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1 IntroductionConsider the problem of an unknown set of numbersxi (i = 1; : : :N ), for which we are given some partialinformation. For example, xi could represent the totalsales for the i-th day, and we could be given only themonthly total sales. Suppose that we also have someadditional, a-priori information, for example, that thesales patterns are \smooth", without abrupt jumps(i.e., xi � xi+1). The goal is to recover the unknownvalues as best as we can1.In a multi-dimensional setting, this problem be-comes even more interesting. Suppose that the un-known numbers are the counts ci;j of employees of acompany, for each age-bracket i and for each salary-bracket j; suppose that we are only given the age- andsalary-histograms, that is the counts ci;� for the i-thage-bracket and the counts c�;j for the j-th salary-bracket. The goal is to estimate the unknown ci;jcounts.This sort of problem arises in a host of di�erentsituations. Data is summarized over discrete rangesto create a database of manageable size for storage,manipulation, and display. Often, there is a need torespond to queries that can be answered accuratelyonly from the base data, but that must be answeredquickly from the summarized data. The task then isto reconstruct as good an estimate of the original basedata as possible. Applications of such a generic recon-struction method abound:1The research work described in this paper was motivatedby exactly this problem in AT&T. There was interest in esti-mating daily totals for some data, which historically had beenstored aggregated over months. The base data, while available,was several orders of magnitude more voluminous and there-fore impractically expensive and time-consuming to handle. Ifreasonable guesses could quickly be made with respect to thedaily totals, these were much preferred. The error could be esti-mated by computing over the full base data for selected sampleaggregates. Page 1



� Query optimization: DBMSs typically maintainhistograms [14] reporting the number of tuples forselected attribute-value ranges. Queries may se-lect only speci�c values, or select ranges that onlypartially overlap with the value ranges used inthe histogram. Cost estimation for such querieswill bene�t from an accurate reconstruction ofattribute-value occurrences for the queried value(-range). Similarly, range queries on multiple at-tributes will bene�t from an accurate synthesisand extrapolation from the histograms of valuedistributions for individual attributes.� Data warehousing [27]: The idea is that the cen-tral site will have meta-data, and condensed in-formation (e.g., summary data) from each partic-ipating site, which has detailed information. Ac-cessing the remote site might be slow and/or ex-pensive; a cheap, accurate estimate of the missinginformation is attractive.� Transaction recording systems: A large enterprise(company, hospital etc.) has huge numbers ofdetailed records (sales transaction records, pa-tient records etc.), which cannot be stored on-line.Thus, older records are either stored in tertiarystorage, or discarded altogether. Saving summarydata on-line, and providing a reconstruction al-gorithm, is an attractive alternative. This sortof technique is at the heart of the proposal in[16]. Managing such data well is a necessary pre-requisite for e�ective data mining and decisionsupport.� Statistical databases [18], particularly in conjunc-tion with the DataCube operator [9, 12]: For ex-ample, consider Census data with income levels,given as summary tables (=histograms), with onehistogram for each of several attributes (age, yearsin school, years in present job, geographic locationetc.). Again, the problem is to recover the de-tail information, or at least enough of it, so thatwe can answer combined queries on multiple at-tributes.� Scienti�c databases: For example, considerLANDSAT images with vegetation data overtime. Clouds sometimes obscure the view andhide relevant information. The problem is to re-cover the missing data, exploiting a-priori knowl-edge (e.g., that vegetation data vary smoothlyover space and time).� Data integration: Two di�erent databases oftenuse di�erent choices of attribute value ranges evenfor shared attributes. Merging such data requiresthat values be determined for the intersections of

