
1 This material is based upon work  supported by the National Science Foundation under Grants No. IRI-9625428,
DMS-9873442, IIS-9817496,  and IIS-9910606,  and by the Defense Advanced Research Projects Agency  under Contract No.
N66001-97-C-8517.  Additional funding was provided by donations from NEC and Intel.  Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation, DARPA, or other funding parties.

2 His work has been supported by Grant No. SE 553/2-1 from DFG (Deutsche Forschungsgemeinschaft).

3 On leave at Carnegie Mellon University. Her research has been supported by FAPESP (Fundação de Amparo à Pesquisa do
Estado de São Paulo - Brazil, under Grant 98/0559-7).

4 On leave at Carnegie Mellon University. His research has been supported by FAPESP (Fundação de Amparo à Pesquisa do
Estado de São Paulo - Brazil, under Grant 98/05556-5).

-1-

Spatial Join Selectivity Using Power Laws

Christos Faloutsos1      Bernhard Seeger 2     Agma Traina 3      Caetano Traina Jr.4

1  Department of Computer Science, Carnegie Mellon University - USA
2 Fachbereich Mathematik und Informatik, Universität Marburg - Germany

3,4 Department of Computer Science and Statistics - University of São Paulo at São Carlos - Brazil

christos@cs.cmu.edu
seeger@mathematik.uni-marburg.de

agma@cs.cmu.edu
caetano@cs.cmu.edu

Abstract

We discovered a surprising law governing the spatial join selectivity across two sets of points.  An

example of such a spatial join is "find the libraries that are within 10 miles of schools".  Our law dictates that

the number of such qualifying pairs follows a power law, whose exponent we call "pair-count exponent" (PC).

We show that this law also holds for self-spatial-joins ("find schools within 5 miles of other schools") in

addition to the general case that the two point-sets are distinct.  Our law holds for many real datasets, including

diverse environments (geographic datasets, feature vectors from biology data, galaxy data from astronomy).

In addition, we introduce the concept of the Box-Occupancy-Product-Sum (BOPS) plot, and we show

that it can compute the pair-count exponent in a timely manner, reducing the run time by orders of magnitude,

from quadratic to linear.  Due to the pair-count exponent and our analysis (Law 1), we can achieve accurate

selectivity estimates in constant time (O(1)) without the need for sampling or other expensive operations.  The

relative error in selectivity is about 30% with our fast BOPS method, and even better (about 10%), if we use

the slower, quadratic method.
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1 - INTRODUCTION

Multi-dimensional and spatial database management systems (DBMS) have attracted a lot of interest.

One of the most important operations in a spatial DBMS [GÜT 94] is the spatial join, which is the

counterpart to the equi-join in a relational DBMS.

The typical query is also called the ‘all pairs’  query or ‘spatial distance join’ , as in the example,

‘Estimate the number of schools that are within 5 miles from libraries’ .  Spatial distance joins are

considered to be among the most exxential joins in application areas, like data mining [CMN 99] [NH 94].

They are useful in multiple settings, such as the following.

• In geographic information systems (GIS) under the name of overlay queries:  for example,

‘Find all houses within 2 miles of a river’ .

• In urban planning, business planning, commercial intelligence: ‘How many households are

within 1 mile of our branches and from our competition’s branches’ .

• In spatial data mining to detect correlations and test hypotheses:  for example, ‘Find 4-

bedroom houses  that are within 5 miles of a school’ , or ‘How many  luxury apartments are

within 2 miles of a lake’   [NH 94].

• In temporal data mining: ‘Find economic embargos that were followed by war within a

year’ , or ‘Find network-switch failures that were within 5 seconds of a power surge’   [MTV 95]

[HKM+96].

• In multimedia and traditional databases: ‘Find pairs of stock price changes that are within

$10 of each other’   [FRM 94].

The spatial distance join is defined using two spatial data sets, A and B, and a distance

function L.  For a given radius r, the spatial distance join computes { <a,b> | a
�

A and b �  B, L(a,b)
�  r} .  A special case arises when the two datasets, A and B are identical.  Such joins will be qualified

as  ‘self spatial joins’ .  We will use the term ‘cross spatial joins’ , when we need to emphasize that the

two point sets are distinct.  Otherwise, we will simply use the term ‘spatial join’  to denote a spatial

distance join between two distinct datasets.

