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In order to guarantee the fast retrieval of the data stored in these databases, spatial access meth-ods are typically used. In practice, the prevailing methods seem to be two: (a) the R-trees [Gut84]and its variants [SRF87, BKSS90], and (b) methods based on a regular subdivision of the dataspace such as linear quadtrees [Gar82] and z-ordering [OM84]. The terms `linear quadtrees' and`z-ordering' essentially denote the same method and therefore, will be used interchangeably.Linear quadtrees have been very popular for 2-dimensional spaces. One of the major applica-tion is in geographic information systems: linear quadtrees have been used both in production sys-tems, like the TIGER system at the U.S. Bureau of Census [Whi81] (http://tiger.census.gov/tiger/tiger.html), which stores the map and statistical data of the U.S.A., as well as researchprototypes such as QUILT [SSN87], PROBE [OM88], and GODOT [GR94]. For higher dimen-sions, oct-trees have been used in 3-d graphics and robotics [BB82]; in databases of 3-d medicalimages [ACF+94], etc. There are several good reasons for the popularity of these methods, suchas their simplicity, their robustness and that the indexing keys can be inserted into ubiquitousone-dimensional access methods, e.g., B-trees.In all the above cases, it is important to know the number of index entries (z-values) that aspeci�ed region will be decomposed into, since the performance of the spatial access methods iscorrelated with the number of index entries [Ore89, Gae95b, Gae95a]. For a query region, thenumber of z-values is related to the number of disk accesses that will be required; for a data region,the number of z-values is directly related to the storage requirements for this region, as we describein subsection 2.2. Ideally, one could predict for each given dataset the number of indexing entriesby using some parameter.In a previous paper [FK94], we presented an analysis of R-trees using the Hausdor� fractaldimension. Recently, we also showed that the theory of fractals can be successfully used for esti-mating the selectivity of spatial queries [BF95]. The results presented are very encouraging, sincethe estimates based on fractals yielded very good results compared with other assumptions typ-ically made. In [BF95], we already pointed out that fractals may also be a suitable tool for theanalysis of spatial access methods based on a regular decomposition of the data space such as z-ordering [OM84]. Here, we will substantiate this claim by providing an analysis of linear quadtreesthat uses the theory of the well-known Hausdor� fractal dimension.The contributions of this work are the following: First, we highlight and exploit the fact thatmost real datasets are self-similar (fractal). Second, using an existing, successful assumption for`random quadtrees' [VM96], we show that the number of index entries for an object follows a powerlaw, with exponent the so-called `Hausdor�' fractal dimension of the object's boundary. Third,we show that our result agree perfectly with previous analytical results and that it explains ourolder empirical work [Gae95b, ACF+94], where we �rst pointed out the existence of the powerlaw. Lastly, we present experimental results, to demonstrate the accuracy of our formulas for realdatasets.The remainder of this paper is organized as follows: After giving an introduction to fractalsand to quadtrees in Section 2, we present our analysis in Section 3. Section 4 presents some2



experimental results on real datasets. Section 5 compares our results with older ones, and describeshow a practitioner could utilize our formulas. Section 6 lists the conclusions and future work.2 Survey - Background2.1 Introduction to fractalsIntuitively, a set of points is a fractal if it exhibits self-similarity over all scales. This is illustrated byan example: Figure 1(a) shows the �rst few steps in constructing the so-called Sierpinski triangle.Figure 1(b) gives a 5,000-point sample, termed `Sierpinski5K' dataset from now on. Theoretically,the Sierpinski triangle is derived from an equilateral triangle ABC by excluding its middle (triangleA'B'C') and by recursively repeating this procedure for each of the resulting smaller triangles. Theresulting set of points exhibits `holes' in any scale; moreover, each smaller triangle is a miniaturereplica of the whole triangle. In general, the characteristic of fractals is this self-similarity property:parts of the fractal are similar (exactly or statistically) to the whole fractal.
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(a) Sierpinski triangle (b) `Sierpinski5K' dataset (c) its box-counting plotFigure 1: The Sierpinski triangle, a theoretical fractal: (a) the �rst steps of its recursive construction(b) a sample of 5,000 points and (c) its box-counting plotLike all fractals, the Sierpinski triangle is a rich source of paradoxes: it is a point-set with area zeroand with in�nite-length perimeter. Thus, it is not a 1-dimensional Euclidean object (otherwise itwould have �nite length perimeter), but it is not a 2-dimensional Euclidean object either, since ithas zero area.The way to resolve the issue is to consider fractional values for the dimensionality, which arecalled fractal dimensions. There are more than one fractal dimensions [BF95], but among them theHausdor� or box-counting fractal dimension DH is the one that is suitable for our application.It is quite easy to compute for a given data set embedded in an E-dimensional address spaceits fractal dimension DH by using the box-counting method [Sch91]. This method imposes anE-dimensional grid with (hyper-)cubic grid cells of side r and counts the number N(r) of cells thatare penetrated by the set of points (i.e., that contain one or more of its points). By repeating the3



