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Abstract dia systems [19] (e.g., image databases [20]). In these
classes of applications it is essential to provide accurate
and flexible data visualization as well as powerful explora-
tion tools [5, 15].

The scalar field is a data type common to several of
these applications. In particular, a 3-d scalar field is a col-
lection of <x, y, z, value> tuples. In a medical database,
the “value” could be a measure of glucose consumption at
the <x, y, z> point in the brain as depicted in a P&dy;
in a meteorological database, the value could be the tem-
perature at a given point in the atmosphere; and in a chem-

, . 7 jcal database, the value could be the charge at a point in a
type. We observed that the DBMS' early spatial filtering molecular model. Scalar fields can have other dimension-

results in signifit_:ant perform_ance savings because the SYS3lities as well; for example, the price history of a stock can
tem response t'me is dominated by the amount of databe represented as a 1-d scalar field of <time, price> sam-
retrieved, transmitted, and rendered. ples. Furthermore, fields can also represent non-scalar
1: Introduction data_, suc_:h as_wind velocity. M_ore generallynash m-vec-
tor field is a field of samples in n-d where the value is an

The goal of the QBISM project is to study the exten- m.dimensional vector. The techniques presented in this
sions of database technology that enable efficient, interacpaper can be extended to handle fields of dimensionalities
tive exploration of numerous large spatial data sets fromgther than 3 in a straightforward manner, and to handle
within a visualization environment. In this work we focus yector fields by simply storing vectors in place of scalars
on the logical and physical database design issues to hany, the appropriate data structures.
dle 3-dimensional spatial data sets. We also present timing e pelieve our results on medical image databases will
results collected from our prototype. As a first application pe yseful in many of the above applications because they
area we have chosen the Functional Brain Mapping || share some basic traits: (a) the principal data objects
project. Our prototype serves as a tool medical researchergaye spatial extent, (b) the users would like to ask ad-hoc
can use to visualize and to spatially query 3-d human braingyeries in an exploratory, interactive format, (c) the users
scans in order to investigate correlations between humarheed visualization tools to view 3-d or higher dimensional
actions (e.g., speaking) and physiological activity in brain gata in a variety of ways, (d) the spatial data objects are
structures. The spatial techniques presented here coulfarge, and finally, (e) the number of spatial data objects
also be applied to other medical applications involving gyer which the user wants to query is increasing. This last
anatomic modelling, such as surgery or radiation treatmentcharacteristic is especially important in our current work
planning. in which queries like “display the PET studies of 40-year

Many other application domains involve access to and g|g females that show high physiological activity inside
visualization of large spatial databases. In particular, Geo-ine hippocampus” are essential for understanding struc-
graphic Information Systems (GIS) [26] (e.g., environ-
mental and archeological [25] applications); scientific

databases (e.g., molecular design systems); and multimel- Positron Emission Tomography. PET images generally show physio-
logical activity.

We describe the design and implementation of QBISM
(Query By Interactive, Spatial Multimedia), a prototype
for querying and visualizing 3D spatial data. Our first
application is in an area in medical research, in particular,
Functional Brain Mapping. The system is built on top of
the Starburst DBMS extended to handle spatial data types
specifically, scalar fields and arbitrary regions of space
within such fields. In this paper we list the requirements of
the application, discuss the logical and physical database
design issues, and present timing results from our proto-




tural and functional relationships in the brain over popula- responses and support the visualization of multiple data
tion groups. sets [11]. This will extend the power of medical visualiza-

To provide such a flexible query environment for non- tion environments which today typically deal with a single
traditional data, we utilized the extensibility features of the study at a time. The system we envision will provide query
Starburst DBMS developed at IBM’s Almaden Research capability over large image databases in a very investiga-
Center and built an operational prototype. We added newtive, interactive and iterative fashion. The following sce-
data types and associated query processing operators. Weario illustrates a sample session with such a system in
studied compact representations for these data types andhich each step generates a database query:

assessed thelr performance. We integl’ated IBM’s Datae The medical researcher may start by Se|ecting from a
Explorer/6000 into our prototype as a visual, query front-  standard atlas [29] a set of brain structures for the sys-

end. Finally, we populated our prototype with anatomic  tem to render, for example those supporting the visual
models and acquired human brain imagery from the Labo-  system.

ratory of Neuro-Imaging of the U.C.L.A. School of Medi-
cine.

The remainder of the paper is organized as follows:
Section 2 describes the particular medical research prob-
lem we studied and its query and data characteristics;,
Section 3 describes the logical database design; Section 4
analyzes compact representation schemes for the data;
Section 5 describes our prototype implementation, con- ] ) )
centrating on extensions to Starburst and Data Explorer/* AN arbitrary region may be compared with the same
6000; Section6 provides initial performance results  (OF @nearby) region from a previous PET study.
derived from the prototype; and finally, Section 7 summa- ® Targeting electrodes or radiation beams to regions of
rizes the paper and describes the overall project and its interest may be calculated or simulated to visualize

After repositioning the scene to a desired viewing
angle, structures may be texture mapped with a
patient's PET study to highlight activity along their

surfaces.