The goal of this work is to estimate the selectivity of spatial joins among two datasets as

opposed to only one.  The join selectivity represents the size of the resultant set of the spatial distance

join divided by the size of the Cartesian product of the whole data.  Estimation of the join selectivity
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is important for the following two reasons.

• An accurate estimation is necessary to optimize complex queries.  Though there has been

quite a lot of work done on how to estimate the selectivity of equi-joins, the problem of

estimating the size of spatial joins has received only minimal attention up to now.

• In application areas like the ones mentioned earlier, the size of the spatial distance join (as

a function of the radius) is important for evaluating the correlation between datasets.  Note

that it is generally too costly to obtain the size of the spatial join by simply computing the

spatial distance join itself.  Therefore, an accurate and inexpensive method is required to

estimate the size of spatial distance joins.  

Our main contribution is that we observe a ‘power law’, which holds for many pairs of real

datasets.  We show how to use this power law to accurately estimate the spatial join selectivities

efficiently (in constant time, O(1)).

The rest of the paper is organized as follows. Section 2 presents the related work.  Section 3

describes our main contribution, the pair-count exponent �  and the fast way to estimate it, through

the proposed box-occupancy-product-sum (BOPS).  Section 4 discusses implementation and speed

issues of the proposed methods.  Section 5 gives experimental results, and Section 6 discusses issues

for practitioners.  Section 7 presents the conclusions.

2 - RELATED WORK

There has been quite a lot of work on spatial joins recently. See, for example [ORE 86], [BKS 93], [LR 94],

[PD 96], [KS 97], [APR+ 98] and [MP 99].  Most of the mentioned work has dealt with developing efficient

methods to process spatial intersection joins for two-dimensional data sets [BSW 99] [DNS 91] [SK 96]

with little emphasis on the estimation of selectivity.  Recently, methods have also been examined and

developed for processing spatial distance joins on multidimensional point sets [SSA 97], [KS 98].  The

term “similarity join”  has frequently also been used for spatial distance joins in the literature.  For

one-dimensional data, the spatial distance join corresponds to the ‘band-join’  [DNS 91].

Although not directly related to our spatial join selectivity, we mention earlier attempts to

estimate the selectivity of range queries.  Typical methods include the milestone ‘uniformity and
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independence’ assumptions [SAC+79].  Although simple to use in a query optimizer, these assumptions

are pessimistic and unrealistic [CHR 84].  Modern methods include histograms [POO 97], kernel estimators

[BKS 99],  wavelets [VW  99], and hybrid methods using query feedback [KW 99].  Methods for selectivity

estimation of range queries in spatial datasets use multi-dimensional histograms [TS 96], or arguments

from the theory of fractals [BF 95].  It should be noted that most of these methods are susceptible to

the ‘dimensionality curse’  [SIL 96] [SCO 92].

Analytical estimates of spatial distance join selectivities are few.  We are only aware of the

very recent work of [PMT 99] and [TSS 98].  In these papers, the points of the two datasets are assumed

to be uniformly distributed in the address space.  As mentioned earlier, the uniformity assumption was

discredited long ago [CHR 84], [FK 94] as unrealistic and unfeasible.  Our experiments in Section 5 indeed

show that it is unrealistic.

In the next sections we proceed with our proposed solution.  The major observation is that

the selectivity of spatial distance joins follows a power law surprisingly well.

3 - PROPOSED METHOD

Our main contribution and its corollaries are discussed below.  The problem to be solved is the

following.

Given: two point-sets A and B and a radius r

Find: the distribution of the count of pairs, as a function of the  radius r .

That is, is this distribution Gaussian? Is it Poisson? Is it Weibul? It turns out that real datasets do not

follow any of the  traditional statistical distributions.  Instead, we show that the  distribution of the

pair-wise distances follows a power law.  Table 1 lists symbols used in this document.  Next, we

describe our power law, as well as several useful properties of its exponent.



-5-

Symbol Definition

N population of the first point-set

M the population of the second point-set

E embedded dimensionality of the point-set (# of
attributes/axis)

�
pair-count exponent

r radius in the queries

rmin smallest distance between the two point-sets

rmax largest distance

s side of grid cells

Table 1: Symbols and definitions

3.1 - Pair-count function and the PC exponent

We propose to study the probability distribution function of the number of pairs as a function of the

distance between those pairs.  Specifically, we define and study the pair-count function PCA,B (r),  or

simply PC(r), of two point-sets A and B used in a spatial join query.  It is defined as follows.

