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Abstract

Data is often stored in summarized form, as
a histogram of aggregates (COUNTs, SUMs,
or AVeraGes) over specified ranges. We study
how to estimate the original detail data from
the stored summary.

We formulate this task as an inverse problem,
specifying a well-defined cost function that
has to be optimized under constraints. We
show that our formulation includes the unifor-
mity and independence assumptions as a spe-
cial case, and that it can achieve better recon-
struction results if we maximize the smooth-
ness as opposed to the uniformity. In our
experiments on real and synthetic datasets,
the proposed method almost consistently out-
performs its competitor, improving the root-
mean-square error by up to 20 per cent for
stock price data, and up to 90 per cent for
smoother data sets.

Finally, we show how to apply this theory to
a variety of database problems that involve
partial information, such as OLAP, data ware-
housing and histograms in query optimization.
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1 Introduction

Consider the problem of an unknown set of numbers
z; (1 =1,...N), for which we are given some partial
information. For example, #; could represent the total
sales for the i-th day, and we could be given only the
monthly total sales. Suppose that we also have some
additional, a-priori information, for example, that the
sales patterns are “smooth”, without abrupt jumps
(i.e., ; & x;41). The goal is to recover the unknown

values as best as we can!.

In a multi-dimensional setting, this problem be-
comes even more interesting. Suppose that the un-
known numbers are the counts ¢; ; of employees of a
company, for each age-bracket ¢ and for each salary-
bracket j; suppose that we are only given the age- and
salary-histograms, that is the counts ¢; . for the ¢-th
age-bracket and the counts ¢, ; for the j-th salary-
bracket. The goal is to estimate the unknown ¢; ;
counts.

This sort of problem arises in a host of different
situations. Data is summarized over discrete ranges
to create a database of manageable size for storage,
manipulation, and display. Often, there is a need to
respond to queries that can be answered accurately
only from the base data, but that must be answered
quickly from the summarized data. The task then is
to reconstruct as good an estimate of the original base
data as possible. Applications of such a generic recon-
struction method abound:

1The research work described in this paper was motivated
by exactly this problem in AT&T. There was interest in esti-
mating daily totals for some data, which historically had been
stored aggregated over months. The base data, while available,
was several orders of magnitude more voluminous and there-
fore impractically expensive and time-consuming to handle. If
reasonable guesses could quickly be made with respect to the
daily totals, these were much preferred. The error could be esti-
mated by computing over the full base data for selected sample
aggregates.
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e Query optimization: DBMSs typically maintain
histograms [14] reporting the number of tuples for
selected attribute-value ranges. Queries may se-
lect only specific values, or select ranges that only
partially overlap with the value ranges used in
the histogram. Cost estimation for such queries
will benefit from an accurate reconstruction of
attribute-value occurrences for the queried value(-
range). Similarly, range queries on multiple at-
tributes will benefit from an accurate synthesis
and extrapolation from the histograms of value
distributions for individual attributes.

Data warehousing [27]: The idea is that the cen-
tral site will have meta-data, and condensed in-
formation (e.g., summary data) from each partic-
ipating site, which has detailed information. Ac-
cessing the remote site might be slow and/or ex-
pensive; a cheap, accurate estimate of the missing
information is attractive.

Transaction recording systems: A large enterprise
(company, hospital ete.) has huge numbers of
detailed records (sales transaction records, pa-
tient records ete.), which cannot be stored on-line.
Thus, older records are either stored in tertiary
storage, or discarded altogether. Saving summary
data on-line, and providing a reconstruction al-
gorithm, is an attractive alternative. This sort
of technique is at the heart of the proposal in
[16]. Managing such data well is a necessary pre-
requisite for effective data mining and decision
support.

Statistical databases [18], particularly in conjunc-
tion with the DataCube operator [9, 12]: For ex-
ample, consider Census data with income levels,
given as summary tables (=histograms), with one
histogram for each of several attributes (age, years
in school, years in present job, geographic location
etc.). Again, the problem is to recover the de-
tail information, or at least enough of it, so that
we can answer combined queries on multiple at-
tributes.