the respective ranges. This information is not di-rectly available in either database and has to bereconstructed. For example, one state may storecensus data regarding income distribution overranges 10000-20000, 20000-30000, 30000-40000,and so on. Another state may use a di�erent setof ranges: 15000-25000, 25000-35000, and so on.A company targeting a promotion at some incomesection of the population may �nd it convenient tohave a single union relation over the two states.Since data has been aggregated over incompati-ble ranges in the two base relations, such a unioncannot easily be created.In this paper, we show how to attack this recon-struction problem formally. We formulate this as aninverse problem (cf. [6]) so that we can draw uponthe vast array of literature on this topic in the �eld ofsignal processing.The paper is organized as follows. In Section 2 wepresent related work on query optimization and sta-tistical databases. The mathematical problem formu-lation is given in Section 3. In Section 4 we presenta brief introduction to the theory of inverse problemsand some proposed solutions for database settings. Inparticular, our central Theorem regarding informationrecovery from aggregate data is established. In Sec-tion 5 we apply the proposed methods on real and re-alistic (synthetic) data, and report the improvementsof our method over naive reconstructions. In Section6 we discuss practical considerations in implementingour techniques in a database context. Our conclusionsand future research directions are discussed in Section7.2 SurveyThere is a large body of related work on query op-timization, where the problem is to \guess" the at-tribute value distribution, to make selectivity esti-mates for speci�ed queries. Early query optimizersused the uniformity assumption [23], which provablyleads to pessimistic results [4]. Modern query optimiz-ers typically use histograms [14]. The histogram of anattribute gives the count of records that fall into eachpre-determined sub-range (\bucket") of the attributerange. DeWitt and Muralikrishna [20] examined com-bined histograms for multiple attributes. Ioannidisand Poosala [14] studied the trade-o� between highprediction accuracy and ease of maintenance. Theirrecommendation was that histograms should maintainperfect information about selected attribute values,and assume the uniform distribution for the rest. Arecent, adaptive method, has been suggested by Chenand Roussopoulos [3]. The idea is to approximate theunknown value distribution with a polynomial, andPage 2



to use query feedback to adjust the coe�cients of thepolynomial.Similar approaches have been used for spatialdatabases: Theodoridis and Sellis [25] suggest a coarsediscretization of the address space; for each grid cell,they use the average data density, and, making the uni-formity assumption for each individual grid-cell, theyestimate the performance of an R-tree.Related work appeared in statistical databases:Malvestuto [18] examined the case of multiple sum-mary tables, and developed algorithms to determinewhether a given query can be evaluated to a singlenumber, a range, or not at all. Ng and Ravishankar[21] also consider multiple summary tables, and pro-pose a matrix-algebra criterion to choose the best com-bination of summary tables to answer a query.Incomplete information has been studied exten-sively. For example, see [13] or [8]. The use of classstructure, and other aggregation mechanisms, to storepartial information has been presented in [15], and torespond to queries has been studied in [24]. All of thesee�orts have focussed on the logical nature of partial ormissing information. In our paper, there is little qual-itative reasoning and the logical analysis is trivial: theemphasis is on e�ective numerical estimation.Finally, there is much work on views with aggre-gates. For instance, [5] and [10] consider how to answerqueries using aggregate views, and [11] shows how tomaintain such views incrementally. Work along theselines hints at the importance of the problem we con-sider in this paper, but is not directly relevant to ourconcerns here.3 Problem FormulationThe general problem is as follows: Consider a d-dimensional address space, discretized, and considera function x on it: x[i1; i2; : : : ; id].The question is: given some partial informationabout the values of x and general a priori informa-tion about the nature of distribution of x values, whatis our best estimate for its value at each point.Formally, the problem is as follows:Problem 1 (General under-speci�ed) Estimatex[i1; i2; : : : ; id] ij = 1; 2; ::: j = 1; 2; :::d (1)under the constraintsCk(x) = 0 k = 1; : : : ; n (2)The problem is (typically) under-speci�ed, with nbeing much smaller than the number of variables. Wecannot obtain a unique solution unless we are willingto inject some additional knowledge. This additionalknowledge comes in the form of a priori information

regarding the nature of distribution of x values, andan error metric for the estimated solution. The prob-lem to be solved then is to minimize this error metric,subject to the given constraints.Nature of ConstraintsThe speci�c constraints can take many di�erent forms,the solutions for most of which are fairly similar.The simplest constraint is a summation constraint,where we require that the sum of speci�ed x valuesbe equal to some number. Most \rolled-up" data hasthis property, for instance, weekly sales totals are ob-tained as a summation of daily sales totals. Manyhistograms present counts, which are simple summa-tions, such as the number of times a value within thespeci�c range occurred. For example, the number ofemployees whose age is between 40 and 44 (inclusive)is the sum of the number of employees aged 40, 41, 42,43 and 44 respectively.The other commonly used constraint is an average.Thus, we may have the average temperature recordedfor a week, obtained as the average of the average tem-peratures for each day in the week. Given the totalnumber of x values being averaged over, converting asummation constraint to an average constraint simplyinvolves a division by a constant.Averages can sometimes be weighted. We may haveaverage income for a region de�ned as the averageof the average income for the constituent counties,weighted by their respective populations.When a dimension is projected out, typically a sum-mation (and sometimes an average) is performed onthe dimension projected out. Thus, we could have ahistogram for the number of employees in each agebracket and a separate histogram for the number ofemployees in each salary bracket. Each item in eithermarginal histogram represents a sum of the number ofemployees with that age (salary) and with each possi-ble salary level (age).Since all of the constraints described above are fun-damentally similar in nature, and most can be trans-formed from one form to the other in a relativelystraightforward manner, we choose to focus on a singlewell-de�ned problem for the bulk of this paper.Also, for simplicity, we concentrate on the 1-d case.Issues with higher dimensions are considered in section??. The matrix x becomes a vector ~x, and the problembecomes:Problem 2 (1-d under-speci�ed) Estimate thevector ~x = [xi] i = 1; : : : ; N (3)subject to the constraintsCk(~x) = 0 k = 1; : : : ; n (4)Page 3