Definition 1: For two point-sets A and B, we define PCA,B (r) as  the pair-count function, that is,

the count of pairs within distance r or less.  The first member of the pair should belong to

point set A, and the second member to point set B.

PCA,B (r) = count( of A-B pairs, within distance �  r )

Some observations are helpful:

• Our PC(r) function roughly corresponds to the ‘cumulative probability density function’

from statistics.

• We typically omit the subscripts A, B for simplicity.

• The implied distance function can be any Lp norm.  We use the Linfinity norm unless otherwise

specified.  The reason is that all the upcoming results hold for any Lp norm, but the formulas

are simpler for the Linfinity norm.

• For a self spatial join (i.e., A== B) we omit the self-pairs, and we count each pair only once.
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Figure 1 - The Pair-count plot of California datasets (CA-str cross joined with CA-wat) (a) linear
scales, and (b) log-log scales

That is, if there are N points in the set, we consider N* (N-1)/2 pairs.  Again, the upcoming

results can be easily adapted to handle any of the omitted cases.

For reasons that will soon be obvious, we define the concept of the pair-count plot:

Definition 2: The pair-count plot, or simply PC-plot, for two point sets A and B is the plot of PCA,B

(r) versus r, in log-log scales.

Figure 1 presents (a) a pair-count plot for  real datasets in linear scales, and (b) the same pair-

count  plot in log-log scales (b).  The datasets are explained in Section 5.  The question is whether

functions obey any rules? It turns out that many of them indeed follow a law, specifically a power law,

as we discuss next.  The experiments we have done with many real datasets show that many of them

result in a PC-plot that is almost linear (within 1.5% MLS error and typically less) for a suitable range

of distances r (radius from r1 to r2 ).  Considering this, we present our major result.

 

Law 1 (PAIR-COUNT):  For several real datasets and for a usable range of scales, the pair-count

PC(r) of pairs within distance r or less follows a power law:

  (1)PC r K r( ) = ⋅
�

where K is a proportionality constant.  Equivalently Definition 3 follows.
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Figure 2 - PC-Plots and slopes of the fitting lines and the pair-count exponent �  for two pairs of
California datasets: (a) streets cross joined with railroads; (b) streets cross joined with water.

Definition 3: The exponent of the law is defined as the pair-count exponent 	   as

Figure 1b shows the pair-count plot for the same pair of datasets as Figure 1a in log-log scales.

The plots are clearly linear, for a significant  range of scales.  This range is usually most sought after

for queries;  we are not interested in radii much smaller or larger than the typical distances involved

in the dataset.

Figure 2 shows PC-Plots and fitting lines for two cross-joins of California datasets, a streets

cross joined with railroads and  b streets cross joined with water.  The description of these datasets

and additional PC(r) plots are shown later in Section 5, which deals with our experiments.

3.2 - Properties of the pair-count exponent  


The following observations show some of the interesting properties of the pair-count exponent � .

Observation 1:  The pair-count exponent �   includes the “ correlation fractal dimension”  D2  as a

special case.

 Justification:  When the second dataset is identical to the first, the PC exponent  is, by definition,

equal to the “correlation fractal dimension”  [BELUSSI_95].  Intuitively, this is the ‘ intrinsic’

dimensionality of the dataset.
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This is clearly true for the Euclidean distance.  As we mention later (Observation 4), the pair-count exponent is the
same, no matter what Lp metric we use.  Combining Observation 2 and Observation 4, we see that the pair-count
exponent remains the same, for any affine transformation, for any Lp metric.
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Figure 3 - Illustration of the effects of sampling on the pair-count exponent 
 .  The PC-plots for
the full datasets and for 20%, 10% and 5% samples.  (a) California pol X wat and  (b) Galaxy dev
and X exp.

Observation 2: The pair-count exponent �  is invariant to affine transformations, namely to

translation, rotation, and uniform scaling.

Justification: By ‘uniform scaling’  we mean that all the axes are scaled by the same amount.