Scientific databases:  For example, consider
LANDSAT images with vegetation data over
time. Clouds sometimes obscure the view and
hide relevant information. The problem is to re-
cover the missing data, exploiting a-priori knowl-
edge (e.g., that vegetation data vary smoothly
over space and time).

Data integration: Two different databases often
use different choices of attribute value ranges even
for shared attributes. Merging such data requires
that values be determined for the intersections of

the respective ranges. This information is not di-
rectly available in either database and has to be
reconstructed. For example, one state may store
census data regarding income distribution over
ranges 10000-20000, 20000-30000, 30000-40000,
and so on. Another state may use a different set
of ranges: 15000-25000, 25000-35000, and so on.
A company targeting a promotion at some income
section of the population may find it convenient to
have a single union relation over the two states.
Since data has been aggregated over incompati-
ble ranges in the two base relations, such a union
cannot easily be created.

In this paper, we show how to attack this recon-
struction problem formally. We formulate this as an
inverse problem (cf. [6]) so that we can draw upon
the vast array of literature on this topic in the field of
signal processing.

The paper is organized as follows. In Section 2 we
present related work on query optimization and sta-
tistical databases. The mathematical problem formu-
lation is given in Section 3. In Section 4 we present
a brief introduction to the theory of inverse problems
and some proposed solutions for database settings. In
particular, our central Theorem regarding information
recovery from aggregate data is established. In Sec-
tion 5 we apply the proposed methods on real and re-
alistic (synthetic) data, and report the improvements
of our method over naive reconstructions. In Section
6 we discuss practical considerations in implementing
our techniques in a database context. Qur conclusions
and future research directions are discussed in Section

7.

2 Survey

There 18 a large body of related work on query op-
timization, where the problem is to “guess” the at-
tribute value distribution, to make selectivity esti-
mates for specified queries. Early query optimizers
used the uniformity assumption [23], which provably
leads to pessimistic results [4]. Modern query optimiz-
ers typically use histograms [14]. The histogram of an
attribute gives the count of records that fall into each
pre-determined sub-range (“bucket”) of the attribute
range. DeWitt and Muralikrishna [20] examined com-
bined histograms for multiple attributes. loannidis
and Poosala [14] studied the trade-off between high
prediction accuracy and ease of maintenance. Their
recommendation was that histograms should maintain
perfect information about selected attribute values,
and assume the uniform distribution for the rest. A
recent, adaptive method, has been suggested by Chen
and Roussopoulos [3]. The idea is to approximate the
unknown value distribution with a polynomial, and
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to use query feedback to adjust the coefficients of the
polynomial.

Similar approaches have been used for spatial
databases: Theodoridis and Sellis [25] suggest a coarse
discretization of the address space; for each grid cell,
they use the average data density, and, making the uni-
formity assumption for each individual grid-cell, they
estimate the performance of an R-tree.

Related work appeared in statistical databases:
Malvestuto [18] examined the case of multiple sum-
mary tables, and developed algorithms to determine
whether a given query can be evaluated to a single
number, a range, or not at all. Ng and Ravishankar
[21] also consider multiple summary tables, and pro-
pose a matrix-algebra criterion to choose the best com-
bination of summary tables to answer a query.

Incomplete information has been studied exten-
sively. For example, see [13] or [8]. The use of class
structure, and other aggregation mechanisms, to store
partial information has been presented in [15], and to
respond to queries has been studied in [24]. All of these
efforts have focussed on the logical nature of partial or
missing information. In our paper, there is little qual-
itative reasoning and the logical analysis is trivial: the
emphasis is on effective numerical estimation.

Finally, there is much work on views with aggre-
gates. Forinstance, [5] and [10] consider how to answer
queries using aggregate views, and [11] shows how to
maintain such views incrementally. Work along these
lines hints at the importance of the problem we con-
sider in this paper, but i1s not directly relevant to our
concerns here.

