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iments on several real datasets (e.g., basket-ball and baseball statistics, biological data)demonstrate that the proposed method con-sistently achieves a \guessing error" of up to5 times less than the straightforward competi-tor.1 IntroductionData mining has recently been receiving increasing in-terest [11], of which the quintessential problem is as-sociation rule mining [2]. Given a data matrix with,e.g., customers for rows and products for columns, as-sociation rules �nd rules that describe frequently co-occurring products. Existing algorithms �nd rules ofthe form fbread;milkg ) butter (90%);meaning that customers who buy \bread" and \milk"also tend to buy \butter" with 90% con�dence. Whatdistinguishes database work from AI, Machine Learn-ing and statistics work is its emphasis on largedatasets. The initial association rule mining paper byAgrawal et al. [2], as well as all the follow-up databasework [4], proposed algorithms to minimize the timeto extract these rules through clever record-keeping toavoid additional passes over the dataset.What is novel about the work in this paper is thatit attempts to assess how good the derived rules are, anissue that has not been addressed at all in the databaseliterature. We propose the \guessing error" as a mea-sure of the \goodness" of a given set of rules for a givendataset. The idea is to pretend that a cell value (orvalues) of the matrix is \hidden" from us, and to tryto guess the missing value(s) using the derived rules;the root-mean-square guessing error (averaged over allthe cells of the given matrix) indicates how good a setof rules is.



The second major innovation of this work is theintroduction of Ratio Rules of the form:Customers typically spend 1 : 2 : 5 dollarson bread : milk : butter.Ratio Rules can be used for decision support by de-termining unknown (equivalently, hidden, missing orcorrupted) values. We provide novel algorithms forestimating missing values, even if multiple values aresimultaneously missing.This paper is organized as follows: Section 2 givesthe related work. Section 3 de�nes the problem byenumerating the desired tasks. Section 4 introducesthe proposed method. Section 5 presents the resultsfrom experiments. Section 6 provides a discussion. Fi-nally, Section 7 gives some conclusions and pointers tofuture work.2 Related WorkAgrawal et al. distinguish between three data miningproblems: identifying classi�cations, �nding sequen-tial patterns, and discovering association rules [1]. Wereview only material relevant to the latter, since it isthe focus of this paper. See [9] for an excellent, recentsurvey of all three problems.The seminal work of [2] introduced the problem ofdiscovering association rules and presented an e�cientalgorithm for mining them. Since then, new serial al-gorithms [4, 16, 20] and parallel algorithms [3] havebeen proposed. In addition, generalized associationrules have been the subject of recent work [22, 13].The vast majority of association rule discovery tech-niques are Boolean, since they discard the quantitiesof the items bought and only pay attention to whethersomething was bought or not. A notable exception isthe work of Srikant and Agrawal [23], where they ad-dress the problem of mining quantitative associationrules. Their approach is to partition each quantitativeattribute into a set of intervals which may overlap,and to apply techniques for mining Boolean associa-tion rules. In this framework, they aim for rules suchasbread : [3� 5] and milk : [1� 2] ) butter : [1:5� 2]The above rule says that customers that spend be-tween 3-5 dollars on bread and 1-2 dollars on milk,tend to spend 1.5-2 dollars on butter.Traditional criteria for selecting association rulesare based on the support-con�dence framework [2]; re-cent alternative criteria include the chi-square test [7]and probability-based measures [21]. Related issuesinclude outlier detection and forecasting. See [15] fora textbook treatment of both, and [5, 14, 8] for recentdevelopments.