above, for grids of di�erence sides, and we can plot the N(r) versus r, in log-log scales. This plotis often called the box-counting plot.If the point-set is self-similar for a range of scales r 2 (r1; r2), then its box-counting plot will bea straight line for this range. Its negated slope is de�ned as the Hausdor� fractal dimension DH ofthe point-set for the range of scales (r1; r2):De�nition 1 (Hausdor� fractal dimension) For a point-set that has the self-similarity prop-erty in the range of scales (r1; r2), its Hausdor� fractal dimension DH for this range is measuredas DH = �@ log(N(r))@ log(r) = constant for r1 < r < r2 (1)Notice that, for Euclidean objects, their fractal dimension equals their Euclidean dimension.Thus, lines, line segments, circles, and all the standard curves have DH=1; planes, disks andstandard surfaces have DH=2; Euclidean volumes in E-dimensional space have DH= E.Figure 1(b) shows the box-counting plot for DH for the Sierpinski5K dataset. Notice that theslope for r 2 (e�4:5; e�1) is 1.574, very close to the theoretical value of log 3= log 2 = 1:585 [Man77].2.2 Quadtrees and z-orderingThe terminology is easiest described in 2-d address space; the generalizations to E dimensionsshould be obvious. Following the quadtree literature, the address space is a square, called animage, and it is represented as a 2K �2K array of 1�1 squares. Each such square is called a pixel.Consider the four equal squares that the image can be decomposed into. Each such square iscalled a level-1 block; a level-i block can be recursively de�ned as one of the four equal squares thatconstitute a level-(i � 1) block. Thus, the pixels are level-K blocks; the image is the (only) level-0block. We can represent this process as a 4-way tree: the root is at level 0, and it has four children,the four level-1 blocks. The edges of this tree can be labeled with 2-bit binary strings, where the�rst bit indicates the horizontal direction (`left/right', for `0=1' respectively) and the second bitindicates the vertical direction (`down/up', for `0=1' respectively). Then, we have:De�nition 2 The z-value of a level-i block is the concatenation of the labels of the edges, from theroot to the node of the quadtree that corresponds to this level-i block.An object in the image is represented by turning the appropriate pixels to `black'; the rest (i.e.,background) pixels remain `white'.De�nition 3 The level-K quadtree decomposition of an object within an image is the unique,minimal set of blocks of levels 0 through K that cover the object exactly, without covering extraspace.By `minimal set of blocks' we mean `minimum cardinality': That is, the target set of blocksdoes not contain any quadruplet of level-i blocks that can be consolidated to a single, level-(i-1)block. The e�cient way to obtain the quadtree decomposition is by recursively dividing the object4