The intensity range may be histogram segmented and
other regions in this PET study identified in the same
range.

future directions. anatomical structures intersected.
] . . ¢ An individual PET (or other study) may be compared
2: The medical application with data from a comparable subpopulation of the

same demographic group.

] ) The above scenario is representative of the queries that

As mentioned above, we have chosen the brain map-medical researchers (i.e., those at the U.C.L.A. Laboratory
ping project as a sample application for QBISM. The goal of Neuro Imaging) would like to ask. To help provide a

of the brain mapping research is to discover spatial corre-general classification of these queries, we use the concept

lations between activity in the brain and functional behav- ot 5 scalar field: a study is represented as a collection of
ior, e.g. speaking or arm movement. Such activity in the <x y 7 value> tuples, where “value” is an intensity level

brain is frequently characterized by localized, non-uni- i oyr application. We then have the following classifica-
form intensity distributions involving sections or layers of o of queries:

brain structures, rather than uniform distributions across,
complete structures. Discovering the precise locations of
brain activity, correlating it with anatomy, and construct-
ing functional brain atlases is the goal of an ongoing major.
medical research initiative [32]. Ultimately, this under- . . S Lo
standing has clinical applications in diagnosis and treat- of a scalar field (e.g., show regions of high intensity in
ment planning, as well as scientific and educational value. a PET study).

Our system must support queries across multiple medi-* Mixed queries involve both spatial and attribute speci-
cal image studies. Atudy is actually a “billing” term fi_cations_(e.g., §how the regions of high intensity in the
referring to a set of medical images collected for a single  fight brain hemisphere).
purpose on a single patient, such as a 50 inceZMIIde ¢ Data miningqueries (not part of the current work) seek
or three x-rays of a fractured elbow. Querying across col-  to discover patterns and “association rules” [1] in sub-
lections of these will enable the return of statistical ~ population groups (e.g., find PET study intensity pat-
terns that are associated with any neurological
condition, such as focal epilepsy, in any subpopula-

2. Magnetic Resonance Imaging. MRI images generally show soft-tissue tion).
structural information.

2.1: Problem definition

Spatialqueries specify a condition on the <x,y,z> part
of a scalar field (e.g., show the intensity values in a
given query region of a particular MRI study).

Attribute queries specify a condition on the value part




2.2: Data characteristics warping matrices are computed and stored along with the

Basically, the database will consist of a large, growing original and warped study. The details of the warping tech-

collection of static, 3-dimensional scalar fields and a col- hiques are outside the scope of this paper. However, these

lection of anatomic models (i.e., atlases) that describe theautomatlc or seml-automatic warping algorithms are

spatial extent of anatomical structures. extremely important f_or this app!ication. Itis preci_sely this _
The 3-dimensional scalar fields correspond to the stud_technology that permits anatomic access to acq_uwed medi-
ies. These are collected via an assortment of medicalc‘?1I Images as well as comparisons among studies, even of
imaging modalities used to capture structural (e.g., MR, different patients, that have been warped to the same atlas.
cre histolog)f‘) and functional / physiological (e.g., PET, Furthermore, it enables the database to grow, and be que-

SPECP) information about the human brain. Each of ryable_, with minimal human_ gnalysis Of. the daFa. The
these studies results in a 3D “volume” of intensity read- co0rdinate system of the original study is calfedient

ings that can consume 1-100 megabytes of storage usingpacewhile that of the atlas (and therefore, warped study)

current spatial resolutions and image depths. This volume®™ calledatlas space
is essentially a scalgr field comprised .of 3 spatial coordi- 3: Logical design
nates and an associated scalar intensity value. As a refer- ) _ ) )
ence point, for clinical purposes a medium sized hospital We discuss the logical data types, spatial operations,
(e.g., 500 beds) typically performs about 120,000 radio- and database schema relevant to the medical application in
logical image studies a year, including standard X-ray film this sectipn. For implementation details, refer to Section 4
studies. If all this imagery were stored in digital form (as and Section 5.
hospitals are beginning to do [33]), the size of this hospi- )
tal's yearly radiological data is estimated to be about 2 ter—3'l' Data types
abytes uncompressed, or 1 terabyte after lossless The datatypeREGIONandVOLUMEare of particular
Compression. In our work we must save the raw data Vo|_importance in this application; we store instances of these
umes from the tomographic modalities as well as consider-types, as well as other large objects, in long fields (see
able amounts of derived data. The derived data isSection5.1). A REGION encodes the spatial extent of an
generated as a result of transformations to align and regisarbitrarily shaped entity, such as an anatomical structure.
ter the raw data, to create models suitable for surface and® YOLUME encodes all values from a 3D scalar field
volume rendering of the data, and to build database repre{€.g., @ PET study) sampled on a complete, regular, cubic
sentations that enable exploratory query. grid (e.g., 128x128x128 positions evenly-spaced along

