutsos, Miller, Tsourakakis P7-58
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Why A,?
}e-0-0-0-) OSCILLATE »
Each ball 1 unit of mass [x =

Eigenvector ‘:zz::
value

> Node id

For the first eigenvector:
All nodes: same displacement (= value)

KDD'09 Faloutsos, Miller, Tsourakakis P7-59
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Each ball 1 unit of mass [x =

Why A,?

OSCILLATE >

222222
222222
222222

ZZZZZ
o

— Node id

Eigenvector

value

KDD'09

Faloutsos, Miller, Tsourakakis

P7-60
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X

Why A,?

Fundamental mode of vibration:

Faloutsos, Miller, Tsourakakis P7-61

KDD'09
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Cheeger Inequality

Score of best cut
(hard to compute)

— \

2
2dq:na$ < A2 < 29(G)

Max degree 2nd smallest eigenvalue
(easy to compute)

KDD'09 Faloutsos, Miller, Tsourakakis P7-62
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Cheeger Inequality and graph

partitioning heuristic:

2
H— < g < 2¢(G)

e Step I: Sort vertices in non-decreasing
order according to their score of the
second eigenvector

e Step 2: Decide where to cut.

e Bisection o
— Two common heuristics

 Best ratio cut B

KDD'09 Faloutsos, Miller, Tsourakakis P7-63
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e Adjacency matrix
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e Derivation, intuition
- « Example

 Normalized Laplacian
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Example: Spectral Partitioning

dumbbell
raph
Ksoo Ksoo Jrap

Ar-smiad (100rk analysis,
Adch00Ist18)amneslle00)ceya(60MES
A(501:1000,501:1000)= ones(500)-eye(500);
myrandperm = randperm(1000);

B = A(myrandperm,myrandperm);

KDD'09 Faloutsos, Miller, Tsourakakis P7-65
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Example: Spectral Partitioning

e This 1s how adjacency matrix of B looks

spy(B)

KDD'09 Faloutsos, Miller, Tsourakakis P7-66
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Example: Spectral Partitioning

 This is how the 2" eigenvector of B looks
like. oo

|:|.|:|3

L = diag(sum(B))-B; 002}
[uv] =eigs(L,2,'SM’); .l

plot(u(:,1),’x) D/

0.01
Not so much oy J
-0.04

1 | | | | | | 1 |
o 100 200 300 400 500 BOO  7OO 8O0 900 1000

KDD'09 Faloutsos, Miller, Tsourakakis P7-67
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Example: Spectral Partitioning

e This is how the 214 eigenvector looks if we
sort it.

0.03r

0.02 r

[ign ind] = sort(u(:,1));
plot(u(ind),'x")

0.01 r
0k
0.01

0.02 F

But now we see
the two communities! .l

| | | | | | | | |
100 200 300 400 500 BOOD 70O SO0 SO0 1000

KDD'09 Faloutsos, Miller, Tsourakakis P7-68
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Example: Spectral Partitioning

e This 1s how adjacency matrix of B looks
now

spy(B(ind,ind))

O H¥ré!
i

) ser&;iﬂpdlfh h @euristics

Il are equivalent for the dumbbell

KDD'09 Faloutsos, Miller, Tsourakakis P7-69
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Why Normalized Laplacian

TR
(J\ . Theonly
500+< /. weighted

Ksoo Ksoo edge!
Cut here Cut here
1 1
= 500 > P= 500+

S0, ¢ is not good here...

KDD'09 Faloutsos, Miller, Tsourakakis P7-71
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Why Normalized Laplacian

TR
(J\ . Theonly
500+< /. weighted

Ksoo Ksoo edge!
Cut here Cut h?re
Optlmlze Cheeger = Wl() S O= 500+¢
constant h(G), (S.V — )
balanced cuts B = min(vol(S),vol(V — S))
hG — m%n hg(S) where vol(S) = zdv

vES
KDD'09 Faloutsos, Miller, Tsourakakis P7-72
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Extensions

e Normalized Laplacian
— Ng, Jordan, Weiss Spectral Clustering
— Laplacian Eigenmaps for Manifold Learning

— Computer Vision and many more
applications...

@ Standard reference: Spectral Graph Theory
—## Monograph by Fan Chung Graham

KDD'09 Faloutsos, Miller, Tsourakakis P7-73
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Conclusions

Spectrum tells us a lot about the graph:
e Adjacency: #Paths

e Laplacian: Sparse Cut

e Normalized Laplacian: Normalized cuts,
tend to avoid unbalanced cuts

KDD'09 Faloutsos, Miller, Tsourakakis P7-74
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