into blocks, until they are homogeneous or until we reach the pixel level (level-K blocks). For a2-dimensional object, the result of such a decomposition is a 4-way tree, which is termed as theregion quadtree [Kli71]. Blocks that are empty/full/partially-full are represented as white, blackand gray nodes in the quadtree, respectively. See Figure 2(b) for an example.For e�ciency reasons (eg., see [Ore89]), we often approximate an object with a `coarser resolu-tion' object. Formally, we have:De�nition 4 The level-i quadtree decomposition of an object (i < K) is the minimal set of blocksof levels 0 through i that cover the object completely, while they cover the smallest possible additionalarea.Thus, given the level-K quadtree decomposition, represented as a four-way tree, the level-i decom-position is derived by (a) dropping all the nodes at levels j (j > i) (b) turning the gray nodes atlevel-i to black nodes and (c) consolidating black nodes, if necessary. Figure 2 shows an objectin a 4�4 image (K=2), its level-2 decomposition, its level-1 decomposition and the correspondingapproximation of the object. Notice how the block with z-value `00' turned from `gray' to `black',to create the level-1 quadtree decomposition of the original shaded rectangle.De�nition 5 Let Nb(i) denote the total number of blocks of a level-i quadtree decomposition.
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�gure 2(a) are `0001' (for `left-down; left-up') `0011' and `01'. Following [Gae95b], the maximumpermissible length of the z-values that correspond to a level-i quadtree decomposition is called thegranularity g. Obviously, for a 2-d address space:g = 2 � iIn general, for an E-d address space g = E � i (2)As described above, the lengths of the z-values have to be even (in general, multiples of E).There are variations of z-ordering, where the z-values can have arbitrary lengths. For simplicity,we ignore those variations in this paper, although we believe that they are amenable to a similaranalysis like the upcoming one.As described above, quadtrees have been used to store objects in main memory. For diskstorage, the prevailing approach is the so-called linear quadtree [Gar82], or, equivalently the z-ordering method [OM84]. Using the z-values as just described, each object (and range query) canbe uniquely represented by a set of z-values, namely the z-values of the blocks of its level-i quadtreedecomposition. Each such z-value can be treated as a key of a record of the form (z-value, object-id, other attributes : : : ), and it can be inserted in a �le structure such as a B+-tree. Table 1illustrates such a relation, containing the z-values of the shaded rectangle of Figure 2(a).Additional objects in the same address space can be handled in the same way; their z-valueswill be inserted into the same B+-tree. Thus, spatial queries can be served by operations on theB+-tree: For example, a range query which speci�es a region and asks for all the objects in it, willbe decomposed into a set of z-values; the B+-tree can be searched to retrieve matching z-valuesand the corresponding objects.z-value object id (other attributes)... ... ...0001 `ShadedRectangle' ...... ... ...0011 `ShadedRectangle' ...... ... ...01 `ShadedRectangle' ...... ... ...Table 1: Illustration of the relational table that will store the z-values of the sample shaded rect-angle.Given the above discussion, the terms `number of quadtree blocks' and `number of z-values' areidentical, and are used interchangeably for the rest of this paper.6



Before presenting our analysis, we �rst want to recall some previous empirical and analyticalresults, in order to put our work into context.2.3 Analysis of quadtree decompositionPrevious attempts have been restricted to 2-dimensional polygons [HS79], squares [Dye82, Sha88], 2-d rectangles [Fal92] and E-d hyper-rectangles [FJM94]. In a closely related previous paper [Gae95b],we showed experimentally that the number of blocks Nb(k) of a level-k quadtree decompositiongrows exponentially with the level k of the quadtree. Adapting the notation, we showed thatNb(k) / (Dz)g = (Dz)2�k (3)where the granularity is g = 2 � k for a 2-d address space, and where the value Dz was de�nedas the fractal z-ordering dimension of the speci�c spatial object. Dz was shown to be the majordeterminant for the number of index entries resulting from a level-K decomposition. However, therelationship of Dz to DH was not clear and therefore, we will clarify this point in this paper.Figure 3(a-b) shows the boundary of Middle Franconia in Germany along with a plot of thenatural logarithm of the number of z-values versus the granularity g, i.e., the maximum permissiblelength for z-values. Similar experimental data on 3-d human brain images [ACF+94] used oct-trees(= 3-d quadtrees), and showed that the number of oct-tree blocks for brain organs grows asNb(k) / 22:63kFigure 4(a) shows such a brain organ; Figure 4(b) shows the (logarithm-base-2 log2 of the)number of oct-tree leaf nodes, as a function of the level k, along with the regression line.
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x*2.63871-2.9122(a) (b)Figure 4: 3-d medical data from [ACF+94]: (a) One brain hemisphere from an atlas (b) (log2) ofnumber of its oct-tree blocks Nb(k) vs. level knodes (respectively) is independent of the position and of the level. Experiments in [SS85] for near-est neighbor queries showed that the `level-independence' assumption leads to accurate predictions,for main-memory 2-d quadtrees.This is the fundamental assumption for the upcoming analysis, which, as we show, agrees wellwith the experiments.3 AnalysisThe goal of this section is to determine the number Nb(k) of index entries that a spatial object willrequire in its level-k quadtree decomposition. We would like this formula to be a function of a few,easy-to-estimate parameters of the object, such as the nature of its boundary (as measured by itsHausdor� fractal dimension DH), the area or more generally, the hyper-volume of the object Ab,etc.The strategy we use is to exploit the self-similarity that most real datasets exhibit, and toexpress both the input (Ab, DH), as well as the output parameters (Nb(k)) in terms of the level-independent probabilities pg, pb for gray/black nodes. We make the following conventions:� the root of the quadtree is at level 0, and it is always gray� the address space has been normalized to the unit hyper-cube.The fundamental assumption [VM96] is that the black/gray/white probabilities are level-independent.The only exceptions are the root, which is gray, and the last level K, which has only black pixels:Assumption 1 (Level-independence) At any given level i > 0, the proportions of black, grayand white nodes are pb, pg, pw respectively, independent of the level.It will be subject of future work to study the consequences of the above assumption for theanalytical model to be presented. We note that the corresponding three probabilities sum to unity:8