As mentioned above, the database also contains atlase8ach axis corresponding to a 20x15x30 cm. real-world
of reference brains for each demographic group. Thesesca|al' field); the samples are stored in a linearized form in
models provide anatomical access to the acquired imagen@n implied order. We discuss these representations at
via computed spatial transformations stored in the data-length in Section 4.
base and the spatial query operators. Their use is illus-, . . .
trated in the previous scenario by the step in which a struc-3'2' Spatial operations
ture in the visual system is used to select a particular To efficiently execute the queries discussed in
patient's PET data. The spatial extent of that structure Section2, we need spatial operators to manipulate
from the appropriate reference atlas is used to drive selecREGIONs and VOLUMEs. We defined and implemented
tive spatial extraction of the functional data. the following useful subset:

An important point is that a PET study of a patient is ¢ INTERSECTION(REGION r1, REGION r2) returns a
not perfectly aligned with the corresponding atlas. To ~ REGION representing the spatial intersection of r1 and
solve this problem, spatial and statistical warping tech- 2,

niques [24, 30, 31] are used to derive affine transforma-« CONTAINS(REGION r1, REGION r2) returns a bool-

atlas. Thus, when a study is loaded into the database, o

¢ EXTRACT_DATA(VOLUME v, REGION r) returns a
long fielcP containing exactly those intensity values
from v that are inside r.

3. Computed Tomography. CT studies generally show hard-tissue struc-
tural information (e.g., bones).

4. Histology images are acquired by slicing and photographing tissue,
one thin layer at a time. 6. A recent version of the prototype includes the data type

5. Single Photon Emission Computed Tomography. SPECT studies, like DATA_REGION to represent the return value of EXTRACT_DATA(); it
PET studies, show physiological information. contains a REGION and data values for each point in the REGION.




Other spatial operations would be useful as well, such
as UNION(r1, r2) and DIFFERENCE(r1, r2), and would
be straightforward to implement.

3.3: Schema

In Figure 1 we present an E-R diagram capturing a sub-
set of a full medical schema appropriate for our applica-
tion. Each entity (in a rectangular box) corresponds to a

Raw Vol- Neural
ume Structure
N N
1 1
Patient Neural Sys-
tem

Figure 1. An entity-relationship diagram of the
medical database schema. Darker boxes
represent the most important entities that
support spatial operations.

table in our extended relational DBMS implementation of
the system. Thaleural SysterandNeural Structureenti-

ties capture various neuro-anatomic data and relationships

common to all human brains, (e.g., which structures com-
prise the visual system). Thatiententity records infor-

mation pertinent to each individual (e.g., name and age).

The Raw Volumeentity captures information pertinent to a
particular study of a patient, including the actual study
data stored in scanline order in a long field. We will not
discuss these entities in any further detail.

The Warped Volumentity is particularly important for
our current work; its most significant attribute is a long
field VOLUME that stores the warped study. As men-
tioned in Section 2.2, a Raw Volume can be warped to one

UME implies warped VOLUME, unless explicitly speci-
fied otherwise.

Another key entity is thatlas Structureentity. Its most
important attribute is a long field REGION, storing the
spatial representation of the interior of the given structure
in the specified atlas space. A second long-field column
stores a triangular mesh representing the surface of the
structure to support faster rendering of the structure itself,
optionally with study data mapped onto its surface.

The Atlas entity has several string and numeric
attributes, describing the characteristics of the reference
population it represents and the coordinate system it
defines (e.g., resolution and voxel size in real world units).

Finally, thelntensity Bancentity serves as an index on
the Warped Volume entity that allows rapid access to
VOLUME data based on intensity (it is shown in a dotted
box because it is redundant). We definenéensity band
as a REGION representing the subset of the voxels in a
VOLUME that have intensities in a particular interval
(with fixed width and uniform spacing in our current pro-
totype), such as 0-31 or 32-63. The most important
attributes of arintensity Bandare the intensity interval
end-points and a long field for the associated REGION.