symbol de�nitionN number of recordsM number of attributesk cuto� (number of Ratio Rules retained)h number of holesH set of cells which have holesR set of rulesGE1 guessing error over each holeGEh guessing error over h holes� matrix multiplicationX the N �M data matrixXc the centered version of XXt the transpose of Xxi;j value at row i, column j of the matrix Xx̂i;j reconstructed (approximate) value atrow i and column j�x the mean cell value of XC the M �M covariance matrix (Xtc �Xc)V the M � k RR matrixTable 1: Symbols, de�nitions and notation.3 Problem De�nitionRatio Rules can support the following applications,thanks to their ability to reconstruct missing values:� Data cleaning: reconstructing lost data and re-pairing noisy, damaged or incorrect data (perhapsas a result of consolidating data from many het-erogeneous sources for use in a data warehouse);� Forecasting: `If a customer spends $1 on breadand $2.50 on ham, how much will s/he spend onmayonnaise?';� \What-if" scenarios: `We expect the demand forCheerios to double; how much milk should westock up on?';� Outlier detection: `Which customers deviate fromthe typical sales pattern?';� Visualization: Each Ratio Rule e�ectively corre-sponds to an eigenvector of the data matrix, aswe discuss later. We can project the data pointson the 2- or 3-d hyper-plane de�ned by the �rst2 or 3 Ratio Rules, and plot the result, to revealthe structure of the dataset (e.g., clusters, linearcorrelations, etc.).Next, we give more intuition behind Ratio Rulesand discuss a method for computing them e�ciently.4 Proposed MethodThe proposed method detects Ratio Rules usingeigensystem analysis, a powerful tool that has beenused for several settings, and is similar to SingularValue Decomposition (SVD) [17], Principal Compo-nent Analysis (PCA) [15], Latent Semantic Index-ing (LSI) [12], and the Karhunen-Loeve Transform
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x’Figure 1: A data matrix in table form and its counterpart in graphical form, after centering (original axis drawnwith dotted lines). As the graph illustrates, eigensystem analysis identi�es the vector (0:866; 0:5) as the \best"axis to project along.(KLT) [10]. Eigensystem analysis involves computingthe eigenvectors and eigenvalues of the covariance ma-trix of the given data points (see subsection 4.1 forthe details). In subsection 4.2, we present an e�-cient, single-pass algorithm to compute the k best Ra-tio Rules. A fast algorithm is extremely important fordatabase applications, where we expect matrices withseveral thousands or millions of rows. Subsection 4.3presents one of the two major contributions of this pa-per: the introduction of a measure for the \goodness"of a given set of rules. Subsection 4.4 presents the sec-ond major contribution: how to use the Ratio Rulesto predict missing values.4.1 Intuition Behind Ratio RulesFigure 1 lists N customers and M products organizedin an N �M matrix X, where the entries are the dol-lar amount spent by customer i on product j. Table 1gives a list of symbols used from here on and theirde�nitions. To make our discussion more concrete, wewill use rows and \customers" interchangeably, andcolumns and \products" interchangeably. Of course,the proposed method is applicable to any N �M ma-trix, with a variety of interpretations for the rows andcolumns, e.g., patients and medical test measurements(blood pressure, body weight, etc.); documents andterms (typical in IR [19]), etc.Each row vector of the matrix can be thought of asan M -dimensional point. Given this set of N points,eigensystem analysis identi�es the axes (orthogonaldirections) of greatest variance, after centering thepoints about the origin. Figure 1 illustrates an ex-ample of an axis that this analysis �nds. Suppose thatwe have M=2 dimensions; then our customers are 2-d points, as in Fig. 1. The corresponding directionx0 this analysis suggests is shown, meaning that if weare allowed only k=1, the best direction to projecton is the direction of x0. The direction x0 is a Ra-tio Rule (RR for short) that governs the correlations