As a point of reference, consider a (time) sequence~x = [xi] i = 1; : : : ; N (e.g., count of occurrences of at-tribute value i or dollars spent on day i). Assume thatit is hidden from us; instead, we are given the partialsums (e.g., attribute value histograms or weekly sums)Sk, k = 1; : : : ; n, over contiguous and non-overlapping\batches". To further simplify the notation, in sev-eral places we will assume that the sequence is dividedinto \batches" of equal duration b (e.g., weeks, with b= 7).2The available information leads to the followingproblem formulation:Problem 3 (Partial sums) Estimate ~x, givenCk(~x) = Sk� BkXi=Bk�1+1xi = 0 k = 1; : : : ; n (5)where Bk is the largest value of i included in the kthbatch. If all batches are of equal size b, then Bk = b�k. The question is: given the above information ofSk (k = 1; � � � ; n), what is our best estimate for the(\daily") values xi (i = 1; : : : ; N )?4 Solution TechniqueThe aim is to minimize a suitable error metric betweenthe estimate and the original vector. While the speci�cerror metric used is not likely to be critical, for the sakeof speci�city we focus on the root-mean-squared error.The theory of inverse problems [22] is applicable tothe question at hand. Our speci�c case is typicallyunder-constrained and thus ill-posed. Since the origi-nal vector is not known, we cannot use the root-mean-squared error as the objective function. We can forcea unique solution by requiring minimization (or maxi-mization) of some criterion (\functional") F(~x), suchas the entropy of the vector ~x. Then, the problem iswell de�ned:Problem 4 (1-d Regularized) Estimate ~x to min-imize (maximize) F(~x)under the constraintsCk(~x) = 0 k = 1; : : : ; n2The up-coming \Linear Regularization" method applieseven to non-contiguous and/or overlapping and/or variableduration batches. However, contiguous, non-overlapping, andequal duration batches appear most often in practice, and wehave chosen to restrict ourselves to this case for the bulk of thepaper, both to simplify the mathematical notation and to assistthe reader in developing an intuition about the problem.

Under appropriate convexity and continuity condi-tions, the textbook method for solving both the min-imization and the maximization version of such prob-lems is the method of Lagrange multipliers [17]. Thedetails are in a technical report [7]. The main questionis how to choose the functionalF(). The objective is tominimize the expected value of the root-mean-squarederror, given what we know a-priori about the distribu-tion of values in the vector.In the following subsections we describe two pop-ular criteria, namely, Maximum Entropy and LinearRegularization.4.1 Maximum Entropy (ME)MaximumEntropy (e.g., [22, sec. 18.7]) will introduceno additional constraints on the nature of the signalto be estimated. Recall that the entropy of a discreteprobability distribution ~p = [p1; : : : ; pn] is given byH(~p) = �Xi pi logpiThe principle of Maximum Entropy suggests that, foran under-constrained problem, we could make it well-de�ned by requiring maximization of the entropy. Ifwe know the grand total (sum) of the xi's, we mayassume that the xi's are non-negative and normalized,so that they add to 1. Then, we haveProblem 5 (Partial sums with ME) MaximizeF(~x) = �Xi xi logxisubject to the constraintsCk(~x) � (Sk � BkXi=Bk�1+1xi) = 0 k = 1; : : : ; nWe can show that the piece-wise constant curve,with xp = xq for all p, q in the same \batch", is thesolution to problem 5:Lemma 4.1 For Problem 5, the Maximum Entropysolution ~x is the piece-wise constant curve.Proof: Omitted, for brevity (see [7]). QED4.2 Linear RegularizationIn many situations, it is expected that there will onlybe a small di�erence between successive elements ofthe vector. Most population distributions, for largeenough populations, would follow this principle. Thus,for instance, the distribution of employees across agemay follow a \bell-shaped" curve with few very oldor very young employees, and a relatively continuousPage 4



