
The Connectivity and Fault-Tolerance of the Internet TopologyChristopher R. Palmer� Georgos Siganosy Michalis FaloutsoszChristos Faloutsosx Phillip B. Gibbons{AbstractIn this paper, we apply data mining analysis to study the topology of the Internet, thuscreating a new processing framework. To the best of our knowledge, this is one of the �rststudies that focus on the Internet topology at the router level, i.e., each node is a router. Thesize (280K nodes) and the nature of the graph are such that new analysis methods have tobe employed. First, we suggest computationally-expensive metrics to characterize topologicalproperties. Then, we present an e�cient approximation algorithm that makes the calculationof these metrics possible. Finally, we demonstrate the initial results of our framework. Forexample, we show that we can identify \central" routers, and poorly connected or even isolatednodes. We also �nd that the Internet is surprisingly resilient to random link and router failures,having only small changes in the connectivity for fewer than 10,000 failures. Our frameworkseems a promising step towards understanding and characterizing the Internet topology andpossible other real communication graphs such as web-graphs.1 IntroductionIn this paper, we study the topology of the Internet at the router level. We know very little aboutthe Internet, despite the signi�cance and impact of the network in everyday life. This is especiallytrue for the topology of the network, which is a crucial part of modeling and simulating the network.First, we study the structure of the network. Using topological properties, we manage to identify\di�erent" parts of the network such as central backbone routers and areas with poor connectivity.Second, we study the robustness of the topology to edge and node failures. In our study, we use anovel data mining tool to process the large topological data.Why can't we model the Internet topology? There are several reasons for that. First, thenecessary data has only recently become available. Second, the data is so large (285K nodes) thatstandard processing and visualization techniques are inadequate. Despite these challenges, it isvery important to characterize the topology. The absence of this knowledge is one of the reasons\Why we don't know how to simulate the Internet" according to Paxson and Floyd [12]. It is very�Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213yU.C. Riverside, Dept. of Comp. Science Riverside, CA 92521zU.C. Riverside, Dept. of Comp. Science Riverside, CA 92521xComputer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213{Information Sciences Research Center, Bell Laboratories, Murray Hill, NJ1



di�cult to analyze and optimize network performance without understanding its topology. It isanalogous to attempting to resolve tra�c problems in a city without a map.The novelty of our work lies in the use of data mining tools in the study of the network topology.In more detail, we use a new tool to approximate the size of the neighbourhood of a node. Thisis a computationally expensive procedure and it is made feasible by our tool that reduces its run-time by more than a factor of 400. Given this tool, we are able to provide results in two maindirections. First, we provide new insight in the structure of the graph, and we classify nodesaccording to their neighbourhood related properties. For example, we show that using our analysiswe can distinguish nodes which may correspond to centrally-located or backbone routers. Second,we study the robustness of the network to edge and node failures. We �nd that the network isrobust to edge failures, and uniformly distributed node failures. However, we observe that failuresin the central or backbone nodes can very quickly hurt the connectivity of the network. In ourwork, we use some of the novel graph metrics proposed by Faloutsos et al [4] and we show thatthese metrics can actually provide insight into the graph structure.In section 2 we present the background, summarize previous work and de�ne our novel Internetmetrics. In section 3, we highlight the approximation algorithm that we use. In section 4, wepresent our results. Finally in section 5, we present our conclusions.2 Background and Novel Graph MetricsWe begin this section by de�ning the terminology that we will use in the remainder of the paper.We also describe the Internet router data that we will be using.We study the network at the router level, that is, each Internet router is represented by anode in the graph while each link is mapped by an edge. In contrast, a lot of previous work hasconcentrated on the interdomain level of the topology where each graph node represents a domainor