between money spent on the products, based on cus-tomer purchasing activity. In this case, the projectionof a data point on the x0 axis gives the overall \volume"of the purchase. For the setting of Figure 1, the coor-dinates of the �rst RR = (0.866, 0.5) imply the rule\bread : butter ) $0:866 : $0:5"; that is, for the mostof our customers (2-d points) the relative spendingsbread-to-butter are close to the ratio 0.866:0.5. As weshall discuss later, these Ratio Rules can be used forforecasting, \what-if" scenarios, outlier detection, andvisualization. In addition, they are often amenable tointerpretation as underlying factors that describe, inthis case, purchasing behavior.Mathematically, the directions identi�ed by eigen-system analysis are the eigenvectors of the covariancematrix C (see Eq. 2); each eigenvector has an asso-ciated eigenvalue whose magnitude indicates the vari-ance of the points along that eigenvector.The goal of this method is to reduce the dimen-sionality of a dataset while retaining as much varia-tion as possible. This is done by identifying the di-rection of maximum variance (given by the largesteigenvalue/vector) and then incrementally identifyingthe orthogonal direction with maximum variance (thesecond eigenvalue/vector, etc.). In the end, only theeigenvectors associated with the k largest eigenvalues,namely, the Ratio Rules, are kept. In order to choose agood cuto� k of rules to retain, the simplest textbookheuristic (and the one used in this paper) is to retainenough eigenvectors so that the sum of their eigenval-ues cover 85% of the grand total [15, p. 94]. That is,choose the cuto� k such thatPki=1 �iPMj=1 �j � 85% (1)Next we present a method for computing RatioRules by eigensystem analysis in a single pass.



/* input: training set X on disk *//* output: covariance matrix C */for j := 1 to M docolavgs[j]  0;for l := 1 to M doC[j][l]  0;for i := 1 to N doRead ith row of X from disk (X[i][1],...,X [i][M]);for j := 1 to M docolavgs[j] += X[i][j];for l := 1 to M doC[j][l] += X[i][j]*X[i][l];for j := 1 to M docolavgs[j] /= N ;for j := 1 to M dofor l := 1 to M doC[j][l] -= N � colavgs[j] * colavgs[l];
input:covariance matrix C in main memoryoutput:eigenvectors v1; : : : ;vk (i.e., the RRs)compute eigensystem:fv1; : : : ;vMg  eigenvectors(C);f�1; : : : ; �Mg  eigenvalues(C);sort vj according to the eigenvalues;choose k based on Eq. 1;return the k largest eigenvectors;complexity:O(M3)(a) Single-pass over data matrix (b) Eigensystem computationFigure 2: Pseudocode for e�ciently computing Ratio Rules.4.2 A Single-Pass Algorithm for Ratio RulesThe computation of Ratio Rules involves determin-ing the eigenvectors of the covariance matrix C ofthe given N �M matrix X. The covariance matrixC = [cij] intuitively is the \column-to-column" simi-larity matrix, which has high cij values if the columnsi and j are correlated. Mathematically, it is de�ned asC � Xtc �Xc (2)where Xc is derived by the given X matrix by sub-tracting the column average from every cell. That is,Xc is a zero-mean matrix, or \centered", in the sensethat its column averages are all zero. Thus, the co-variance matrix C is a real, symmetric square matrixof side M .The following steps will compute the Ratio Rules inan I/O-e�cient way: (a) zero-mean the input matrixto derive Xc; (b) compute C from Eq. 2; (c) com-pute the eigenvalues/vectors of C and pick the �rstk. We assume that C can �t in memory: it needs M2cells, where M is the number of columns, which shouldtypically be on the order of one thousand for real ap-plications [2]. Under this assumption, we can computethe column averages and the covariance matrix with asingle-pass over the N (� millions) of rows of the givenX matrix, using the algorithm of Figure 2(a). Once wehave the covariance matrix C in memory, we can useany o�-the-shelf eigensystem package to determine itseigenvalues and eigenvectors, as shown in Fig. 2(b).1The proposed algorithm requires a single pass tocompute the column averages and the covariance ma-trix. In more detail, it requires O(N ) disk operationsto read the matrix X and O(NM2) main-memory op-erations to build the corresponding covariance matrix.Since the number of rows is typically in the hundreds1If the number of columns are much greater than one thou-sand, as potentially might be the case in some market basketdata analyses, then the methods from [6] could be applied to ef-�ciently compute the eigensystemof the resulting sparse matrix.