3 Problem Formulation

The general problem is as follows: Consider a d-
dimensional address space, discretized, and consider
a function x on it: x[iy, 4, ..., 4].

The question 1s: given some partial information
about the values of x and general a prior: informa-
tion about the nature of distribution of x values, what
is our best estimate for its value at each point.

Formally, the problem is as follows:

Problem 1 (General under-specified) Estimate

gl =12, j=1,2.d (1)

X[il, iz, N
under the constraints
Cr(x)=0 k=1,...,n (2)

The problem is (typically) under-specified, with n
being much smaller than the number of variables. We
cannot obtain a unique solution unless we are willing
to inject some additional knowledge. This additional
knowledge comes in the form of a prior: information

regarding the nature of distribution of x values, and
an error metric for the estimated solution. The prob-
lem to be solved then is to minimize this error metric,
subject to the given constraints.

Nature of Constraints

The specific constraints can take many different forms,
the solutions for most of which are fairly similar.

The simplest constraint is a summation constraint,
where we require that the sum of specified x values
be equal to some number. Most “rolled-up” data has
this property, for instance, weekly sales totals are ob-
Many
histograms present counts, which are simple summa-

tained as a summation of daily sales totals.

tions, such as the number of times a value within the
specific range occurred. For example, the number of
employees whose age is between 40 and 44 (inclusive)
is the sum of the number of employees aged 40, 41, 42,
43 and 44 respectively.

The other commonly used constraint is an average.
Thus, we may have the average temperature recorded
for a week, obtained as the average of the average tem-
peratures for each day in the week. Given the total
number of x values being averaged over, converting a
summation constraint to an average constraint simply
involves a division by a constant.

Averages can sometimes be weighted. We may have
average income for a region defined as the average
of the average income for the constituent counties,
weighted by their respective populations.

When a dimension is projected out, typically a sum-
mation (and sometimes an average) is performed on
the dimension projected out. Thus, we could have a
histogram for the number of employees in each age
bracket and a separate histogram for the number of
employees in each salary bracket. Each item in either
marginal histogram represents a sum of the number of
employees with that age (salary) and with each possi-
ble salary level (age).

Since all of the constraints described above are fun-
damentally similar in nature, and most can be trans-
formed from one form to the other in a relatively
straightforward manner, we choose to focus on a single
well-defined problem for the bulk of this paper.

Also, for simplicity, we concentrate on the 1-d case.
Issues with higher dimensions are considered in section
?7?7. The matrix x becomes a vector #, and the problem
becomes:

Problem 2 (1-d under-specified) Estimate  the
vector

f=[x] i=1...,N (3)
subject to the constraints
Cr(Z)=0 k=1,...,n (4)
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As a point of reference, consider a (time) sequence
Z=[x;]i=1,...,N (e.g., count of occurrences of at-
tribute value ¢ or dollars spent on day ¢). Assume that
it 1s hidden from us; instead, we are given the partial
sums (e.g., attribute value histograms or weekly sums)
Sk, k=1,...,n, over contiguous and non-overlapping
“batches”. To further simplify the notation, in sev-
eral places we will assume that the sequence is divided
into “batches” of equal duration b (e.g., weeks, with b
=T1).2

The available information leads to the following
problem formulation:

Problem 3 (Partial sums) FEstimate Z, given

By,

Cro(F) = Se— Y.

i=Br_1+1

l‘iIO

where By is the largest value of ¢ included in the k'*
batch. If all batches are of equal size b, then By, = bx
k.

The question is: given the above information of
Sy (k= 1,--- n), what is our best estimate for the
(“daily”) values z; (i=1,..., N)?

4 Solution Technique

The aim is to minimize a suitable error metric between
the estimate and the original vector. While the specific
error metric used is not likely to be critical, for the sake
of specificity we focus on the root-mean-squared error.