Autonomous System. The router level is a much larger and more detailed graph. We believethat the size of this graph has made its processing prohibitively expensive.We list a number of graph metrics that have been proposed in the literature only recently.Typical metrics are average node degree and diameter. We believe that the hop exponent , e�ectivediameter and e�ective eccentricity are much more e�ective in characterizing the complexity of theInternet graph.De�nitions. Let G = (V;E) be either a directed or undirected graph. Let d(u; v) be the shortestpath distance from node u to node v. We de�ne the following :Reachable set: Nodes that are within distance h of u: S(u; h) = fv : d(u; v) � hg.Individual neighbourhood function: Reachable sets sizes: N(u; h) = jS(u; h)j.Neighbourhood function: Number of pairs of nodes within dist. h: N(h) =Pu2V N(u; h).Reachable pairs: Number of pairs of nodes that have a path connecting them: N(1).E�ective Diameter: Least distance, h, such that at least 90% of the reachable pairs are2



within distance h: minhN(h) � :9 �N(1)E�ective Eccentricity: Eccentricity is to a node as the diameter is to a graph. Least distance,h, such that 90% of u's reachable set are within distance h: minhN(u; h) � :9 �N(u;1).Hop-Plot Exponent: A proposed power-law in [4], that the total number of pairs of nodeswithin h hops is proportional to the number of hops raised to a constant, H (hop-plot exponent).We use the hop-plot exponent to characterize the growth of the neighbourhood function. Tocompute it, we apply log transforms to the neighbourhood function and compute the least-square�tting line for the points up to the e�ective diameter.Our real Internet graph. We use the graph that is the result of the union of the SCAN [15] andLucent Internet mapping project results [14]. The SCAN project develop a topology discovery toolcalled Mercator that uses hop-limited probes { the same primitive used in traceroute { to infer themap of the Internet [15]. The Lucent Internet mapping project uses a single probe location but hasperformed long term monitoring [8]. This merged data set represents the best map of the Internet(at a router level) which was current as of late 1999. The resulting graph has approximately 285Knodes, 430K edges, a maximum degree of 1,978 and an average degree of 3.15. It is this graph thatwe will use to study the router-level Internet topology.Previous Work. There have been several measurements of the Internet topology [6, 11, 7]. Thesestudies focus on the collection of data while the analysis appears secondary. There has not been yeta comprehensive study of the Internet topology at the router level. In contrast, the interdomain levelhas been studied lately [16]. In a parallel tangent, several people have studied topological propertiesindirectly, through the study of scaling of multicast trees in Internet [2, 13, 17]. Recently, Albert etal. [1] and Tauro and Faloutsos [16] studied the fault tolerance of the Internet at the interdomainlevel. Recall that our work here focuses at the router level of the Internet.Assumptions and Limitations. Our work relies on measured data which is always subject tomeasuring errors. The main problems with Internet measurements are a) incompleteness, b) routeridenti�cation. We can not claim or guarantee that it is most of it, but we have reasons to believethat this data contains a substantial and representative part of the Internet. For a discussion onthis issue see [15, 7, 8].3 Approximate Neighbourhood Function (ANF)We have developed and evaluated an approximate neighbourhood function (ANF) in [10]. Wepresent the key ideas and a simple version of the algorithm. The algorithm is presented in su�cientdetail to reproduce the results in this paper. The underlying approach is to iteratively computeS(u; h), the set of nodes within at most h hops of u, using the edge set and S(u; h� 1). That is:FOR each node u DO S(u,0) = { u }FOR each iteration, h starting at 1FOR each node u DO S(u,h) = S(u,h-1)FOR each edge (u,v) DO S(v,h) = S(v,h) U S(u,h-1)3