3.4: Queries

To demonstrate how we use the schema and the spatial
operators (see Section 5 for more details), we show below
two Starburst Structured Query Language (SQL) queries
that the system generates in response to the user query
“retrieve the intensity values from study number 53 inside
the putamen (a neural structure) from the Talairach atlas”

select a.n, a.x0, a.y0, a.z0, a.dx, a.dy, a.dz,
a.atlasld, p.name, p.patientld, rv.date
from atlas a, rawVolume rv,
warpedVolume wy, patient p
where a.atlasld = wv.atlasld and
wv.studyld = rv.studyld and
rv.patientld = p.patientld and
rv.studyld = 53 and a.atlasName = ‘Talairach’

select as.region,
extractVoxels(wv.data, as.region)
from warpedVolume wy, atlasStructure as,
neuralStructure ns
where wv.studyld = 53 and
wv.atlasld = <from first query> and
as.structureld = ns.structureld and

ns.structureName = ‘putamen’

or more atlas reference brains; we generate and store the
warped volume here at database load time (rather thanrhe first query checks that an appropriate warped study
query time) since the computation is expensive. Addi- exists and obtains information about the atlas coordinate
tional attributes of théWarped Volumeentity include the space and patient (necessary for rendering and annota-
actual warping parameters, the raw study id, and the atlagjon), while the second one retrieves the actual region and
id, among others. For the rest of this paper, the term VOL-gata values.



For a more complicated user query, such as “retrieve
the intensity values from some study inside some neural A Y quadrant
structure that are in the interval [100-200],” the SQL is
similar, but includes a call to intersection() in the select list
and additional joins.

11

10
.’_/ -N-

4: Physical database design: static studies of
representations

As mentioned before, there are two basic data types: o b \
VOLUMEs and REGIONs. A warped MRI study is an s >
instance of a VOLUME, with intensity values defined over
all the points of a 3D grid; an intensity band and an ana-
tomical structure are instances of REGIONSs. In the sub- X
sections that follow, we present methods of storing these 00 01 10 E
data types so that the queries of interest can be answered . ]
efficiently. Figure 2. lllustration of (oblong) quadrants

In our discussion we present measurements from actual in 2D on the Z curve.
human brain data obtained from the Laboratory of Neuro
Imaging at UCLA. The atlas was digitally extracted from
the Talairach & Tournoux atlas [29] and represented 11
neuro-anatomic structures as REGIONS in a 128x128x128
atlas space grid. The radiological data consisted of 5 PET
studies (each with 51 128x128 8-bit deep image slices)
and 3 MRI studies (each with 44 512x512 8-bit deep
image slices). Each study was warped and resampled to
produce a 128x128x128 8-bit per voxel VOLUME and
banded with uniformly spaced intensity intervals 32 units
wide covering the range 0-255 to produce 8 intensity band
REGIONSs.

We make heavy use of space filling curves and specifi-
cally, of the Hilbert curve. On a 4x4 grid, Figure 3 shows a
2-dimensional example of the Peano curve (dotted line,
also known as the Z curve [21], bit-shuffling, or Morton
key [26]) and the Hilbert curve (solid line). The latter has
been shown to have better spatial clustering properties [9].
Both curves require O(n) complexity to convert between
locations on the curve and Cartesian coordinates where n ] - . S '
is the number of bits used to store a position along the 271ds all either entirely inside or outside a REGION.
curve. A general algorithm for the Hilbert curve is pre- ~ When these voxels are inside, we call zZ-aun; when

sented in [4] and a simpler algorithm for 2 dimensions in ~ ©utside, we call it a-gap For example, one z-run in
[16]. Figure 3 stretches from z-id 1100 to 1101.

Some terminology is necessary. Refer to Figure 2 and4 1: Representation of a VOLUME
Figure 3 for examples. We give the definitions for the Z

01

oblong

00

An octant is a cube of maximal size that is the result of
the recursive decomposition of space, and entirely
inside some REGION of interest (e.g., the shaded
upper-left square in Figure 2 is a quadrant, or 2D
octant). More generally, aablong octant (or z-ele-
ment) of rankr is the complete set of oxels that
have the same prefix in their z-ids, differing only in
theirr least significant bits (e.g., the shaded 1x2 rectan-
gle in Figure 2). For a regular (cubic) octant in rr-d,
must be a multiple of n.

The z-value of an oblong octant is the common prefix
of the z-ids of the constituent voxels (e.g., the upper-
left quadrant in Figure 2 has “01**” as its z-value,
where “*” stands for “don’t care”). Typically, the z-
value is represented as a pair of the form <z-id, rank>,
using the smallest z-id of the constituent voxels. Using
bit operations, the two components can be packed into
4 bytes for grids as large as 512x512x512.

A z-delta is a maximal set of voxels with consecutive

curve, using the prefix “z-": the same terms with the *h-»  Our goal is to choose the best way to store a volume,

prefix correspond to the Hilbert curve. with the following requirements:

* The z-id of a voxel is its position in the Z ordering. 1. efficient random accesspatial probes into a VOL-
Typically, it is considered as a binary string. In ~ UME should be fast and simple (e.g., “what is the

Figure 2, the z-id of the shaded 1x1 square is 2, or  value atpoint <10, 10, 10>").