The theory of inverse problems [22] is applicable to
the question at hand. Our specific case is typically
under-constrained and thus ill-posed. Since the origi-
nal vector is not known, we cannot use the root-mean-
squared error as the objective function. We can force
a unique solution by requiring minimization (or maxi-
mization) of some criterion (“functional”) F(&#), such
as the entropy of the vector #. Then, the problem is
well defined:

Problem 4 (1-d Regularized) FEstimate ¥ {o min-
imize (mazimize)

F ()
under the constraints

Cr(Z)=0 k=1 n

gy

?The up-coming “Linear Regularization” method applies
even to mom-comtiguous and/or overlapping and/or wariable
duration batches. However, contiguous, non-overlapping, and
equal duration batches appear most often in practice, and we
have chosen to restrict ourselves to this case for the bulk of the
paper, both to simplify the mathematical notation and to assist
the reader in developing an intuition about the problem.

Under appropriate convexity and continuity condi-
tions, the textbook method for solving both the min-
imization and the maximization version of such prob-
lems is the method of Lagrange multipliers [17]. The
details are in a technical report [7]. The main question
is how to choose the functional F(). The objective is to
minimize the expected value of the root-mean-squared
error, given what we know a-priori about the distribu-
tion of values in the vector.

In the following subsections we describe two pop-
ular criteria, namely, Maximum Entropy and Linear
Regularization.

4.1 Maximum Entropy (ME)

Maximum Entropy (e.g., [22, sec. 18.7]) will introduce
no additional constraints on the nature of the signal
to be estimated. Recall that the entropy of a discrete
probability distribution = [p1,...,pn] is given by

H(p) ==Y pilogp;

The principle of Maximum Entropy suggests that, for
an under-constrained problem, we could make it well-
defined by requiring maximization of the entropy. If
we know the grand total (sum) of the #;’s, we may
assume that the z;’s are non-negative and normalized,
so that they add to 1. Then, we have

Problem 5 (Partial sums with ME) Mazimize
F(#) = —inlogaji

subject to the constraints

By,

Co(®) = (Sk— >

i=Br_1+1

l‘Z)IO k=1

goee ey

We can show that the piece-wise constant curve,
with z, = z, for all p, ¢ in the same “batch”, is the
solution to problem b:

Lemma 4.1 For Problem 5, the Mazimum Entropy
solution ¥ is the piece-wise constant curve.

Proof: Omitted, for brevity (see [7]). QED

4.2 Linear Regularization

In many situations, it is expected that there will only
be a small difference between successive elements of
the vector. Most population distributions, for large
enough populations, would follow this principle. Thus,
for instance, the distribution of employees across age
may follow a “bell-shaped” curve with few very old
or very young employees, and a relatively continuous
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Symbol | Definition

N total number of entries in the vector ¥

n number of constraints

b batch size

Azx; = 2,41 — x;: forward difference operator

F(#) a functional of the vector ¥

H(Z) entropy function of the given vector (=— 3 #; log x;)
Cr (%) the k-th constraint on the vector ¥

Z the set of signed integers (..., -1, 0, 1, ...)

wo the highest frequency of a signal (in rads per second)

Table 1: Symbols and definitions

plateau in the middle. We would be surprised if some
large company had many 34 year old and 36 year old
employees, but very few 35 year old employees, for
example.

In such situations, one can require that the solution
Z = [2;] be smooth by minimizing the functional

Fo)= S (e — way0)? (6)

=1

Intuitively, the above functional expresses our belief
that the unknown solution ¥ is rather smooth; thus,
the functional penalizes large squared values for the
forward differences Az; = x;41 — #;. Therefore, the
problem becomes: Minimize Eq. 6, subject to the
conditions of Eq. 5. The functional of Eq. 6 re-
sults in an instance of so-called Linear Regularization
(or ‘Phillips-Twomey method’, or ‘constrained lin-
ear inversion method or ‘Tikhonov-Miller regulariza-
tion’ [22]). In Appendix ?? we show that this mini-
mization problem leads to a matrix algebra problem,
using Lagrange multipliers.

4.2.1 Full recovery for smooth signals

A major result in this paper is that we can achieve full
recovery of information from the summarized data, if
the original data is “sufficiently smooth”.