Symbols De�nitions.E dimension of the embedding address spaceg(i) (average) number of gray nodes at level ib(i) (average) number of black nodes at level ipw probability to have a white nodepb probability to have a black nodepg probability to have a gray nodeDH Hausdor� fractal dimension of boundaryAb total area (hyper-volume) of black pixelsNb(k) number of z-values (=quadtree blocks) for the level-k decompositiong granularity: length of longest permissible z-value (=E � k)Table 2: Summary of Symbols and De�nitionspb + pg + pw = 1. Using the above assumption, we can estimate the average number of black andgray nodes b(i), g(i) at level i:Lemma 1 The average number of gray nodes g(i) at level i is given by:g(i) = (2Epg)i (4)Proof: By solving the recursion g(i) = g(i� 1) � 2Epg (5)The idea is that each gray node at level i� 1 has 2E children, out of which a fraction pg are gray.The initial condition is g(0) = 1 (6)since the root at level 0 is always gray. QEDLemma 2 The average number of black nodes at a given level i is given byb(i) = 2Epb (2Epg)(i�1) (7)Proof: There are g(i � 1) parents at the (i � 1)-th level, each with 2E children; out of them, afraction pb are black. QEDNext, we need a `macroscopic' parameter to help us estimate pb. This parameter is the totalblack area (hyper-volume) Ab.Lemma 3 The hyper-volume (`black area') Ab is given byAb = pb1� pg (8)9



Proof: Combining the hyper-volumes of the individual black nodes at all levels i = 1; : : :1 gives:Ab = 1Xi=1 b(i)2�iESubstituting b(i) from Lemma 2 and adding the terms of the geometric series, we complete theproof. QEDNow we need a second `macroscopic' parameter, to help us estimate pg. This parameter is theHausdor� fractal dimension DH of the boundary.Lemma 4 The Hausdor� fractal dimension DH of the boundary is given by:DH = E + log2(pg) (9)Proof: From Lemma 1 we have that the number g(i) of gray nodes at level i grows asg(i) = (2Epg)i= (2i)E+log2(pg) (10)The crucial observation is that g(i) is almost exactly the number of cells of side r = 2�i that theboundary penetrates. The only exceptions occur when a stretch of the boundary coincides with a(horizontal or vertical) dividing line of the quadtree decomposition. If we neglect these rare cases,the exponent is by de�nition the Hausdor� fractal dimension of the boundary. QEDWe are ready for the main theorem:Theorem 1 For an E-dimensional spatial object, whose level-K quadtree decomposition obeys thethe `level-independence' assumption, the number of blocks Nb(k) for any level-k decomposition (k �K) is given by Nb(k) = 2kDH � C1 � C2 (11)where C1 = 1+ Ab(2E � 2DH )2DH � 1 (12)and C2 = Ab(2E � 2DH)2DH � 1 (13)Proof: Recall that the gray nodes at level k are turned to black, and, possibly, consolidated, toform larger blocks. Assuming that the e�ects of consolidation are of minor importance, the desirednumber of blocks Nb(k) is the number of black nodes at levels 1�k, plus the number of gray nodesat the last level k, which are `treated as black' ones:Nb(k) = g(k) + kXi=1 b(i) (14)10