“0010”. Alternatively, one can compute the z-id by 2. good spatial clusteringneighboring grid points in 3D
interleaving the voxel's x and y coordinates; for the should be stored close to each other on disk to reduce
same shaded 1x1 squarexg=01 and yy,=00, so the the number of random disk accesses into a VOLUME
z-id=X,Y1Xgy=0010. during extraction queries.



lytical descriptions. With a volumetric representation, we
Y can tap the vast literature on quadtrees/octrees [13, 26]

A REGION with a wealth of algorithms for indexing and spatial opera-
— : o
— tions (e.g., the spatial join [22]). We use surface models
. - . 5 only on atlas structures (in addition to the volumetric one)
o - 4 N #: because they support faster, better quality rendering.
H \

Using a volumetric representation, a REGION is typi-
. . 3 cally encoded as a list of the z-values of its (oblong)
: ) octants. We propose two improvements:

* Use “runs” instead of (oblong) octants because they
generally merge more voxels together. Note that every
(oblong) octant is either a run or a part thereof, and
X every run consists of one or more (oblong) octants;
- therefore, the number of runs never exceeds the num-
00 01 10 11 ber of octants. Also note that most algorithms that effi-
ciently process octants have close analogs that
efficiently process runs, including the “spatial join”
algorithm for computing intersections [22]. These
}_._H F | algorithms operate by linearly scanning the runs or
| octants of two REGIONs in parallel (analogous to a
0 4 8 12 merge of two sorted lists), optionally with some opti-
mizations.

¢ Use Hilbert order, as opposed to Z order (i.e., h-runs

H instead of z-runs) because the Hilbert curve offers bet-
ter spatial clustering and yields fewer runs.

01

00
:
%

Z-runs

0 4 8 12 Both of these proposals reduce the number of “pieces”
Fiqure 3. lllustration of h- and z-runs in algorithms must process, so they are expected to acceler-
28 for the shaded REGION. ate spatial operations. For illustration, Table 1 and Table 2

show how these methods represent the 2D shaded
The first requirement makes compression methods unatREGION of Figure 3.
tractive; the second leads to “distance preserving” k- . .
dimensional-to-1-dimensional mappings. Since the Hilbert TABLE 1. Z-curve encodings for REGION in Figure 3.
curve has the best clustering properties among the known | octants <0001,0> <0100,2> <1100,0> <1101,0>
curves, we propose to store a volume by sorting the voxels |<z-id, rank>
in Hilbert order and storing only the intensities, since their |oblong octants | <0001,0> <0100,2> <1100,1>
positions are implied. We have implemented the Z order- |<z-id, rank>

ing, too, but it gives inferior clustering (yielding about runs <1,1><4,7><12,13>

27% more runs for each of the REGIONs we tried). <start, end>

4.2: Representation of a REGION TABLE 2. Hilbert-curve encodings for REGION in
Figure 3.

Here we study the problem of storing REGIONS to effi-
ciently support spatial operations such as intersections |octants <0011,0> <0100,2> <1000,0> <1001,0>
(e.g., “find the voxels that belong to the intersection of the | <N-id. rank>
hippocampus and the 32-63 intensity band”) and “extrac- | oblong octants | <0011,0> <0100,2> <1000,1>
tions” (e.g., “find the intensities in the hippocampus of | <h-id. rank>
Sue’s last PET study”). We discuss alternative representa- |uns <3,9>
tions, compression methods, and spatial approximations. | <Start. end>

Given the above operations, we have chosen a volumet- Our first step was to illustrate that h-runs do indeed pro-
ric representation of the REGIONSs. Surface models cannotduce fewer “pieces” than z-runs and (oblong) octants. For
support these spatial operations efficiently; Constructive each of the various anatomic and intensity band
Solid Geometry is not applicable since arbitrary REGIONS, we plotted the number of z-runs, octants, and
REGIONSs of interest do not necessarily have simple ana-oblong octants against the number of h-runs. As expected,




the Hilbert curve resulted in fewer runs than the Z curve. except for the most significant digit, which is always “1”).
Furthermore, the scatter-plots were well approximated by For example:
lines: the correlation coefficients for the linear fits were

1: 1
0.998, 0.974, and 0.991 for the z-runs, the octants, and the . 010
oblong octants respectively. In summary, we found that for 3 011
typical brain regions, the number of h-runs, z-runs, 4: 00 1 00

octants, and oblong octants are in constant ratios: )
We also calculate thentropy of the collection of deltas

(#h-runs):(#z-runs):(#oblong octants):(#octants) = of a given REGION. Ify is the fraction of length deltas
1:1.27:1.61: 2.42 among the total, then the entropy theorem states that we

It is interesting to note the similarity to the results reported cannot use less than
in [9], in which the ratio for all possible 3-d rectangles is:
—Z p,logp, (EQ2)