More specifically, we have the following theorem
(stated informally at first):

Consider a “slowly varying” discrete-time sig-
nal that consists solely of sinusoidal compo-
nents of period greater than or equal to some
Ty. This signal can be reconstructed per-
fectly from sole knowledge of its contiguous
non-overlapping partial sums taken over Ty /2
samples at a time (or shorter). Thus, this
signal can be recovered fully from an appro-
priately coarse histogram.

Formally, we have the following theorem, where wyq
denotes the frequency that corresponds to the period

Ty, X (/%)) denotes the Discrete-Time Fourier Trans-
form (DTFT) of the signal ¥ and Z is the set of
(signed) integers:

Theorem 4.2 (Band-

limited reconstruction from contiguous non-
overlapping partial sums) Consider a discrete-
time signal {x(i)};c 2. Assume that its Discrete-Time
Fourier Transform (DTFT) X(e'%) converges, and
X(e/¥) = 0, T < |w| < m. This signal can be recov-
ered from its contiguous non-overlapping partial sums

{Sktpezr S = Zfib(k—1)+1 2(i), Vk € Z

Proof: Omitted for brevity (see [7]). QED

Our Theorem guarantees full recovery when its con-
ditions are met, and its proof is constructive, i.e., it
specifies a filter that achieves full recovery. However,
this means of recovery might impractical, or the con-
ditions of the Theorem might not be exactly satisfied.
In this case, one may mathematically argue (using the
discussion in Appendix ??) that Linear Regulariza-
tion is the next best approach. The details are beyond
the scope of this paper; this argument is validated in
the sequel via several experiments.

In a nutshell, out of the many filters that one can
use to recover the original signal, Linear Regulariza-
tion is the method of choice for our specific problem:
for all practical purposes, it provides essentially op-
timal recovery! In addition, it has a number of im-
portant advantages: (a) it works even for overlap-
ping/variable size batches and/or missing summaries,
and (b) it has low computational complexity, namely,
linear on the number of unknowns N, as discussed in
subsection 6.1. Notice that interpolation methods (like
polynomial and spline interpolation) are not applicable
in our case: They expect a “decimated” signal (e.g.,
Ty, T2y ...) as their input, as opposed to the partial
sums that we currently have. Notice that Linear Reg-
ularization i1s very general, and it can work even in
the case of “decimated” signals, without even needing
any user-determined constants (like the degree of the
interpolating polynomial). See Section 7?7 for a more
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detailed discussion of additional applications of Linear
Regularization.

Thus, for smooth curves, Linear Regularization in-
deed creates an essentially error-free reconstruction.
Fig. 1 (a)-(b) shows Linear Regularization and Max-
imum Entropy, respectively, applied to an approxi-
mately Gaussian distribution (more details on this and
other datasets are provided in the experiments section;
and figures are all grouped together at the end of this
paper). The batch size is b = 8. This is a very smooth
dataset. Linear Regularization provides a visibly bet-
ter reconstruction than Maximum Entropy.

5 Experiments

We ran several experiments to evaluate our approach.
We used both the Maximum Entropy method and the
Linear Regularization method. The measure of success
was the normalized root-mean-square error (RMS),
which is a typical measure for forecasting in time series
[26]. Specifically, we define:

N 1/2
RMS = (1/1\7 > (i — l‘acwal,z’)z) (7)
=1

where z; is the reconstructed value and %qcsuar,i is the
actual value at time i.

We ran our experiments on a number of real and
synthetic datasets. These are discussed below. Note
that two of the datasets are known NOT to be smooth.
In an intuitive sense, these are the datasets for which
we expect to perform the poorest. What is amazing, as
we shall see shortly, is that Linear Regularization still
does better than the uniformity (Maximum Entropy)
assumption, even for rough datasets.