Substituting the values of g(k) and b(i) from Lemmas (1) and (2), we obtain a geometric progression.Adding its terms, we obtain:Nb(k) = (2Epg)k + (2Epb)(2Epg)k � 12Epg � 1 (15)= (2Epg)k(1 + 2Epb2Epg � 1) � 2Epb2Epg � 1Using Lemma (3) and Lemma (4) we obtain Eq. (12) and (13). QEDThus, we have achieved our goal: we have expressed the number of blocks Nb(k) only in termsof `macroscopic' parameters, and speci�cally, the Hausdor� fractal dimension DH of its boundaryand the total area (hyper-volume) Ab of the object. Notice that the constant C2 is typically small,and can be omitted. This leads to a power law:Nb(k) � 2kDH � C1 (16)with C1 given by Eq. (12).4 Experiments on Real DatasetsIn this section, we provide the results of some of the experiments we undertook in order to verifythe accuracy of our analytical formulas. We used real, as well as synthetic data sets (with knownfractal dimensions, as `sanity checks'). For the real data sets, we tried to use as diverse data as wehad available: 2-d and 3-d address spaces, with points, lines and volumes. Speci�cally, we used:� 2-d points:{ `IUE': longitude-latitude co-ordinates of stars in the sky, fromNASAs Infrared-UltravioletExplorer (Figure 4.1(a), 15,135 points, DH = 1:88).{ `MGcounty': a point data set with cross-roads of the Montgomery County of Maryland,USA (Figure 4.1(b), 27,282 points, DH = 1:71),{ `LBcounty': cross-roads of the Long-Beach County of California, USA (Figure 4.1(c),36,548 points, DH = 1:70)� 2-d segments:{ `Franconia': the boundary of Middle Franconia of Germany (Figure 3(a) on page 7,147 edges, DH = 1:14)� 3-d volume: the brain-atlas data: the dataset and the results are shown in Figure 4.The synthetic data set was� Sierpinski5K: the Sierpinski triangle (Figure 1(a), 5,000 points, DH = 1:58)11



4.1 Check for self-similarityIn a �rst experiment, we checked each dataset to see whether it is self similar and then we computedthe Hausdor� fractal dimension of its boundary using the box-counting plot. Figure 4.1(a-c) showsome of the corresponding box-counting plots, e.g., Figure 3(b) and Figure 1(c) show the plots forthe `Franconia' and `Sierpinski5K' datasets respectively. Notice that they all exhibit fractal (i.e.,self-similar) behavior for several scales.
(a) `IUE' (b) `MGcounty' (c) `LBcounty'Figure 5: Three real datasets: (a) star coordinates from NASA (b) crossroads from Montgomerycounty, Maryland (c) crossroads from Long Beach county, California.
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(d) `Franconia' (e) `Sierpinski5K'Figure 7: Accuracy of prediction for the (logarithm of) number of blocks Nb(k), as a function ofthe level k. Actual values (`bullets'); analytical predictions (solid line).Notice that the accuracy of the formula is very good for all the datasets. However, this obser-vation is not restricted to the results presented, but also holds for other datasets.5 DiscussionHere we discuss the following issues: (a) how do older quadtree analyses compare with our result?(b) how often should we expect to encounter fractal datasets? (c) how would a practitioner bene�tfrom our result?Older analyses: Our formula agrees with previous analyses, or even includes them as specialcases: Steiglitz and Hunter [HS79] proved that the number of quadtree leaf nodes for a 2-d polygonis proportional to its perimeter. Thus, they showed that it is the boundary that plays crucialrole - our formula goes even further, generalizing the result for arbitrary (self-similar) E-d spatialobjects, and showing that the major parameter is the `ruggedness' of the boundary, as measuredby the fractal dimension DH . In [FJM94] we showed that the number of quadtree nodes for anE-d hyper-rectangle is proportional to its hyper-surface: Thus, the number of quadtree blocks will13



follow a power law with exponent E � 1, because the hyper-surface is a manifold of dimensionalityE� 1, both traditional, as well as fractal. Again, this agrees with our formula, which predicts thatfor a given level-i decomposition, the number of z-values will grow exponentially, with exponentDH = E � 1.As mentioned earlier, in [Gae95b], we showed experimentally that the number of z-values followsa power law, for several 2-d datasets (E = 2). That is,Nb(k) / (Dz)2k = 2k(2 log2Dz) (17)Compared with our formula Nb(k) / 2kDHwe would have a perfect agreement, if onlyDH = 2 � log2(Dz)and in general if DH = E � log2(Dz) (18)Table 3 exactly illustrates that this agreement holds, for our experimental datasets. For eachdataset, we computed the slope of the regression line, which corresponds to right-hand-side of Eq. 18,i.e., E � log2(Dz). Table 3 lists the slope of the regression line (column 2), and the Hausdor� fractaldimension (column 3) of the corresponding dataset. For each dataset that the `level-independence'assumption holds, the two numbers should be very close. Notice that this is indeed the case; thedi�erence is typically in the third signi�cant digit.This result is particularly interesting, since it readily allows us to use the analytical modelpresented in [Gae95b] for determining a good choice of the granularity. In this paper it has beenshown experimentally as well as analytically that the performance of the spatial access methodz-ordering is sensitive to the chosen granularity.Finally, in [ACF+94] we observed experimentally that the number of oct-tree blocks for humanMRI brain scans was Nb(k) / 22:63k. Notice that 2.63 is close to 2.73-2.79, which is the range ofthe typical fractal dimension of the surface of mammalian brains [Man77].Popularity of fractal datasets: Real datasets seem to be self-similar more often than not: Theliterature on fractals [Man77, Sch91] provides a long list of real, self-similar structures, includingcoastlines and country borders (with DH typically 1.1-1.3); periphery of clouds and rainfall patches(DH �1.35); surface of mammalian brain (�2.73-2.79); human pulmonary system (DH � 2.9);stock-price plots over time (DH � 1.5). 14