Translation and rotation do not affect the distances5 and thus leave the plots unchanged.  Uniform

scaling scales all the distances, and thus shifts the plot to the left or the right. Its slope, however,

remains the same.

Observation 3: The pair-count exponent �   is invariant to sampling.

Justification: Sampling is useful when we deal with large datasets, although our upcoming BOPS

algorithm can handle huge datasets even better.  It is useful that our power law holds for subsets  of

our data.  The intuitive argument is as follows.  Consider a dataset A with N  points and a sampling

rate pa (0 � pa � 1), that is the sample has N*pa points.  Similarly, let M be the number of points in

dataset B, and let pb be its sampling rate.  Consider a point a1 from the dataset A and let a1(r) be the
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Figure 4 - Effects of the distance functions to obtain
PC-plots.

Figure 5 - The shapes
of L � , L1 and L2 norms
in 2-d.

( )PC r L PC r L vol p r vol p rAB P
E( , ) ( , ) ( , ) / ( , )= ⋅∞

�
(3)

number of its B-type neighbors within distance r.  After sampling, it will have pa(r)*pb neighbors on

the average.  Thus, the total number of pairs in the two samples within distance r will be the original

PC(r) times pa*pb on the average.  This will

not change the slope of the PC-plot:  it will

only lower the position of the plot, by

log(pa*pb).

Figure 3 shows the PC(r) plots for

two pairs of datasets.  In (a) it shows

California  political cross joined with

California water and in (b) it shows Galaxy-

dev cross-joined with Galaxy-exp, as well as

their 20%, 10% and 5% samples.  Notice that

the plots are linear, and those corresponding

to samples are parallel to the full dataset.

Tables 3 and 4 summarize their �  values.

Observation 4: The pair-count exponent �   is invariant to the Lp distance used.

Justification: Consider the ‘sphere’  that each Lp  metric defines (see

Figure 4).  Let vol(p,r) be the volume of an n-dimensional Lp-‘sphere’  of

radius r.  For p=2, this is indeed a sphere; for p=infinity this is an n-

dimensional cube, etc.  Our power law states that the number of type-B

neighbors of a type-A point grows as r �  or, equivalently it grows as

volume� /E.  Then, if PCp(r) denotes the number of neighbors within Lp

distance r, we have:   

therefore, the number of pairs will only differ by a multiplicative constant for different values of p in

the Lp metric.  Figure 5 shows the effect of norm invariance on the cross join of two California
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Figure 6 - A grid superimposed over
a point-set to count CAi and CBi

BOPS s C CA i B i
i

( ) *, ,= ∑ (4)

datasets (political and water).  It is clear that the three Lp metrics chosen result in parallel lines.

Therefore, for the rest of this work, we will only focus on the Linf metric.  We can conclude that the

pair-count exponent shows an intrinsic property of the two point-sets, and it is independent of the

particular Lp distance function used to build the PC plot.  

4 - IMPLEMENTATION AND SPEED ISSUES

By the definition of the ‘pair-count exponent’ , we need to

estimate the pair-counts for several distances r.  Each of

them requires O(N*M) operations, which are quadratic on

the size of the input datasets.  This is prohibitive for large

datasets.  The question becomes: how we can accelerate

the computation of �  . This is precisely the topic of this

section.

 

4.1 - A faster way to compute the ‘pair-count exponent’  �

Here we give a Lemma, which computes of the pair-count exponent O(N+M) and thus performs

dramatically faster for huge datasets.  A crucial concept that we introduce is the Box-Occupancy-

Product-Sum (BOPS), which is defined as follows.  Consider the address space of two point-sets in

a n-dimensional space, and impose an n-grid with grid-cells of side s  (or, equivalently, radius r=s/2).

Focusing on the i-th cell, let CA,i , CB,i  be the counts (‘occupancies’) of points from the first and from

the second point-set, respectively, as illustrated in Figure 6.

Definition 2: The " Box-Occupancy-Product-Sum"  (BOPS) of a grid with cell side s is defined as

the sum of products of occupancies as

and the BOPS plot is the plot of BOPS(s) as a function of the grid side s, in log-log scales.
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PC s BOPS s( / ) ( )2 ≈ (5)

C CA i B i, ,* (6)

PC s C CA i B i
i

( / ) , ,2 = ⋅∑ (7)

BOPS s sp( ) = (8)

Lemma 1 (BOPS): The pair-count exponent �  for a given radius is equal to the box-occupancy-

product-sum (BOPS) for the doubled radius; that is

Proof:  The fundamental assumption is that the densities of points are smooth functions.