Symbol De�nitionN total number of entries in the vector ~xn number of constraintsb batch size�xi � xi+1 � xi: forward di�erence operatorF(~x) a functional of the vector ~xH(~x) entropy function of the given vector (=�P xi logxi)Ck(~x) the k-th constraint on the vector ~xZ the set of signed integers (..., -1, 0, 1, ...)!0 the highest frequency of a signal (in rads per second)Table 1: Symbols and de�nitionsplateau in the middle. We would be surprised if somelarge company had many 34 year old and 36 year oldemployees, but very few 35 year old employees, forexample.In such situations, one can require that the solution~x = [xi] be smooth by minimizing the functionalF(~x) = N�1Xi=1 (xi � xi+1)2 (6)Intuitively, the above functional expresses our beliefthat the unknown solution ~x is rather smooth; thus,the functional penalizes large squared values for theforward di�erences �xi = xi+1 � xi. Therefore, theproblem becomes: Minimize Eq. 6, subject to theconditions of Eq. 5. The functional of Eq. 6 re-sults in an instance of so-called Linear Regularization(or `Phillips-Twomey method', or `constrained lin-ear inversion method' or `Tikhonov-Miller regulariza-tion' [22]). In Appendix ?? we show that this mini-mization problem leads to a matrix algebra problem,using Lagrange multipliers.4.2.1 Full recovery for smooth signalsA major result in this paper is that we can achieve fullrecovery of information from the summarized data, ifthe original data is \su�ciently smooth".More speci�cally, we have the following theorem(stated informally at �rst):Consider a \slowly varying" discrete-time sig-nal that consists solely of sinusoidal compo-nents of period greater than or equal to someT0. This signal can be reconstructed per-fectly from sole knowledge of its contiguousnon-overlapping partial sums taken over T0=2samples at a time (or shorter). Thus, thissignal can be recovered fully from an appro-priately coarse histogram.Formally, we have the following theorem, where !0denotes the frequency that corresponds to the period

T0, X(ej!)) denotes the Discrete-Time Fourier Trans-form (DTFT) of the signal ~x and Z is the set of(signed) integers:Theorem 4.2 (Band-limited reconstruction from contiguous non-overlapping partial sums) Consider a discrete-time signal fx(i)gi2Z . Assume that its Discrete-TimeFourier Transform (DTFT) X(ej!) converges, andX(ej!) = 0; �b � j!j � �. This signal can be recov-ered from its contiguous non-overlapping partial sumsfSkgk2Z , Sk =Pkbi=b(k�1)+1 x(i); 8k 2 ZProof: Omitted for brevity (see [7]). QEDOur Theorem guarantees full recovery when its con-ditions are met, and its proof is constructive, i.e., itspeci�es a �lter that achieves full recovery. However,this means of recovery might impractical, or the con-ditions of the Theorem might not be exactly satis�ed.In this case, one may mathematically argue (using thediscussion in Appendix ??) that Linear Regulariza-tion is the next best approach. The details are beyondthe scope of this paper; this argument is validated inthe sequel via several experiments.In a nutshell, out of the many �lters that one canuse to recover the original signal, Linear Regulariza-tion is the method of choice for our speci�c problem:for all practical purposes, it provides essentially op-timal recovery! In addition, it has a number of im-portant advantages: (a) it works even for overlap-ping/variable size batches and/or missing summaries,and (b) it has low computational complexity, namely,linear on the number of unknowns N , as discussed insubsection 6.1. Notice that interpolationmethods (likepolynomial and spline interpolation) are not applicablein our case: They expect a \decimated" signal (e.g.,xb, x2b : : :) as their input, as opposed to the partialsums that we currently have. Notice that Linear Reg-ularization is very general, and it can work even inthe case of \decimated" signals, without even needingany user-determined constants (like the degree of theinterpolating polynomial). See Section ?? for a morePage 5