Data set actual slope of Hausdor� fractal dim. DHlog2(Nb(k)) vs k (from box-counting)Synthetic datasetSierpinski5K 1.586 1.58Real datasetsIUE 1.90 1.88MGcounty 1.76 1.71LBcounty 1.72 1.70Franconia 1.11 1.14Table 3: Accuracy of the exponent in our power law: The second column is the slope of theregression line of the graph log2(Nb(k)) versus the level k. The third column is the Hausdor�fractal dimension DH of the boundary, using the box counting method.Practical Considerations: The question is `how would a practitioner use the above results?'Given a data-set (set of points, or a region), the �rst step is to estimate the fractal dimension DH .This can be done with an O(N logN) algorithm [BF95], or even by consulting the literature onfractals, for the typical DH of the dataset of interest. For example, if our application focuses on3-d human brain scans, a crude estimate of DH would be 2.7. The second step is the estimationof the proportionality constant C1, for which we need an estimate of the total hyper-volume (=black area) Ab. Such an estimate should be easy to obtain, or to approximate: For example, if theminimum bounding rectangle (MBR) of the object of interest is known, we can use the volume ofthe MBR as a good estimate of Ab.Thus, a practitioner could have accurate estimates for the number of quadtree blocks thata spatial object will require. This is useful in at least two settings: (a) if the object is a dataobject, we need to estimate the number of quadtree blocks for a given (exact or approximate)decomposition; this is needed to estimate the space overhead of the resulting B+-tree index, whereeach z-value yields a di�erent record (see Table 2.2) (b) for query optimization: given a range query,our formula can predict the number of quadtree blocks it will decompose into, and therefore thenumber of `probes' (� leaf accesses � random disk accesses) that we will have to do in the B+-treeindex.6 ConclusionsWe have derived a closed formula that estimates the number Nb(k) of quadtree blocks for anE- dimensional object that has the `level independence' property. Our approach uni�ed threeobservations, which have been made independently:15



� the `level independence' assumption, which is the basis of statistical models for quadtrees[VM96, SS85],� the theory of fractals, which claims that spatial objects of the real world are often self-similar,and have a non-integer `Hausdor�' fractal dimension [Man77, Sch91] and� empirical observations that a power law holds for the number of quadtree blocks for 2-d and3-d data [Gae95b, ACF+94]We showed that the `level independence' assumption implies a power law for the number ofquadtree nodes, for any dimensionality E of the address space. Moreover, we showed that theexponent of the power law is the Hausdor� fractal dimension of the boundary of the object. Addi-tional, smaller contributions are� the estimation of the constant of proportionality C1, which is typically neglected in theliterature of fractals;� the veri�cation of the accuracy of the formula, on several, real data sets. Thus, our formulacan help with the estimation of the space requirements for a linear quadtree representationof a dataset, as well as with the selectivity estimation and query optimization for geographicand, in general, spatial databases.Future work includes the use of fractal concepts for the analysis of other quadtree/z-orderingalgorithms, like `nearest-neighbor' queries and `spatial joins'.AcknowledgementsThe authors would like to thank Alberto Belussi for his package that computes the fractal dimension.References[ACF+94] Manish Arya, William Cody, Christos Faloutsos, Joel Richardson, and Arthur Toga.Qbism: Extending a dbms to support 3d medical images. Tenth Int. Conf. on DataEngineering (ICDE), pages 314{325, February 1994.[BB82] D. Ballard and C. Brown. Computer Vision. Prentice Hall, 1982.[BF95] Alberto Belussi and Christos Faloutsos. Estimating the selectivity of spatial queriesusing the `correlation' fractal dimension. Proc. of VLDB, pages 299{310, September1995.[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R�-tree: An e�cient androbust access method for points and recta ngles. In Proc. ACM SIGMOD Conferenceon Management of Data, pages 322{331, 1990.16
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