Thus, if a point p1  of set A has  x neighbors from the set B within radius r, so does a close-by

neighbor p2 that also belongs to set A.

Thus, for a given cell side s  and another given cell (say, the i-th one), consider one

of the points of the set A.  This point has a number of neighbors proportional to CB,i neighbors

from the set B within radius s/2.  Thus, the i-th cell contributes with

pairs.  Adding up the contributions of all the cells, we have

  which completes the proof.

QED

Corollary: The BOPS follows a power law with its exponent equal to the "pair-count exponent".

Proof: Trivial, from Lemma 1 and Law 1.

QED

We are going to use the estimation PC(r) = BOPS(2r) for the rest of this work.  The ‘BOPS’

Lemma has important efficiency implications which are vital for large datasets.  Next we show how

to use this Lemma for fast selectivity estimations.
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Without loss of generality, due to Observation 2,
Normalize the address space of the datasets to the unit hyper-cube;
For each desirable grid-size s=1/2j, j= 1, 2, ..., l;

For each point a of dataset A
Decide which grid cell it falls in (say, the i-th cell);
Increment the count CA,i;

For each point b of dataset B
Decide which grid cell it falls in (say, the i-th cell);
Increment the count CB,i;

Compute the sum of product occupancies ;BOPS s C CA i B i( ) *, ,= ∑
Print the values of log(s/2) and log(BOPS(s)) as the BOPS-plot;
Perform a linear interpolation and report the slope �   and the;
proportionality constant K.

Figure 7 - Algorithm for calculating BOPS plots.

4.2 - Algorithms

The problem is defined as follows.

Given two point-sets A and B in n-dimensional space,

Estimate their pair-count exponent �  and the proportionality constant K.

We developed a single-pass algorithm to obtain the BOPS plot.  Specifically, the algorithm is linear

O(N+M) over the total number of points in both datasets.  If l is the number of points that we want

in the BOPS plot (ie., number of grid-sizes), then the complexity of our algorithm is O((N+M)* l*n),

where n is the dimensionality of the input point-sets.  Below is a brief algorithm to generate the

BOPS-plot and the estimate of the pair-count exponent.

4.3 - Estimation of selectivity

Here we describe exactly how to estimate the spatial join selectivities, exploiting our two major

observations,  the pair-count law and the BOPS lemma.  More specifically, the problem is as follows.

Given  two point-sets A and B, and a radius r,

Estimate  the count of pairs PC(r).
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Figure 7 - Real data used in the experiments.  (a) California: CA-pol and CA-wat, (2-dimensional
point-sets),  (b) Iris: setosa, versicolor and virginica (4-dimensional point-sets) and  (c) Galaxy: class
dev and exp (2-dimensional point-sets).

We distinguish the following methods, depending on what else we are given:

 • PC plot estimation: Through previously kept statistics on the PC plot, suppose that we

already know the pair-count exponent �  and the proportionality constant K.  Then we estimate

immediately the PC plot as PC(r) = K *  r �

 • BOPS plot estimation:  We assume that we are given only the dataset, without any

statistics about the data.  Then, we generate the BOPS plot for several values of grid-side s,

and we estimate the slope �  and the constant K, as explained in the algorithm in Figure 7.

Notice that we not only obtain our estimate, but we also provide   and K for future upcoming

queries.

An obvious trick to approximate the BOPS plot is to do sampling first.  We discuss its relative merit

in Section 5.

5 - EXPERIMENTS

We implemented our method and checked whether the power law holds for different data sets.  For

the sake of clarity we named the datasets used in the experiments.  Point-sets come in groups; thus,

each dataset is characterized by its group name, a dash ‘ -‘  and the dataset name.  Their  characteristics

are as follows.
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California - Two-dimensional sets of points, they refer to geographical coordinates in

California.  The four files contain data features from streets (CA-str with 62,933

points), railways (CA-rai with 31,059 points), political borders (CA-pol with 46,850

points), and natural water systems (CA-wat, with 72,066 points).