detailed discussion of additional applications of LinearRegularization.Thus, for smooth curves, Linear Regularization in-deed creates an essentially error-free reconstruction.Fig. 1 (a)-(b) shows Linear Regularization and Max-imum Entropy, respectively, applied to an approxi-mately Gaussian distribution (more details on this andother datasets are provided in the experiments section;and �gures are all grouped together at the end of thispaper). The batch size is b = 8. This is a very smoothdataset. Linear Regularization provides a visibly bet-ter reconstruction than Maximum Entropy.5 ExperimentsWe ran several experiments to evaluate our approach.We used both the Maximum Entropy method and theLinear Regularizationmethod. The measure of successwas the normalized root-mean-square error (RMS),which is a typical measure for forecasting in time series[26]. Speci�cally, we de�ne:RMS =  1=N NXi=1(xi � xactual;i)2!1=2 (7)where xi is the reconstructed value and xactual;i is theactual value at time i.We ran our experiments on a number of real andsynthetic datasets. These are discussed below. Notethat two of the datasets are known NOT to be smooth.In an intuitive sense, these are the datasets for whichwe expect to perform the poorest. What is amazing, aswe shall see shortly, is that Linear Regularization stilldoes better than the uniformity (Maximum Entropy)assumption, even for rough datasets.The four datasets we considered are:� `GAUSS' dataset (synthetic): this dataset hasbeen estimated by drawing samples from a Gaus-sian distribution and counting the number of sam-ples falling within a given histogram bin. Weused N=120 bins. Attribute values, e.g., patientheight, patient weight etc., are often distributedas a Gaussian, or some close variant thereof. Tothe extent that histograms are the typical meansof storing attribute value data, this case is typicalof the sort of situation in which one can expect thework in this paper to be of value. To make our ex-periment more realistic, rather than use a perfectGaussian, we created an \approximate"Gaussian,of the sort one would expect from 20,000 itemsdistributed according to a Gaussian distribution.Thus, the number of values in each bin is a littleo� from the ideal theoretical value. Furthermore,we normalized the data set to lie between 0 and 1

by dividing throughout with the peak value. Thisis the example used in the previous section; seeFigure 1 (Figures are grouped together at the endof this paper).� `SINE' dataset (synthetic): a sinusoid, withN=120 samples: xi = sin(2�i=60) i =0; : : : ; 119. This is a very smooth dataset.� `IBM' dataset (real): IBM closing prices, fromhttp://www.ai.mit.edu/ stocks.html. Thedataset starts from Aug. 30, 1993, and excludesnon-working days. We used the �rst 120 values(`IBM120' or plain `IBM') and the �rst 240 val-ues (`IBM240'). See Figure ??.� `LYNX' dataset (real): Canadian lynx trappingsdata per year, 1821-1934, for a total of N=114samples. This is a well known dataset in popula-tion biology - it can be found in any time-sequencebook (e.g., [2]), as well as on-line through the \S"statistical package [1]. Notice that it has a pe-riodicity of 9-10 years. However, it is not verysmooth: it has abrupt population explosions, withsigni�cantly di�erent peak values each time. SeeFigure ??.The experiments were designed to answer the fol-lowing questions:1. How good is the reconstruction when we use Lin-ear Regularization and Maximum Entropy, andhow does the \smoothness" constraint of LinearRegularization perform against the uniformity as-sumption (Maximum Entropy), for smooth and\rugged" data?2. How does the accuracy of reconstruction dependon the length of the \batch"?3. How does the accuracy of reconstruction dependon the total number of samples N?These questions are answered next.5.1 AccuracyWe start by presenting some plots to develop a \feel"for the reconstruction that each method can achieve(recall that �gures are grouped together at the end ofthis paper). The full accuracy comparison results arepresented in Tables 2, 3.Figures 1 (a)-(b) show the reconstruction of the`GAUSS' dataset, with Linear Regularization andMaximum Entropy, respectively, for batch size b=8.Figures ??(a)-(b) show the same for the `SINE'dataset for batch size b=6. The main point to noticeis how well the reconstruction is performed by Lin-ear Regularization. In fact, for the `GAUSS' dataset,Page 6
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(a) Linear Regularization (b) Maximum EntropyFigure 1: Reconstruction of a Gaussian distribution: with Linear Regularization, we obtain almost error-freereconstruction. Detailed base data: dashed line with \+". Reconstruction: solid line with \diamonds". Batchsize b=8.Linear Regularization plots an almost perfect Gaus-sian, removing the perturbations in the input dataset.Similarly, for the `SINE' dataset, Linear Regulariza-tion gives an essentially error-free reconstruction.Figures ?? and ?? show the reconstructions ofthe `IBM' and the `LYNX' datasets, for batch sizeb=3. Notice that even for these \rugged" datasets,the Linear Regularization method performs well, evenvisually.We proceed to a more systematic study of the RMSerror of the two competitors. We try several values ofthe batch size b, and we let each method recover theoriginal dataset. More details are in the next subsec-tion. To illustrate the relative gains, Table 2 showsthe RMS error for the competing methods, for thesmooth/synthetic datasets; Table 3 shows the RMSerror for the real datasets. In signal processing, it iscustomary to measure the quality of reconstruction us-ing the \signal-to-noise ratio", that is, the ratio of sig-nal strength (e.g., sample deviation) over RMS error.Therefore, in both Tables, we also report the sampledeviation of the respective baseline data.Linear Regularization consistently outperforms the\uniform" method, as long as the batch size b is con-sistent with our Theorem 4.2. It is a pleasant surprisethat the Linear Regularization does better even forthe `IBM' dataset, which is not smooth at all. Infact, being a stock price movement, it is expected tobe a \random walk", which is known to be a \fractal",with fractal dimension 1.5 [19]. That is, it is nowhereclose to being smooth.The relative gains increase with the smoothness ofthe target sequence, as intuitively expected: the twosynthetic, smooth datasets enjoy the best savings (upto 89%), followed by the `LYNX' dataset (up to 35%savings - notice that the dataset is somehow periodic),