of thousands (e.g., sales, or customers), and the num-ber of columns in the hundreds (e.g., products, or pa-tient symptoms), the algorithm of Fig. 2 is very ef-�cient. Note that the algorithms of [3] require morethan one pass over the dataset in an attempt to �ndlarge itemsets. Also note that the O(M3) factor forthe eigensystem computation is negligible comparedto the O(NM2) operations needed to build the covari-ance matrix, since we assume that N �M .4.3 Measuring the Goodness of a Rule-set:the \Guessing Error"Let R be a given set of rules. We would like to beable to assess how good a given set of rules R is. Theassociation rule mining literature has not de�ned acriterion to assess the \goodness", or accuracy, of aset of discovered rules. We propose a remedy, namely,the \guessing error". The fundamental requirement isthat R must allow for estimations of missing values ina given record/row.Let's consider a speci�c row (customer) xi of thematrix, and pretend that the j-th attribute is hiddenfrom us (i.e., the amount spend on the j-th product,say, bread). Given R and the rest of the values xi;l(l 6= j), we should be able to estimate the missingvalue as x̂ij. The guessing error for this speci�c cell(i; j) is x̂ij � xij.De�nition 1 The \single-hole guessing error", orsimply the \guessing error", for a set of rules R ona data matrix X is de�ned as the root-mean-square ofthe guessing errors of the individual cells, that is,GE =vuut 1NM NXi MXj (x̂ij � xij)2 (3)More speci�cally, we also de�ne it as the single-holeguessing error GE1 because we allowed only a singlehole at a time. The generalization to the h-hole guess-ing error GEh is straightforward.



/* input: bH, a 1�M row vector with holes *//* output: b̂, a 1�M row vector with holes filled */1. V0  EH �V; /* ``RR-hyperplane'' */2. b0  EH � btH; /* ``feasible sol'n space'' */3. solve V0 � xconcept = b0 for xconcept /* solution in k-space */4. d V� xconcept; /* solution in M-space */5. b̂ b� [EHc ]t + d� [EH]t;Figure 3: Pseudocode for �lling holes.De�nition 2 The \h-hole guessing error" for a setof rules R on a data matrix X is de�ned as the root-mean-square of the guessing errors of h cells at a time,that is,GEh =vuut 1NhjHhj NXi XH2HhXl2H(x̂i;l � xi;l)2 (4)where Hh contains some subset of the �Mh � combina-tions of sets H with h \holes".The way that R is derived is independent of thede�nition of the \guessing error". We expect that thetypical practice in Machine Learning will be followed:we can use a portion Xtrain of the dataset X to derivethe rules R (\training set"), and some other portionXtest of the dataset X to compute the guessing error(\testing set"). The details of the choice of trainingand testing sets are orthogonal to our de�nition, andoutside the scope of this paper, since they have beenextensively examined in the machine learning and clas-si�cation literature [18]. A reasonable choice is to use90% of the original data matrix for training and theremaining 10% for testing. Another possibility is theuse the entire data matrix for both training and test-ing. In this paper, we report only the results for theformer choice because the two choices above gave verysimilar results.The ability to measure the goodness of a set of rulesR for a given testing dataset Y is very important, fordevelopers of data-mining products and for end-usersalike:� For developers, it allows benchmarking and com-parison with competing products and designs: alow \guessing error" over a variety of input ma-trices indicates a good product;� For end-users that use a given product on a spe-ci�c dataset, a low \guessing error" implies thatthe derived rules have captured the essence of thisdataset, and that they can be used for estimationof truly unknown values with more con�dence.It should be highlighted that the de�nition of the\guessing error" can be applied to any type of rules, as