The four datasets we considered are:

e ‘GAUSS’ dataset (synthetic): this dataset has
been estimated by drawing samples from a Gaus-
sian distribution and counting the number of sam-
ples falling within a given histogram bin. We
used N=120 bins. Attribute values, e.g., patient
height, patient weight etc., are often distributed
as a Gaussian, or some close variant thereof. To
the extent that histograms are the typical means
of storing attribute value data, this case is typical
of the sort of situation in which one can expect the
work in this paper to be of value. To make our ex-
periment more realistic, rather than use a perfect
Gaussian, we created an “approximate” Gaussian,
of the sort one would expect from 20,000 items
distributed according to a Gaussian distribution.
Thus, the number of values in each bin is a little
off from the 1deal theoretical value. Furthermore,
we normalized the data set to lie between 0 and 1

by dividing throughout with the peak value. This
is the example used in the previous section; see
Figure 1 (Figures are grouped together at the end
of this paper).

e ‘SINE’ dataset (synthetic): a sinusoid, with
N=120 samples: z; = sin(27i/60) i =
0,...,119. This is a very smooth dataset.

e ‘IBM’ dataset (real): IBM closing prices, from
http://www.ai.mit.edu/ stocks.html. The
dataset starts from Aug. 30, 1993, and excludes
non-working days. We used the first 120 values
(‘IBM120’ or plain ‘IBM’) and the first 240 val-
ues (‘IBM240°). See Figure ?7.

e ‘LYNX’ dataset (real): Canadian lynx trappings
data per year, 1821-1934, for a total of N=114
samples. This is a well known dataset in popula-
tion biology - it can be found in any time-sequence
book (e.g., [2]), as well as on-line through the “S”
statistical package [1]. Notice that it has a pe-
riodicity of 9-10 years. However, it is not very
smooth: it has abrupt population explosions, with
significantly different peak values each time. See
Figure ?7.

The experiments were designed to answer the fol-
lowing questions:

1. How good is the reconstruction when we use Lin-
ear Regularization and Maximum Entropy, and
how does the “smoothness” constraint of Linear
Regularization perform against the uniformity as-
sumption (Maximum Entropy), for smooth and
“rugged” data?

2. How does the accuracy of reconstruction depend
on the length of the “batch”?

3. How does the accuracy of reconstruction depend
on the total number of samples N7

These questions are answered next.

5.1 Accuracy

We start by presenting some plots to develop a “feel”
for the reconstruction that each method can achieve
(recall that figures are grouped together at the end of
this paper). The full accuracy comparison results are
presented in Tables 2, 3.

Figures 1 (a)-(b) show the reconstruction of the
‘GAUSS’ dataset, with Linear Regularization and
Maximum Entropy, respectively, for batch size 5=8.
Figures ?7(a)-(b) show the same for the ‘SINE’
dataset for batch size 6=6. The main point to notice
is how well the reconstruction is performed by Lin-
ear Regularization. In fact, for the ‘GAUSS’ dataset,
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gauss120
12 g ‘ ‘
"gauss120.b8.LinReg" —~—
"gauss120.b8.act" -+
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(a) Linear Regularization

gauss120

12 ‘
“gauss120.b8.unif" —-—
"gauss120.b8.act" -+

0 20 40 60 80 100 120

(b) Maximum Entropy

Figure 1: Reconstruction of a Gaussian distribution: with Linear Regularization, we obtain almost error-free
reconstruction. Detailed base data: dashed line with “4”. Reconstruction: solid line with “diamonds”. Batch

size b=8.

Linear Regularization plots an almost perfect Gaus-
sian, removing the perturbations in the input dataset.
Similarly, for the ‘SINE’ dataset, Linear Regulariza-
tion gives an essentially error-free reconstruction.

Figures 7?7 and 7?7 show the reconstructions of
the ‘ITBM’ and the ‘LYNX’ datasets, for batch size
b=3. Notice that even for these “rugged” datasets,
the Linear Regularization method performs well, even
visually.

We proceed to a more systematic study of the RMS
error of the two competitors. We try several values of
the batch size b, and we let each method recover the
original dataset. More details are in the next subsec-
tion. To illustrate the relative gains, Table 2 shows
the RMS error for the competing methods, for the
smooth/synthetic datasets; Table 3 shows the RMS
error for the real datasets. In signal processing, it is
customary to measure the quality of reconstruction us-
ing the “signal-to-noise ratio” that is, the ratio of sig-
nal strength (e.g., sample deviation) over RMS error.
Therefore, in both Tables, we also report the sample
deviation of the respective baseline data.