(#h-runs): (#z-runs) = 1: 1.20

Since h-runs consistently outperform z-runs in our experi- PitS per delta. We use this lower bound as a "yardstick” to
ments, as well as in all other published experiments of 25S€Ss the performance of each method.
which we are aware, we concentrate mainly on h-runs e compared the relative performance of these com-
throughout the rest of this paper. pression methods on h-runs by plotting their space
requirements against the entropy bound for each REGION
Compression methods for runs:Compressed repre- (see Figure 4); we also included the octant and oblong
sentations of REGIONs should improve system perfor- octant methods (using 4 bytes per octant). Interestingly,
mance because, as we show in Section 6, the databasée linear regression fits were very good (ranging from
component of the system is 1/O bound. In this subsection,0.968 to 0.985), despite the variety of the REGIONs we
we seek to determine the most compact method to encodéised (atlas structures, MRI-bands, and PET-bands), and
the h-run representation of a REGION on disk. The the ratios of average REGION sizes were:
straightforward gpprogch (termedaive”)_ is to store the (entropy):(h-run-elias):(h-run-naive):
starting and ending h-ids each as long integers (4+4 bytes (oblong-octant):(octant) =
per run). For the example REGION in Figure 3, this 1:1.17:950:10.4:17.8
method would store 1 run in 8 bytes. ) ) ,
When considering compression schemes, the most! S led us to the following conclusions:
promising point of view is to envision the REGION as a ® Without compression, the h-run-naive method outper-
set of runs and gaps (called “deltas”) on the Hilbert curve, ~forms the octant method, roughly by a factor of 2
and to encode their lengths. To achieve optimal compres- (17.8/9.50), and it requires approximately the same
sion, we need to know the probability distribution of the ~ amount of space as the oblong octant method.
length of a “delta”. Our measurements showed that the® The h-run-elias method achieves the smallest storage,
distribution roughly obeys the relationship: only 1.2 times the entropy bound, so we are confident
that it is difficult to improve upon. Compared to the h-
count = (constant) * (length) (EQ1) run-naive and the oblong octant methods, it achieves
where a is ~1.5-1.7 for several atlas structure and intensity an 8-fold improvement.
band REGIONs we tried. Thus, we should rule out all the
compression methods that are tailored for geometric distri- Approximate representation of REGIONs: Addi-
butions, such as the “infinite Huffman codes” method [14, tional space savings in REGIONs can be achieved by sac-
12] and the “variable length - fixed increment” codes [28]. rificing some spatial accuracy. For the z- and h-run
In light of the above, we have chosen the -code of representations, we eliminate all the gaps that are shorter
Elias [8], and we will refer to it asefias’. It uses small ~ than some threshold (*mingap”) by merging together the
codes for small numbers and achieves excellent comprestuns on each side. For the octant representation, we
sion because the majority of lengths are small. Letsfog ~ require that octants have a minimum size of GXGxG rather
denote the binary logarithm &f This method encodes the than 1x1x1, where G is a power of two, even when only
integerx as its length in unary followed by the binary rep- one voxel of the octant is in the REGION (similar to the
resentation of x. That is, it encodesgx ]+ 1 in unary error-bound criterion described in [23]). Both techniques
(i.e., llogx| O-bits followed by a 1-bit), followed by €ffectively increase the volume of a REGION by including
x—2Llogx] in binary (i.e., the binary representation of x, outside space while simultaneously reducing the number
of octants or runs required to represent it. Queries involv-
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Figure 4. Comparison of REGION sizes for various methods (using the Hilbert curve) relative
to the entropy limit.

ing such over-approximated REGIONSs require post-pro- 5: System issues
cessing with exact REGIONs; we do not consider them _
further in this paper. 5.1: Starburst extensions

Our prototype makes use of several extensibility fea-

tures in Starburst [27, 18], most notably long fields and
From this section, we come to the following conclu- yser-defined functions.

4.3: Conclusions

sions:
e We will store VOLUMEs as a list of intensity values, Long-fields: We store each large object, such as a
sorted on Hilbert order. REGION or VOLUME, in a separate long field. The Long

+ Field Manager (LFM) stores long fields directly in an
operating system disk device (not a file system) using a
buddy allocation scheme to promote contiguity, thereby
exploiting the clustering properties of the Hilbert curve.
The LFM supports fast random 1/O to arbitrary pieces of
long fields directly to and from client memory without
internal buffering. The long field is a Structured Query
Language (SQL) data type in Starburst that SQL functions
may accept and return. We rely heavily on these low-level
features to reduce disk traffic and response time in our pro-
totype. (Although the Starburst SQL query compiler sees

* We will store REGIONSs as a compressed list of Hilber
runs. The “elias” method provides excellent space con-
sumption results.

* We observe that the ratio of the number of h-runs to z-
runs is approximately 1:1.2 in this application for vari-
ous query regions.
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(b)

Figure 6. Sample query results. (a) The atlas structure “ntall” (one hemisphere of the brain). (b) The
intensity data from a PET study inside the same structure. (c) The PET data mapped onto the surface
of the structure. Note the difference in shading between a and c, which is easier to see on a color scre

our REGIONs and VOLUMEs as instances of the samereview and manipulate the results of several recently
long-field type, we “encapsulate” these “types” by using issued queries without necessitating a database reaccess.