long as they can do estimation of hidden values. In thenext subsection we focus on the proposed Ratio Rules,and show how to use them to obtain such estimates.4.4 Determining Hidden and Unknown Val-uesHere we present an algorithm for determining un-known values of a data matrix both algebraically andgeometrically. If we can reconstruct these so-called\holes", then we can �nd hidden values or forecastfuture values. This framework is also applicable to\what-if" scenarios where we can specify some of thevalues (`What if the demand for Cheerios doubles?')and then forecast the e�ect on other attributes (`Thenthe demand for milk will double.'). In addition, it canbe used to discover outliers by hiding a cell value, re-constructing it, and comparing the reconstructed valueto the hidden value. A value is an outlier when its pre-dicted value is signi�cantly di�erent (e.g., two stan-dard deviations away) from the existing hidden value.We begin by developing some notation necessaryfor formulating the problem algebraically. Then wegive the geometric intuition and show how the problemleads to a system of equations.De�nition 3 An h-hole row vector bH is de�ned as avector with holes (denoted with \?"s) at indices givenin H, where H is the set of \holes".An example of a 1�5 2-hole row vector is the following:bf2;4g = [b1; ?; b3; ?; b5]De�nition 4 An (M�h)�M eliminationmatrix EHis de�ned as an M �M identity matrix with h = jHjrows removed, where the row indices are given in theset H.An example of a 3 � 5 elimination matrix is the fol-lowing: Ef2;4g = 24 1 0 0 0 00 0 1 0 00 0 0 0 1 35An elimination matrix is very useful in helping us pickand choose entries from vectors. For example, we can



bread

butter

RR1

Given value

feasible locations

expected locations

butter
guess

guess

RR1

bread

milk

butter

Given

feasible

guess

expected

(a) exactly-speci�ed (b) over-speci�edFigure 4: Two of the three possible cases: exactly de�ned, and over-speci�edeliminate the \?"s from bf2;4g as follows:Ef2;4g�btf2;4g = 24 1 0 0 0 00 0 1 0 00 0 0 0 1 35�26664 b1?b3?b5 37775 = 24 b1b3b5 35Once the user has speci�ed partial knowledge froma transaction bH (e.g., the dollar amounts spent bya new customer, for some products), the set of un-knowns H are determined by the k Ratio Rules thathave been kept, and are reported as b̂, that is, bH withthe holes H �lled in. The geometric intuition is the fol-lowing: the rules form a k-dimensional hyper-plane V0(= EH �V) in M -space, the \RR-hyperplane", on orclose to which the data points lie. The h holes resultin an h-dimensional hyper-plane b0 (= EH � btH) inM -space, the \feasible solution space", on which thesolution is constrained. We want to �nd a point thatagrees with our given partial data (\feasible solutionspace"), and is as close to (or exactly on) the RR-hyperplane.Figure 4(a) illustrates the case in the simplest pos-sible form: we haveM=2 products (say, amount spenton \bread" for the x-axis, and amount spent on \but-ter" for the y-axis), k=1 rule, and h=1 hole. We know(a) that a customer spends the given amount on breadand (b) that most of our previous customers fall onor close to the line de�ned by the �rst rule (RR1).We want to �nd the amount spent on butter (thehole). The intersection of \feasible locations" (verticaldashed line) and \expected locations" (solid diagonalline) gives our best prediction for the 2-d point thatcorresponds to that sale; the value on the \butter"axis, labeled as \guess" is our proposed estimate for

the required amount spent on butter.The intersection of the two hyper-planes corre-sponds to a system of linear equations V0�xconcept =b0, from which the solution of xconcept determines theunknowns. Figure 3 gives the pseudo-code for the ge-ometric description above.Recall that the intersection of \feasible locations"and \expected locations" gives our best prediction.There are three possibilities regarding the intersectionof the two hyper-planes, which are illustrated in Fig. 4-5. Respectively, there are three possibilities regardingthe equation from step 3 of the pseudo-code,V0 � xconcept = b0 (5)given that there are (M � h) equations and k un-knowns.CASE 1: (EXACTLY-SPECIFIED)The two hyper-planes intersect at a point.This occurs when (M � h) = k. The respec-tive linear equations have an exact solutiondetermined byxconcept = (V0)�1 � b0 (6)Figure 4(a) illustrates an example in M = 2dimensions, for h = 1 hole and cuto� k = 1ratio rule.CASE 2: (OVER-SPECIFIED)The two hyper-planes do not intersect. Thisoccurs when (M � h) > k. The respectiveequations are over-determined, and the closestdistance between them is chosen for the solu-tion to xconcept based on the Moore-Penrose