Linear Regularization consistently outperforms the
“uniform” method, as long as the batch size b is con-
sistent with our Theorem 4.2. It is a pleasant surprise
that the Linear Regularization does better even for
the IBM’ dataset, which is not smooth at all. In
fact, being a stock price movement, it is expected to
be a “random walk”, which 1s known to be a “fractal”,
with fractal dimension 1.5 [19]. That is, it is nowhere
close to being smooth.

The relative gains increase with the smoothness of
the target sequence, as intuitively expected: the two
synthetic, smooth datasets enjoy the best savings (up
to 89%), followed by the ‘LYNX’ dataset (up to 35%

savings - notice that the dataset is somehow periodic),

followed by the TBM’ dataset, the most ‘rugged’ of
all (savings: up to 21%).

5.2 Dependency on batch size

Figures ?7?(a)-(b) and ??(a)-(b) plot the RMS error as
a function of the batch size b, for the synthetic and
real datasets, respectively. Notice that Linear Reg-
ularization does consistently better than the unifor-
mity/ME assumption, as long as the batch size b is
consistent with our Theorem. The cross-over point for
the ‘LYNX’ dataset 1s at b = 5, as expected, since
the half-period of the major oscillation is 9.5/2=4.25.
Notice that for the IBM’, ‘GAUSS’, and ‘SINE’
datasets, Linear Regularization is the consistent win-
ner for a wide range of the b values, because these
signals have most of their energy concentrated in low
frequencies.

5.3 Dependency on signal length

For both methods, the signal length has small impact
on the RMS error (see Table 3). For example, between
the ‘IBM’ with 120 samples and with 240 samples,
the difference in RMS is within 0.04 out of ~0.60, for
a range of batch sizes.

6 Practical Considerations

Thus far in this paper we have developed the theory for
estimating data values based on aggregated histogram
information, and shown how the estimates obtained
thus could be superior to those obtained naively. In
this section, we discuss practical 1ssues. In the first
subsection, we address issues regarding the computa-
tional effort required to obtain these better estimates.
In the second subsection, we present a “practitioner’s
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method Lin. Reg. Max. Entropy (ME)
dataset RMS | (rel. savings over ME) RMS
sinusoid120 b= 2 || 0.0040463 0.890662 0.037007
sinusoid120 b= 4 || 0.0128623 0.844224 0.082569
sinusoid120 b= 6 || 0.0246694 0.803691 0.125666
gauss120 b= 2 0.0077611 0.387977 0.0126811
gauss120 b= 4 0.0095857 0.599781 0.0239512
gauss120 b= 6 0.0097175 0.717147 0.0343553
gauss120 b= 8 0.0101855 0.774698 0.0452083

Table 2: RMS errors for each method, and relative savings with respect to the ‘uniform=ME’. Batch size b, as
specified. The sample deviation of the baseline data is 0.7071 and 0.3485, for the sinusoid and Gaussian data,
respectively.

method Lin. Reg. Max. Entropy (ME)
dataset RMS | (rel. savings over ME) RMS
lynx b= 2 387.76 0.35336 599.65
lynx b= 3 676.92 0.26940 926.53
lynx b= 4 927.18 0.19257 1148.31
lynx b=5 1229.90 0.00750 1239.19
lynx b= 6 1442.58 -0.08837 1325.45
ibm120 b= 2 0.464013 0.084987 0.507111
ibm120 b=4 || 0.664337 0.138739 0.771354
ibm120 b= 6 0.908743 0.141983 1.05912
ibm120 b= 8 0.891448 0.172178 1.07686
ibm120 b= 10 1.09351 0.217065 1.39668
ibm240 b= 2 0.446499 0.0593327 0.474662
ibm240 b= 3 0.625589 0.167986 0.751897
1ibm240 b= 4 0.698712 0.0314862 0.721427
ibm240 b= 5 0.799962 0.192658 0.990859
1ibm240 b= 6 0.928196 0.179626 1.13143

Table 3: RMS errors for each method, and relative savings with respect to the ‘uniform=ME’. Batch size b,
as specified. The sample deviation of the baseline data is 1578, 5.4999, and 7.6967, for the lynx, ibm120, and
1bm240 data, respectively.
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guide” indicating how the theory can be applied in a
database context.