I r is - This set contains three files, each of which describes a few properties of a specific

flower type of Iris.  The points are 4-dimensional (sepal length, sepal width, petal

length, petal width); the species are ‘virginica’ , ‘versicolor’  and ‘setosa’ , and there are

50 points from each species.  This is a well-known dataset in the literature of machine

learning and statistics, which we obtained from the UC-Irvine Repository.

Galaxy - Galaxies come from the SLOAN telescope:  (x,y) coordinates, plus class label.

There are  82,277 in the ‘dev’  class (deVaucouleurs), and 70,405 in the ‘exp’  class

(exponential).

Eigenfaces - Two datasets (‘ lyf’  with 11,900 points; and ‘ tyf’  with 3,456 points) come from

the Informedia project [WKS+96] at Carnegie Mellon University.  Each face was

processed with the eigenfaces method [TP 91], resulting in 16-dimensional points.

Our experiments are designed to answer the following questions.

• How often do real datasets follow the proposed power law?  How good is the linear fit?

• How accurate is our ‘box-occupancy-product-sum’ Lemma?

• What are the effects on sampling and affine transformations on them ?

• How fast is the BOPS method, compared to other estimations of PC(r)?

Due to lack of space, we present here mainly the graphs of some of the datasets used in the

experiments.

5.1 - Accuracy of ‘PC’  Law

We present our experiments in two groups,  two-dimensional geographical datasets (California and

Galaxy data), and higher-dimensionality ones (Iris, Eigenfaces).
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Figure 8 - PC plots and the pair-count exponents !  of geographical data.  First row: Galaxy datasets
(a) cross join of ‘dev’  and ‘exp’ , (b) self join of ‘dev’ , (c) self join of ‘exp’ .  Second  row California
datasets (d) cross join of CA-pol and CA-wat, (e) self join of CA-pol, (f) self join of CA-wat.

5.1.1 - Geographical datasets

The immediate application for the pair-count exponent is to estimate the selectivities for cross spatial

joins.  Thus, the natural candidates to show that this method works are geographical datasets.  Figure

8 shows the pair-count exponent for California and Galaxy datasets, and it can be seen that the PC

plots are linear for a suitable range of r.  The slopes of the fitting lines are also shown, and these give

us the proportionality constant that will be used to estimate the selectivities in cross or self joins.
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Figure 9 - PC Plots and the pair-count exponent "  of the Eigenfaces datasets,  (a) self join of ‘ lyf’
dataset, (b) self join of ‘ tyf’  dataset, (c) cross join of ‘ lyf’  and ‘ tyf’  datasets.

5.1.2 - Higher Dimensional datasets

Figure 9 presents the PC-plots, the fitting lines and the pair-count exponent #  for the Eigenfaces

datasets which are 16-dimensional data.  It can be seen that our power law remains quite accurate for

high-dimensional datasets.  Recurring conclusions from all the above experiments are

1.  The linear fit implied by our ‘pair-count’  law is extremely precise, for a wide variety of

diverse datasets.

2.  For self-joins, as well as for cross-joins, the correlation coefficient of the fit is at least 0.995

(where ‘1' is the value of perfect linear correlation).

3.  Especially for the high-dimensional datasets, the self-join exponent is significantly lower

than the embedding dimensionality of the data.  For example, in Eigenfaces, the intrinsic

dimensionality is between 4.5 to 6.7 (values of $  varies from 4.49 for self-join of ‘ lyf’  to 6.73

for the cross-join of ‘ tyf’  and ‘ lyf’ ), while the embedding dimensionality E was 16.  This

implies that these n-dimensional points are not even close to being uniformly distributed (if

they were, then %  = 16).  Thus, any analysis making the uniform assumption will be very

inaccurate, since the dimensionality of the data ( &  or E )  is in the exponent!
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Figure 10 - PC-plots and corresponding BOPS plots for (a) California datasets and (b) Galaxy
datasets.  Both plots are shown for the full datasets and three levels of sampling.

Galaxy California

Sampling rate dev exp pol wat str

100% 1.876 1.928 1.650 1.529 1.838

20% 1.875 1.932 1.643 1.562 1.701

10% 1.873 1.952 1.631 1.694 1.661

5% 1.880 2.146 1.515 1.711 1.623

Table 2: The pair-count exponents '  for samples of Galaxy (‘dev’  and ‘exp’) and California
(CA_pol, CA_wat and  CA_str) datasets for self-joins.