SQL functions to operate on them.)
Division of labor: Figure 7 depicts the overall archi-

User-defined SQL Functions:We implemented the tecture of the system. Its components perform the follow-
operators of Section 3.2 in Starburst as user-defined SQLing functions:
functions. Starburst embeds these operators (like all other DX is responsible for all visualization tasks. It consists
SQL functions) within query execution plans at compile  of a user-interface process for interacting with visual
time and invokes them in the run-time environment. We programs and an executive process for performing
can therefore use the complex predicate construction and most of the computations. We added a new module
query block nesting features of the SQL language to  called ImportVolumeto the DX executive; it accepts
express and execute a wide variety of spatial queries, even the user's query and converts the spatially restricted
over multiple studies. data from the database into a DX object.

5.2: System architecture

DX Executive
]y

User interface: IBM Data Explorer/6000 (DX), a sci- DX User | 7 7 o

e o . Interface ImportVolume
entific visualization package [7, 6], provides the founda-
tion for the end-user interface in our prototype. We wrote a
DX “visual program” which accepts the user’s query spec- .
ifications through entry fields and renders the result in a Starburst E ) RPC
variety of ways in 3D. Figure 5 shows the workstation S\évg'[r?al o I\/ISeedrl\gz(ng—
screen during a sample session. The user can specify a | Extensions :

study, some anatomical structures, and intensity values of
interest (e.g., the data from Jane’s last PET study with
intensity above 200 in the right brain hemisphere). DX Figure 7. System architecture. Each box

renders the selected information in a variety of ways: just represents a process. The arrows represent

the anatomical data, just the intensity data, both together, e network.

or a solid-textured mapping of the intensity data onto the e Starburst manages the medical data and performs the
surfaces of the structures (see Figure 6). The user can query processing, including the operations designed to
interact with the rendered picture to change the viewpoint  spatially restrict the answer set.

and zoom factor, or further manipulate the selected datas pjedicalServer translates high-level query specifica-
by adding a cutting plane, computing a gradient field, or  tions it receives from DX into SQL (consider the
generating an animation, for example. Because of the example of Section 3.4), sends the query strings to
caching mechanism built into DX, the user can quickly  gtarpurst, and then returns the results to DX. Medi-
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Figure 8. System configuration illustrating the assignment of
storage and processes to machines.

calServer accesses Starburst through a shared-library on the database server machine rather than on a third
application programming interface (API) and runs in workstation.

the same process. * Machine 1, on a 16Mbps Token Ring, communicated
* The DX executive and Starburst/MedicalServer pro- through a router with the second, on a 10Mbps Ether-
cesses communicate with each other using Remote net (pingreported a 4ms round-trip packet travel time).
Procedure Calls (RPCs) and can thus run on separate e used the same data as in Section 4 and warped and
machines (even with different low-level data formats). banded it in advance to produce the schema shown in
] f . Figure 1. Since the atlas space had dimensions
6: Performance experiments 128x128x128, each warped VOLUME consisted of 2 mil-
We conducted some experiments to see how our protodion, single-byte intensity values. We did not create
type performs, to identify bottlenecks, and to gather infor- indexes on any of the relation columns. Finally, for each
mation that permits extrapolation of the results to other query, unless otherwise mentioned:
hardware, larger databases, and different methods. We e used exact spatial REGIONs encoded as runs in
describe the system configuration, the experiments on sin-  Hilbert order with the “naive” 8 bytes-per-run repre-
gle studies and finally, experiments on multiple studies. sentation scheme.

6.1: Experimental environment * We queried intensity ranges (e.g., 224-255) that exactly
o matched intensity bands stored in the database.

Our system congsted of .tWO IBM Risc Sygtem/6000 * We issued each query 4 times and reported the average
Model 530 workstations running AlX 3.2 (see Figure 8). measurements for the last 3 runs. The major compo-

* Onmachine 1, with 64MB of memory, we ran the Star-  pents did not buffer data: we flushed the DX cache
burst/MedicalServer process and the DX user-interface  pefore each run (otherwise, it would buffer the data-

logical volume.
* On machine 2, with 48MB of memory, we ran the DX 6.2: Single-study queries

executive process. Running the StarburstMedi-  Table 3 shows the results of our single-study run-time
calServer and DX executive processes on the sameexperiments. The queries are all variations of “display the

machine may improve performance. However, we data from a particular PET study inside a particular
believe that a real world system may benefit from sepa-REGION.” Note that:

rate dedicated visualization and database server,
machines and chose to conduct our experiments with a
similar configuration. Note that the DX user interface

process does not perform much processing, so we ran it

The total execution time column shows elapsed time
from start to finish, including database access and visu-
alization of the result with an empty DX cache.