FOR each node, u DOM(u,0) = concatenation of k bitmasks, each with 1 bit set(according to an exponential distribution)FOR each distance, it, starting with 1 DOFOR each node, u DO M(u,it) = M(u,it-1)FOR each edge (u,v) DO M(u,it) = (M(u,it) OR M(v,it-1))The estimate is: SUM(all u) (2^b)/(.7731*bias)where b is the average of the least zero bits in the k bitmasksbias, a small bias factor, is (1+.31/k)Figure 1: In-Core Approximate Neighbourhood Function (ANF)and then the neighbourhood function is N(h) = Pu jS(u; h)j. This algorithm will be horriblyine�cient to use in practice because the set operations are expensive. Instead, we use a tool calledapproximate counting. An approximate counting algorithm takes as input a multi-set and thenestimates the number of distinct elements in the multi-set. In [5], each possible element (for us,that is each node) is assigned a random bit using an exponential distribution (half the nodes getbit 0, a quarter get bit 1, etc). To estimate the number of elements in a multi-set, you simplyOR together the bits that we assigned to each element. The estimate is then close to 2b, whereb is the least zero bit in the bitmask. We can use the approximate counting idea to replace theset operations in our simple algorithm. We use M(u; h) to denote the bitmask approximation tojS(u; h)j and to improve accuracy perform the approximation k times in parallel (we �x k = 64 forthe remainder of the paper). This algorithm appears in Figure 1 and operates only in-core. Anexternal version of the algorithm is also presented in [10] which allows the processing of graphs thatare much larger than available memory.The ANF algorithm has several properties that make it possible to perform studies on largegraphs. Here we will just list its properties, while appendix A provides a sense of its e�ciencyhighlighting some of the actual executions of the algorithm [10].� Fast: Approximate the neighbourhood function of the router level graph (285K nodes and430K edges) in a matter of minutes, rather than nearly a day (436x faster).� Accurate: The approximates have provable bounds, generally within 5-10% of the truefunction for our experiments.� Individual neighbourhood functions: As a by-product of computing the neighbourhoodfunctions, we compute the neighbourhood function for each individual node.4 Data-Mining on the Internet GraphIn this section, we show how the new approximation algorithm enables us to �nd interesting proper-ties of the Internet topology. First, we study the structure of the network by identifying propertiesof the nodes. Second, we study the robustness of the topology to component failures.4
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Effective eccentricitya) Hop exponent vs. E�ective diameter b) Histogram of diametersFigure 2: Hop exponent and e�ective eccentricities of the individual neighbourhood functions forInternet routers4.1 Discovering structure through node classi�cationThe �rst application of the neighbourhood function is to examine the individual routers in theInternet graph. We wish to understand the connectivity richness of di�erent routers. Note thatthis corresponds loosely to alternate paths that the node could potentially use. That is, we knowthat the e�ective diameter of the Internet is approximately 10 hops, but how does that translateto the path lengths for individual nodes.Quantifying the relationship of hopplot and eccentricity. We conducted an experimentwith results in Figure 2 a). First we compute the individual neighbourhood functions for all nodesin the graph. From this, we measure the e�ective eccentricity of each node and compute the hopexponent for each individual neighbourhood function. The scatter plot of these values indicates astrong correlation between the eccentricity and the hop exponent (not surprising).Classifying nodes using eccentricity. In Figure 2 b), we show the histogram of the numberof nodes with each e�ective eccentricity. The number of nodes is plotted in log scale. We observethat about 10,000 routers have an e�ective eccentricity of at most 6 and another 10,000 routers havean e�ective eccentricity of 12 or larger. The majority of the nodes have an e�ective eccentricitythat is close to the e�ective diameter of the Internet.Identifying pathologies of the measured data. Our analysis can help identify pathologicalor incomplete cases in the measured data. We observe that there are some nodes with eccentricity1 and 2. This would mean that a node has a degree of approximately 0:9 �284K = 250K links. Thisis clearly not the case, since the max degree of the graph is no more than 2000. The explanation isthat the graph has some disconnected components. Recall that we de�ne the eccentricity relativeto the nodes that the can be reached. For example, an isolated pair of nodes has eccentricity 1.We checked the data in the graph and found that this was actually the case for the nodes reportedhere.4.2 Topological Fault-toleranceWhen looking at the failure behaviour of a network, there are two contributing factors. First,network outages may disconnect pairs of nodes. Second, protocol failures may cause pairs of nodes5