5.2 - Sampling

We present further experiments in order to illustrate Observation 3, which states that PC plots are

invariant to sampling.  Figure 10 presents the pair-count exponents obtained from PC plots (points)

and BOPS plots (lines).  All plots are clearly parallel.  Table 2  shows the results for the Galaxy and

California datasets when the pair-count exponent was calculated for self-joins.  Sampling clearly has

negligible effects on the PC exponent.  Table 3 shows the results for the same datasets using the pair-

count exponent obtained from PC plots and from BOPS plots.  
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Conclusions from the above experiments are as follows.  

1).  The pair-count exponent (  is practically unaffected by sampling, for reasonable

sample sizes (e.g., equal or higher than 10%).  

2).  Whatever the sampling rate, the corresponding BOPS plot on the samples is very

close to the  pair- count plot of the samples.  This means that whatever the time that

sampling can save, BOPS applied on the samples will outperform, with practically the

same accuracy.

The estimation of )  obtained from BOPS results on relative error practically always less than

5%.  Only when the sampled size of a dataset is very small, the BOPS plot results in a 9% error;

indeed, 9% of error is also a reasonable value.

Sampl i ng

rate

Galaxy dev x exp California 

pol x wat

California  pol x str

*
 from PC +  from BOPS ,  from PC -  from BOPS .  from PC /  from BOPS

100% 1.915 1.963 1.835 1.819 1.783 1.743

20% 1.915 1.963 1.833 1.825 1.776 1.759

10% 1.902 1.965 1.839 1.816 1.783 1.715

5% 1.918 1.736 1.856 1.786 1.752 1.725

Table 3: The pair-count exponent 0  values (PC and BOPS) for joins on sampled data from

Galaxy (‘dev’  and ‘exp’) datasets and also on California_pol, California_wat, California_str

datasets.

5.3 - Accuracy of Selectivity Estimations

We see that the pair-count Law is obeyed (Figures 8 and 9).  We also have just seen (Figure 10 and

Table 3) that our BOPS Lemma leads to very close approximations for the pair-count exponent.  The

question now becomes how precise the selectivity estimation PC(r) can be by using, 

(a) our Law 1 and

(b) our estimates from BOPS.
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Galaxy California

dev x exp dev x dev exp x exp pol x wat pol x pol wat x wat

PC plot
estimation

0.027 0.0164 0.023 0.028 0.029 0.067

BOPS plot
estimation

0.138 0.247 0.259 0.164 0.305 0.348

Table 4 - Geometric average of the relative error of selectivity estimation.

Table 4 shows the relative error for the selectivities calculated by , and  we
PC r PC r

PC r

( ) 1 ( )

( )

−

report the geometric average values for several values of r.  The top row estimates as follows.
2

( )PC r

Step (a): Compute the PC plot.

Step (b): Fit the line to obtain the estimation.

In order to measure the relative error in estimating the selectivities of queries, we compared pair-

count exponent methods to the real prediction given by Law 1.  Table 4 presents the geometric

average of the relative error of the PC plot by the pair-count exponents 3  when we compare the values

obtained from PC and BOPS plots with the actual figures given by Law 1.

5.4 - Timing results

The question now becomes: (a)  how long it takes to estimate the PC exponent with  the PC plot  and

(b) how long it takes to obtain the estimation from the BOPS plot.  Table 5 reports the wall clock

times for each plot on an Intel Pentium II 450 MHz, running Windows NT.  Both methods were

implemented in C++ language.

We can see in Table 5 that there is a huge difference in the CPU time when calculating the PC

plots and BOPS plots. Calculating the pair-count exponent using BOPS method save orders of

magnitude.  Moreover, BOPS plots give a fast and accurate approximation of 4  .  Sampling also gives

a close approximation of 5 , but is much more time-consuming because all the dataset must be scanned

in order to generate the sample before to apply the PC plot.  When we compare the time needed to

obtain the pair-count exponent for a dataset sampled to 10% of the data (a limit to preserve the
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Datasets PC-Plot 
(time in sec.)

BOPS
(time in sec.)