followed by the `IBM' dataset, the most `rugged' ofall (savings: up to 21%).5.2 Dependency on batch sizeFigures ??(a)-(b) and ??(a)-(b) plot the RMS error asa function of the batch size b, for the synthetic andreal datasets, respectively. Notice that Linear Reg-ularization does consistently better than the unifor-mity/ME assumption, as long as the batch size b isconsistent with our Theorem. The cross-over point forthe `LYNX' dataset is at b = 5, as expected, sincethe half-period of the major oscillation is 9.5/2=4.25.Notice that for the `IBM', `GAUSS', and `SINE'datasets, Linear Regularization is the consistent win-ner for a wide range of the b values, because thesesignals have most of their energy concentrated in lowfrequencies.5.3 Dependency on signal lengthFor both methods, the signal length has small impacton the RMS error (see Table 3). For example, betweenthe `IBM' with 120 samples and with 240 samples,the di�erence in RMS is within 0.04 out of �0.60, fora range of batch sizes.6 Practical ConsiderationsThus far in this paper we have developed the theory forestimating data values based on aggregated histograminformation, and shown how the estimates obtainedthus could be superior to those obtained naively. Inthis section, we discuss practical issues. In the �rstsubsection, we address issues regarding the computa-tional e�ort required to obtain these better estimates.In the second subsection, we present a \practitioner'sPage 7



method Lin. Reg. Max. Entropy (ME)dataset RMS (rel. savings over ME) RMSsinusoid120 b= 2 0.0040463 0.890662 0.037007sinusoid120 b= 4 0.0128623 0.844224 0.082569sinusoid120 b= 6 0.0246694 0.803691 0.125666gauss120 b= 2 0.0077611 0.387977 0.0126811gauss120 b= 4 0.0095857 0.599781 0.0239512gauss120 b= 6 0.0097175 0.717147 0.0343553gauss120 b= 8 0.0101855 0.774698 0.0452083Table 2: RMS errors for each method, and relative savings with respect to the `uniform=ME'. Batch size b, asspeci�ed. The sample deviation of the baseline data is 0.7071 and 0.3485, for the sinusoid and Gaussian data,respectively.
method Lin. Reg. Max. Entropy (ME)dataset RMS (rel. savings over ME) RMSlynx b= 2 387.76 0.35336 599.65lynx b= 3 676.92 0.26940 926.53lynx b= 4 927.18 0.19257 1148.31lynx b= 5 1229.90 0.00750 1239.19lynx b= 6 1442.58 -0.08837 1325.45ibm120 b= 2 0.464013 0.084987 0.507111ibm120 b= 4 0.664337 0.138739 0.771354ibm120 b= 6 0.908743 0.141983 1.05912ibm120 b= 8 0.891448 0.172178 1.07686ibm120 b= 10 1.09351 0.217065 1.39668ibm240 b= 2 0.446499 0.0593327 0.474662ibm240 b= 3 0.625589 0.167986 0.751897ibm240 b= 4 0.698712 0.0314862 0.721427ibm240 b= 5 0.799962 0.192658 0.990859ibm240 b= 6 0.928196 0.179626 1.13143Table 3: RMS errors for each method, and relative savings with respect to the `uniform=ME'. Batch size b,as speci�ed. The sample deviation of the baseline data is 1578, 5.4999, and 7.6967, for the lynx, ibm120, andibm240 data, respectively. Page 8