pseudo-inverse of V0 (see [17]). This uses thesingular value decomposition of V0:V0 = R� diag(�j)� St (7)Since V0 is singular, no inverse exists, but wecan �nd a pseudo-inverse:[V0]�1 = S� diag(1=�j)�Rt (8)and, thus, xconcept = [V0]�1 � b0 (9)Figure 4(b) illustrates an example in M = 3dimensions, for h = 1 hole and cuto� k = 1.
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col-avgs: for a given hole, use the respective columnaverage from the training set. Note that col-avgs isidentical to the proposed method with k = 0 eigenval-ues. Multiple linear regression (e.g., [14]) is remotelyrelated to our proposed approach: it can predict miss-ing values for a given, speci�ed column of the datamatrix, if everything else is known. Our method ismore general because it can predict arbitrary choicesof arbitrary numbers of missing columns, thanks to ourtechnique in subsection 4.4. We cannot compare RatioRules with any association-based methods because, aswe argue in Sec. 6.3, association-based methods do notlead to prediction of missing values.Error Measure: We use the GEh \guessing error"described in Sec. 4.3.Datasets: We ran our experiments on a variety ofreal datasets (see Section 6.1 for scatter-plots of them),described as follows:� `nba' (459 � 12) - basketball statistics from the1991-92 NBA season, including minutes played,�eld goals, rebounds, and fouls;� `baseball' (1574 � 17) - batting statistics fromMajor League Baseball for four seasons; �elds in-clude batting average, at-bats, hits, home runs,and stolen bases;2� `abalone' (4177 � 7) - physical measurements ofan invertebrate animal, including length, diame-ter, and weights.3Preliminary to running these experiments, for eachdataset we chose 90% of the matrix rows for the train-ing matrix; the remaining 10% were used as the test-ing matrix. We computed the Ratio Rules from thetraining matrix, along with the column averages of thetraining matrix for use as the competitor (col-avgs).5.1 Prediction AccuracyFigure 7 shows the GE1 guessing error for the`nba' , `baseball' , and `abalone' datasets, normal-ized by the guessing error attained by col-avgs. Asa frame of reference, we also present the normalizedGE1 of col-avgs, which is, of course, 100%. Notethat the proposed method method was the clear win-ner for all datasets we tried and gave as low as one-�fththe guessing error of col-avgs.5.2 Error StabilityIn Fig. 6, we show GEh for the `nba' and `baseball'datasets, for 1 � h � 5 holes. The results for the`abalone' dataset were similar, and are omitted for2The `baseball' dataset is available athttp://www.usatoday.com/sports/baseball/sbstats.htm.3The `abalone' dataset is available athttp://www.ics.uci.edu/�mlearn/MLSummary.html.
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Figure 6: Guessing error vs. number of holes (1-5) for the `nba' and `baseball' datasets
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(a) `baseball' (b) `abalone'Figure 9: Scatter plots of (a) `baseball' and (b) `abalone' in 2-d RR space.6.1 VisualizationRecall that Ratio Rules identify the axes of greatestvariation. Similar to PCA, by projecting the pointsonto the best two or three of these axes (i.e., the eigen-vectors associated with the largest eigenvalues), thepoints can be plotted to give an idea of the densityand structure of the dataset. For example, Figure 11shows a scatter-plot of `nba', which originally includedthe statistics of N=459 players for M=12 attributesand has been reduced to 2-dimensional RR-space (i.e.,two Ratio Rules).In (a), the x-axis corresponds to the �rst (andstrongest) rule RR1; the y-axis corresponds to RR2.In (b), the x-axis corresponds to RR2 and the y-axiscorresponds to RR3. Most of the points are very closeto the horizontal axis, implying that they all closelyfollow the �rst eigenvector and are considerably lin-ear. The plot also shows that many of the attributesare correlated with one another, such as �eld goals andminutes played. There are two points that are clearlyoutliers: (3000; 971) and (2100;�1296), correspondingto Michael Jordan and Dennis Rodman, respectively.Figure 9 shows 2-d plots for (a) `baseball' and (b)`abalone'.6.2 Interpretation of the Ratio RulesIn this section, we illustrate by example how RatioRules can be interpreted as meaningful rules. Themethodology is outlined in Figure 10.Table 2 presents the �rst three Ratio Rules (RR1,RR2, and RR3) for the `nba' dataset, whose �elds in-clude minutes played, �elds goals, o�ensive rebounds,defensive rebounds, assists, and steals, among others.By drawing on a basic knowledge of basketball andby examining these Ratio Rules, we conjecture the fol-lowing: RR1 represents \court action", separating thestarters from those who sit on the bench, and givesa 0.808:0.406 � 2:1 ratio. This is a Ratio Rule with