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Number of edges deleted (graph had approx. 430K edges)a) Nodes that can communicate b) Change in hop exponentFigure 3: E�ect of edge deletions (connection failures) on the router graphto appear disconnected even though a physical path exists between them. In this section, weexplore the �rst form of failure. Network outages take the form of either connections being lost(for example, as a result of a back-hoe breaking a network cable) or a computer failing.4.2.1 Link FailuresWe want to examine the robustness of the Internet with respect to link failures. Thus, we conductthe following experiment. We select x edges at random and delete them. Then, we compute theneighbourhood function and measure the e�ective diameter, the number of reachable pairs, andthe hop exponent.The Internet is robust to link failures. The number of reachable pairs, and the hopexponent shown as a function of the number of edge deletions in Figure 3. Each point is theaverage of over 3 randomly chosen sets of edges. We have not shown the average diameter as itonly varies from 10 to approximately 12 over the full set of edge deletions. This shows that whilewe delete edges, pairs of nodes either become disconnected or they have an alternative path thatis not signi�cantly longer. We see that the Internet is quite resilient under connection failures,with only a small decrease in the number of reachable pairs and the hop exponent for fewer than50,000 failures. Moreover, deleting edges does not appear to change the hop exponent until closerto 200,000 deletions, suggesting that while we partition the Internet, the structure is preserved.4.2.2 Node FailuresRouter failures represent a more catastrophic event, since a router a�ects all its adjacent edges.Therefore, we expect that this will cause problems at least in the vicinity of the node. To model arouter failure, we select a node (in one of three di�erent ways) and delete all its adjacent edges.We introduce failures in three di�erent ways. First, we randomly select routers (uniform distri-bution). This corresponds to an unbiased router-speci�c failure. Second, we take the opposite ofthe previous approach. We remove the nodes in order of highest degree. This is the most aggressiveapproach that we can take to decompose the Internet. The �nal method that we use removes nodesin order of highest individual hop exponent. We theorized in section 4.1 that the nodes with low6
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Decreasing node degreesa) Nodes that can communicate b) Change in hop exponentFigure 4: E�ect of node deletions (router failures) on the router graphe�ective diameter and high hop exponent may be important nodes, possibly in the backbone. Theseresults are shown in Figure 4.The Internet is robust to random node failures. Here we see that fewer than about10,000 router failures does not signi�cantly a�ect the Internet. That is, the number of reachablepairs is not drastically reduced. Moreover, the hop exponent is not decreasing very quickly with thenumber of deleted nodes. This suggests that it might be possible to use sampled Internet graphsto conduct reliable simulation experiments.The Internet is sensitive to focused failures. The other two approaches for router selectionhave much more devastating results. By selecting routers according to their degree, we can quicklydisconnects the Internet. Only 10,000 nodes are needed to e�ectively disconnect most node pairs.Even 100 of these nodes is su�cient to remove the connectivity in more than 5 billion pairs.The e�ective eccentricity as a node classi�er. The above observation con�rms that thee�ective eccentricity is a useful graph metric. Nodes with high eccentricity are \important" forthe network; their failures create problems to the connectivity of the network. At the same time,we see that eccentricity has a di�erent e�ect than the degree regarding the connectivity. Thisobservation suggests that eccentricity quanti�es another aspect of the \importance" of the nodeand it is distinct from the node degree.5 ConclusionsIn this paper we proposed a set of new and existing metrics that can capture interesting topologicalproperties of the Internet. While these metrics are expensive to compute exactly, we have shownthat a new data mining tool can be very e�ective in approximating these metrics. This has allowedus to obtain new insights into the properties of routers and their \importance" for the network.Further use of these ideas allowed us to examine the intrinsic resilience of the Internet.Our work highlights the untapped potential that exists for the use of data-mining tools in net-work data; the size of the network makes classic techniques prohibitively expensive in computationtime. In more detail our results can be summarized in the following points:� We propose a new set of new and existing metrics capturing interesting topological properties.7