California

pol x wat
(100% of data)

7,752.50 3.44

pol x wat
(10% of data)

73.36 0.5

str x rai
(100% of data)

4,434.27 2.55

str x rai
(10% of data)

42.64 0.47

pol x str
(100 % of data)

7,664.28 3.44

pol x str
(10% of data)

66.58 0.53

Galaxy
dev x exp
(100% of data)

13,078.38 5.27

dev x exp
(10% of data)

126.98 0.72

Iris
setosa x
virginica

5.32 0.01

virginica x
versicolor

4.98 0.01

Table 5 - Clock time in seconds to obtain the pair-count exponent by PC-plots
and BOPS-plots.

accuracy of the estimation), BOPS still remains much faster than sampling technique, from 5.27

seconds for the whole dataset for BOPS  to  2.11 minutes for a 10% sampling for PC plot.

Table 5 reports the times needed to build each plot for several pairs of datasets.  It also shows

the times, when only samples are fed into the two algorithms.  The sampling rate is reported on each

row, and it is the same for both datasets.  The observations are the following:

1).  Our BOPS method is up to four order of magnitude faster.

2).  In fact, BOPS on the full sets is still faster than the PC plots on the samples (10%

sampling rate), up to 20 times! Thus, we conclude that the BOPS plot is a fast and accurate
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PC r Kr

r K

( )min min

min

= =

=
−

1
1

6

6 (11)

tool for selectivity estimation of spatial joins.  

6 - DISCUSSION

Our discussion addresses two questions, which are

a) How often should we expect the ‘pair-count’  law to hold?

b) How can we use it to do other extrapolations?

6.1 - How often?

We mention that power laws regularly occur in real datasets.  In fact, our ‘pair- count’  law is obeyed

by the self-join of any self-similar dataset, in which case the ‘pair-count’  exponent is exactly the

correlation fractal dimension D2 of that dataset.  It is well-known that vast majority of real datasets

are self-similar [BF 95], coastlines, with fractal dimension 1.1-1.3, stock prices (fractal dimension =

1.5), rain patches (fractal dimension = 1.3), brain surface of mammals (fractal dimension =  2.6-2.7).

As we have just seen, the same is true for the self-joins of our real datasets (1.9 for the GALAXY

datasets, 1.5-1.8 for the CA datasets, 1.9-2.9 for the 4-dimensional IRIS datasets, and 4.5-5.4 for the

16-dimensional Eigenfaces datasets).

6.2 - Other extrapolations

There is  a wealth of estimations that we can perform whenever a pair of real datasets obeys the pair-

count law, and the invariant properties of the pair-count exponent 7 .  One extrapolation is to estimate

the minimum distance rmin between the closest pair of points. The formula is
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PC r Krc c( ) =
8

(12)

The justification comes straightforward from Law 1.  We can also estimate the distance rc of the c-th

closest pair and the formula is

Additional extrapolations can be performed for subsets and supersets of the two original datasets since

the pair-count exponent 9  is not affected by sampling.

7 - CONCLUSIONS

The main contribution of this work is the identification of a power law, namely the ‘pair-count’  law.

This is the first and only published law that governs the distribution of pair-wise distances between

two real,  n-dimensional point-sets.  This law leads to the estimation of spatial join selectivities

through a simple formula, which is extremely accurate, less than 9% of error.  Given the pair-count

exponent : , the selectivity estimations can be performed in constant time (O(1)) without the need for

sampling or any other costly operations.  Additional contributions include the following:

• The identification of several invariant properties of the pair-count exponent ; .  It is invariant

to rotation, translation, scaling, sampling.  Moreover, this holds for any Lp norm.

• Efficiency issues: the introduction of the BOPS concept (box-occupancy-product-sum).  It

allows a fast estimation of the pair-count exponent < .  Its response time is orders of

magnitude better than the straightforward estimation using the pair-count function PC(r).

Thanks to the BOPS plot, the whole concept of the pair-count exponent becomes practical.

In fact, our method used on the full sets, is still significantly faster than the PC plots on

samples.

• Experiments on many, diverse datasets.  The experiments show that (a) the pair-count law

holds for a surprisingly  large number of real datasets and (b) that our BOPS approximation

is highly accurate.  The error is less than 9% for the pair-count exponent =  and less than 35%

for the selectivity estimation.
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Future research could focus on the discovery of additional power laws in real, spatial datasets,

as well as on explaining the reasons why these laws hold.
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