1. Solve the eigensystem;2. Keep k strongest rules according to Eq. 1;3. Display Ratio Rules graphically in a histogram;4. Observe positive and negative correlations;5. Interpret;Figure 10: Interpretation of Ratio Rules.�eld RR1 RR2 RR3minutes played .808 �:4�eld goalsgoal attemptsfree throwsthrows attemptedblocked shotsfoulspoints .406 .199o�ensive reboundstotal rebounds �:489 .602assists �:486steals �:07Table 2: Relative values of the RRs from `nba'.the obvious interpretation: the average player scores 1point for every 2 minutes of play (equivalently, 1 bas-ket for every 4 minutes played). According to RR1,Michael Jordan was by far the most active player inalmost every category (see Fig. 11(a)). RR2 shows thatthe number of rebounds is negatively correlated withpoints in a 0.489:0.199 � 2.45:1 ratio. This is becausea goal attempt makes it di�cult for a player to get in agood position for rebounding, and vice versa. For thatreason, \minutes played" and \points" are also nega-tively correlated, meaning that a rebounder scores lessas a percentage of time on the �eld than players whoplace emphasis on o�ense. Thus, RR2 roughly repre-sents \�eld position", separating the guards, who get
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(a) side view (b) front viewFigure 11: A scatter plot of `nba': two 2-d orthogonal views.the most opportunities to shoot, from the forwards,who are more likely to be rebounders. For example, inFig. 11(a), we see the extremes among active players:star shooting guard Michael Jordan at one end with2404 points and 91 rebounds, and power forward (andexcellent rebounder) Dennis Rodman at the other with800 points and 523 rebounds. RR3 says that reboundsare negatively correlated with assists and steals. Typi-cally, tall players make better rebounders because theycan reach high and short players are better at as-sists and steals because they can move fast. Thus,RR3 roughly represents \height", with Mugsy Bogues(5'3") and Karl Malone (6'8") at opposite extremes(see Fig. 11(b)).6.3 Ratio Rules vs. Association RulesRatio Rules are quite di�erent from association rules inmany qualitative aspects. Here we compare and con-trast the two paradigms. Of the association rules, weexamine both Boolean and quantitative rules. Exam-ples of each type of rule with which we are concernedfollow:� Boolean association rules [2]:fbread;milkg ) butter� quantitative association rules [23]:bread : [2� 5] ) butter : [1� 2]� Ratio Rules: ratio of spendingsbread:butter = 2:3Boolean association rules have the advantages thatthey are easy to interpret and relatively easy to imple-ment. The major drawback, however, is that a givendata matrixX with, e.g., amounts spent per customerper product, is converted to a binary matrix by treat-ing non-zero amounts as plain \1"s. This simpli�esthe data mining algorithms but tends to lose valuableinformation.