� We show that a new data mining tool can be very e�ective in calculating the otherwisecomputationally expensive metrics.� E�ective eccentricity is a good node metric, for of the \topological signi�cance" of a nodeand it actually captures a di�erent aspect than that of the node degree.� The Internet topology is resilient to random link and node failures.� The Internet is sensitive to focussed node failures; it is sensitive to failures of nodes of high\signi�cance" expressed either by its degree or e�ective eccentricity.Our metrics and tool make a promising step towards understanding and characterizing theInternet topology and possible other real communication graphs such as web-graphs. We are in theprocess of developing more methods to decipher the structure of the Internet topology. Our initialresults are a promising step.References[1] R. Albert, H. Jeong, and A. Barabasi. Attack and error tolerance of complex networks. Nature, 406,July 2000.[2] J. Chuang and M. Sirbu. Pricing multicast communications: A cost based approach. In Proc. of theINET'98, 1998.[3] CORA search engine. http://www.cora.whizbang.com.[4] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology. InSIGCOMM, 1999.[5] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. Journal ofComputer and System Sciences, 31:182{209, 1985.[6] R. Govindan and A. Reddy. An analysis of internet inter-domain topology and route stability. Proc.IEEE INFOCOM, Kobe, Japan, April 7-11 1997.[7] R. Govindan and H. Tangmunarunkit. Heuristics for internet map discovery. Proc. IEEE INFOCOM,Tel Aviv, Israel, March 2000.[8] http://cm.bell-labs.com/who/ches/map/index.html.[9] C. R. Palmer and J. G. Ste�an. Generating network toplogies that obey power laws. In IEEE Globecom2000, 2000.[10] Christopher R. Palmer, Phillip B. Gibbons, and Christos Faloutsos. A fast approximation of the\neighbourhood" function for massive graphs. Under review.[11] J.-J. Pansiot and DGrad. On routes and multicast trees in the Internet. ACM Computer CommunicationReview, 28(1):41{50, January 1998.[12] V. Paxson and S. Floyd. Why we don't know how to simulate the internet. Proceedings of the 1997Winter Simulation Conference, December 1997.[13] G. Philips, S. Shenker, and H. Tangmunarunkit. Scaling of multicast trees: Comments on the chuang-sirbu scaling law. ACM SIGCOMM, Sep 1999.[14] http://www.isi.edu/scan/mercator/maps.html.[15] http://www.isi.edu/scan/Pubs/scan_proposal.ps.gz.[16] S.L. Tauro and M. Faloutsos. Fault-tolerance and robustness of the internet topology. PRDC 2000,(abstract), Los Angeles, 2000.[17] T. Wong and R. Katz. An analysis of multicast forwarding state scalability. International Conferenceon Network Protocols, 2000. 8



Table 1: Example graphs and their salient parametersRunning Time (min)Graph # Nodes # Edges E�. Diameter Directed? Approximation Exact Speed-upCora 127,083 330,198 28 Yes 1.5 6 4x80-20 166,946 449,832 8 No 1.5 680 453xRouter 284,805 430,342 10 No 2.75 1,200 436x
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Hop exponent fitting linea) Cora (citation graph) b) 80-20 (random network generator) c) Internet (router level)Figure 5: Actual neighbourhood function and our excellent approximations. Also shown are theleast-squares line used for generating the hop exponent.A The e�ciency of our approximation algorithmWe highlight the accuracy and speed of the approximation algorithm. Note that a thorough analysisis beyond the scope of this paper. For such an analysis see [10]. We show three examples toanecdotally illustrate the quality of approximation that we are expecting. We take three data setsthat have di�erent sizes and properties (see Table 1). First, the Cora data set is a directed graphextracted from a large collection of computer science papers (each node is a paper and each directededge is a citation) [3]. Second, the 80-20 generator creates Internet-like topologies [9]. Finally, theRouter data set was explained earlier. For each data set, we compute the exact neighbourhoodfunction using repeated breadth-�rst searches (which is state of the art), compute our approximationand compute the least squares �tting line based on our approximation. These are plotted in log� logscale in Figure 5. We see that all approximations are excellent and that the line provides an excellentcharacterization of the growth of the neighbourhood function. This approach appears reasonablefor both directed and undirected graphs and for very di�erent diameters. Finally, we see that ANFruns more than 400 times faster than the full computation for our Internet type graphs.
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