6.1 Computational Effort

As mentioned, reconstruction from partial sums with
Linear Regularization leads to a matrix inversion prob-
lem. The matrix is square, with side M = N +n. In
general, matrix inversion has complexity O(M?3). This
may be prohibitive, particularly since N may often be
large.

However, in our case, the matrix is of a special
form: it is almost tri-diagonal, and specifically, it is
singly-bordered tri-diagonal, and the border itself is
block-diagonal. In this case, matrix inversion has com-
plexity O(M) [22, p. 72], that is linear on the ma-
trix side. Since the length of the unknown distribu-
tion, N, is significantly greater than the number of
batches/constraints n, for all practical purposes we can
think of the inversion effort as O(N). But, any recon-
struction method would require at least O(N) effort,
even to list all the reconstructed values. Therefore,
we can argue that the computational effort involved
in obtaining the better estimates expected from our
techniques is asymptotically optimal in order of mag-
nitude.

6.2 Practitioner’s Guide

Using knowledge of the application domain, the first
thing a practitioner has to do 1s to determine if
the data set to be reconstructed is expected to be
“smooth”, in the sense that most of the variation of
interest is captured in the histogram that is made
available. This will typically be the case, for mean-
ingful histograms. Specifically, we check the condi-
tion of Theorem 4.2: For example, suppose that the
most prominent periodicity of the signal has period
Ty (like the 4-year periodicity of the U.S. economy,
due to the presidential elections). If the provided his-
togram has batch-size b smaller than the half-period
Ty /2, then Linear Regularization will achieve excellent
reconstruction.

To apply the Linear Regularization technique, one
can use the known constraints (the histogram sample
“sums”) and the desired objective function (minimize
the sum of squares of successive differences) to con-
struct a single matrix equation, using the technique
of Lagrange multipliers. How to do this is shown in
Appendix ?77.

The resulting matrix equation 77 can now be solved
using any standard linear algebra package. In partic-
ular, we recommend the technique that makes use of
the tri-diagonal nature of the matrix [22, p. 72], as
discussed earlier.

7 Conclusions

The main contribution of this work is a formal ap-
proach to the recovery of information from summary
data, and, more generally, arbitrary, partial data in the
form of constraints. The i1dea is to use the machinery
of the well-developed “inverse problem theory”, to in-
ject a-priori knowledge about the domain, eventually
transforming the problem into a constrained optimiza-
tion problem.

Additional contributions are

e Theorem 4.2, which shows that for “smooth”
enough distributions, it is possible to have full
recovery of information, given partial sums.

e Lemmas 4.1, 77, showing that the theory of in-
verse problems includes the traditional uniformity
and independence assumptions as special cases,
when the Entropy is used as the cost function.

o A conceptual basis for selecting Linear Regular-
ization as the technique of choice to obtain a
smooth reconstruction. Further, the use of an ex-
isting numerical analysis technique that gives the
solution for Linear Regularization in linear time

O(N).
e Experiments showing that, under the con-
ditions of Theorem 4.2, Linear Regulariza-
tion consistently outperforms the Maximum

Entropy/uniformity assumption, not only for
smooth data, but for “fractal”, real data as well
(IBM stock price movements, and the lynx trap-
pings dataset).

Future work could examine further ties with the well
developed field of inverse problems and image restora-
tion. The interaction between two types of summaries,
marginal summations and batching summations, is im-
portant for multi-dimensional reconstruction (OLAP),
histogram maintenance in query optimization, com-
pression of real distributions, and numerous other
database applications.
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