Quantitative association rule algorithms perform animportant step to retain the above information. Fig-ure 12(a) illustrates how these rules might work fora �ctitious dataset with a few customers (points) andM = 2 products only, namely, \bread" and \butter".In this dataset, the quantitative association rules willderive rules that correspond to the dashed rectanglesof the �gure. For example, the �rst two lower-left rect-angles will yield the rulesbread : [1� 3] ) butter : [:5� 2:5]bread : [3� 5] ) butter : [2� 3]Ratio Rules, for the same setting of Figure 12 andwith k = 1 rule, will �t the best possible line throughthe dataset; its unit vector is exactly the �rst rule ofthe given data matrix. Thus, the corresponding rulewill be bread : butter = :81 : :58For the remaining discussion, we focus only on quanti-tative association rules since the focus is on real-valueddata such as dollar amounts spent by customers onproducts. We compare the strengths of quantitativeassociation rules with those of Ratio Rules.The advantages of quantitative association rules in-clude the following:� They will be more suitable if the data points formclusters;� They have been applied to categorical data.The advantages of Ratio Rules include the following:� They achieve more compact descriptions if thedata points are linearly correlated, as in Figure 12,or as in the real datasets that we saw earlier. Insuch cases, a single Ratio Rule captures the cor-relations, while several minimum bounding rect-angles are needed by the quantitative associationrules to convey the same information;
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(a) Quantitative (b) Ratio RulesFigure 12: Illustration of rules from a �ctitious dataset of sales on bread and butter: (a) quantitative associationrules; (b) Ratio Rules. The \given" entry asks for an estimation for butter, for the given amount spent on bread.� They can perform extrapolations and predictions.For example, in Figure 12, suppose that we aregiven that a customer bought $8.50 of bread andwe want to know how much butter s/he is ex-pected to buy. Ratio Rules will predict $6.10 onbutter, as Figure 12(b) illustrates. Quantitativeassociation rules have no rule that can �re becausethe vertical line of \feasible solutions" intersectsnone of the bounding rectangles. Thus they areunable to make a prediction;� Their derivation requires a single pass over thedataset;� They are easily implemented, thanks to highly�ne-tuned eigensystem packages; the remainingprogramming e�ort is minimal.7 ConclusionsWe have proposed a completely di�erent type of rulesas the target of data mining e�orts, namely, RatioRules. These rules have signi�cant advantages overBoolean and quantitative association rules:� They lead to a natural measure, the \guessing er-ror", which can quantify how good a given set ofrules is;� They can be used to estimate one or moreunknown (equivalently, missing, hidden or cor-rupted) values when a new data record is given,based on the novel method proposed in Sec-tion 4.4; thus, they can also be used in forecasting,for \what-if" scenarios, and for detecting outliers;� They are easy to implement. The most di�cultpart of our method is the solution of an eigen-system for which reliable packages and/or sourcecode are widely available;

� They are fast and scalable, requiring a single passover the data matrix, and growing linearly on thelargest dimension of the matrix, presumably thenumber N of rows (customers);� They give visualization for free, thanks to the di-mensionality reduction properties of Ratio Rules.We described how to interpret Ratio Rules and wediscussed their qualitative di�erences from associationrules. Finally, we presented experiments on severalreal datasets, which showed that the proposed RatioRules scale-up for large datasets, and can achieve upto 5 times smaller guessing error than the competitor.Future research could focus on applying Ratio Rulesto datasets that contain categorical data.AcknowledgmentsWe would like to thank Bj�orn Th�or J�onsson andKostas Stathatos for their help in interpreting the Ra-tio Rules for the `nba' dataset. We would also liketo thank Rakesh Agrawal for o�ering us his syntheticdataset generator, and Mike Franklin for providing anRS/6000 to install and run the generator.
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