guide" indicating how the theory can be applied in adatabase context.6.1 Computational E�ortAs mentioned, reconstruction from partial sums withLinear Regularization leads to a matrix inversion prob-lem. The matrix is square, with side M = N + n. Ingeneral, matrix inversion has complexityO(M3). Thismay be prohibitive, particularly since N may often belarge.However, in our case, the matrix is of a specialform: it is almost tri-diagonal, and speci�cally, it issingly-bordered tri-diagonal, and the border itself isblock-diagonal. In this case, matrix inversion has com-plexity O(M ) [22, p. 72], that is linear on the ma-trix side. Since the length of the unknown distribu-tion, N , is signi�cantly greater than the number ofbatches/constraints n, for all practical purposes we canthink of the inversion e�ort as O(N ). But, any recon-struction method would require at least O(N ) e�ort,even to list all the reconstructed values. Therefore,we can argue that the computational e�ort involvedin obtaining the better estimates expected from ourtechniques is asymptotically optimal in order of mag-nitude.6.2 Practitioner's GuideUsing knowledge of the application domain, the �rstthing a practitioner has to do is to determine ifthe data set to be reconstructed is expected to be\smooth", in the sense that most of the variation ofinterest is captured in the histogram that is madeavailable. This will typically be the case, for mean-ingful histograms. Speci�cally, we check the condi-tion of Theorem 4.2: For example, suppose that themost prominent periodicity of the signal has periodT0 (like the 4-year periodicity of the U.S. economy,due to the presidential elections). If the provided his-togram has batch-size b smaller than the half-periodT0=2, then Linear Regularization will achieve excellentreconstruction.To apply the Linear Regularization technique, onecan use the known constraints (the histogram sample\sums") and the desired objective function (minimizethe sum of squares of successive di�erences) to con-struct a single matrix equation, using the techniqueof Lagrange multipliers. How to do this is shown inAppendix ??.The resulting matrix equation ?? can now be solvedusing any standard linear algebra package. In partic-ular, we recommend the technique that makes use ofthe tri-diagonal nature of the matrix [22, p. 72], asdiscussed earlier.

7 ConclusionsThe main contribution of this work is a formal ap-proach to the recovery of information from summarydata, and, more generally, arbitrary, partial data in theform of constraints. The idea is to use the machineryof the well-developed \inverse problem theory", to in-ject a-priori knowledge about the domain, eventuallytransforming the problem into a constrained optimiza-tion problem.Additional contributions are� Theorem 4.2, which shows that for \smooth"enough distributions, it is possible to have fullrecovery of information, given partial sums.� Lemmas 4.1, ??, showing that the theory of in-verse problems includes the traditional uniformityand independence assumptions as special cases,when the Entropy is used as the cost function.� A conceptual basis for selecting Linear Regular-ization as the technique of choice to obtain asmooth reconstruction. Further, the use of an ex-isting numerical analysis technique that gives thesolution for Linear Regularization in linear timeO(N ).� Experiments showing that, under the con-ditions of Theorem 4.2, Linear Regulariza-tion consistently outperforms the MaximumEntropy/uniformity assumption, not only forsmooth data, but for \fractal", real data as well(IBM stock price movements, and the lynx trap-pings dataset).Future work could examine further ties with the welldeveloped �eld of inverse problems and image restora-tion. The interaction between two types of summaries,marginal summations and batching summations, is im-portant for multi-dimensional reconstruction (OLAP),histogram maintenance in query optimization, com-pression of real distributions, and numerous otherdatabase applications.AcknowledgmentsWe thank John Goutsias for his help with Lemma 4.1,and I. S. Mumick for providing feedback on a draft ofthis paper.References[1] Richard A. Becker, John M. Chambers, and Al-lan R.Wilks. The New S Language. Wadsworth &Brooks/Cole Advanced Books & Software, Paci�cGrove, CA, 1988. Page 9
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