The Starburst/MedicalServer column covers all data-
base activity. The spatial extensions to Starburst (e.g.,
INTERSECTION() and EXTRACT_DATA()) and the
LFM account for most of the cpu time. LFM 1/O wait
time accounts for the difference between the real anq
cpu times.

The network column measures traffic between the Med-
icalServer and DX executive. It shows the number of
network messages sent and their total real time cost,
including both software time (e.g., RPC overhead) and,
“wire” time.

The DX column covers all visualization activity. The
“rendering +" time represents all processing in DX after
ImportVolume is finished, primarily related to comput-
ing the 3D image. It includes some network communi-
cation between the DX user interface and executive,
processes, such as the transmission of the final image.

The “other” column shows any other time the remain-
ing columns do not measure. It consists mainly of time

TABLE 3. Full-system run-time measurements for single-

to run an atlas query that retrieves coordinate space
information, time to compile the SQL queries, and
some round-off error.

Our single-study queries fall into the following classes:
A “simple” query, “show a full PET study”, which pro-
vides a reference point for comparing more selective
gueries. A “flat file” system that ships the whole VOL-
UME to the visualization module would have similar
disk 1/0 and network measures as this full-study query.

Spatial queries, such as “show the data from a PET
study inside a rectangular-solid with corners (30,30,30)
and (100,100,100)", which demonstrate I/O and time
savings throughout the system for brain structures (e.g.,
ntal and ntall) or simple geometric objects compared to
the times for the full-study query.

Attribute queries, such as “show the data from a PET
study within the intensity range 224-255", which dem-
onstrate similar savings for more complicated
REGIONSs.

study queries. All times

are in seconds. The numbers in bold are independent real time components of the

totals in the last column.
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6.3: Multi-study queries

Mixed queries, such as “show the data from a PET ¢
study inside ntall within the intensity range 224-255",
which demonstrate the ability to filter data even more
finely through spatial intersection computations while
yielding further time savings. Notice that query Q6,
which computes the intersection of queries Q4 and Q5,
requires much fewer 1/Os than Q4 and Q5 combined,
and less overall execution time than either Q4 or Q5.

Table 4 shows the Starburst activity from our multi-

The early filtering will be even more beneficial in mul-
tiple-study queries, such as “display the voxel-wise
average intensity inside ntal for these 1,000 PET stud-
ies”. In such queries, the database need only read the
relevant disk pages of each study, compute the aver-
ages, and return the average values to DX. The reduc-
tion in data traffic will be linear in the number of
studies involved.

7: Conclusions and future work

We have described the design and implementation of

study run-time experiments. These queries are all varia-QBISM, a prototype system for querying and visualizing
tions of “compute the REGION in which each study’s 3D medical images. We believe that such a system should
intensity values are consistently in a particular intensity be built on top of an extensible DBMS engine, appropri-
band.” Such queries require the database to compute an nately extended to handle spatial data types, and combined
way spatial intersection. We used different REGION with a high-quality visualization tool as the user interface.
encoding methods, to measure their relative performanceThe challenges in the project were to define and imple-
Specifically, we used z- and h-runs with the “naive” ment operators and types that enable medical researchers
scheme, as well as octants. We found h-runs to be superiotto ask ad-hoc queries over numerous 3-d patient studies,

as expected.

and to provide fast responses despite the large space

requirements of even a single study.

TABLE 4. Run-time measurements for Starburst
multiple-study queries. All times are in seconds.

Query: computethe | Starburst

REGION in which

all 5 PET studies J

consistently have Total

intensitiesin the L'_:M Execution

range 128-159 Disk 1/0s | Time

(4K .

Encoding Method Pages) (cpu) | (real)
h-runs, naive 446 1.02 5.7
Z-runs, naive 593 1.26 7.3
octants (z order) 664 1.49 8.1

6.4: Results from the performance experiments

From these measurements we draw the following con-

clusions:

The database component of the system is I/O bound
since the real times far exceed the cpu times. This

implies that the computational cost of managing «
REGIONs and performing spatial operations on them

is low.

By comparing the full-study query Q1 to the others, we
can see that it is crucial to reduce the data traffic: bytes
read from the disk, shipped through the network and
imported for visualization. Without spatial processing
support, the response time would always be compara-,
ble to the full-study time (69 seconds for Q1, versus
15-28 seconds for the others). In shedrly filtering

pays off

The primary contributions of this work are:

The articulation and identification of the database
requirements for supporting medical research into
functional and structural brain mapping.

The development of a logical database design, includ-
ing the introduction of data types VOLUME and
REGION and the implementation of operations on
them within an extensible DBMS.

The study of physical database design alternatives,
including the detailed analysis of representation and
compression methods for the REGION data type, the
proposal to use runs along the Hilbert curve suitably
compressed, and formulas for predicting space require-
ments.

The performance results from our prototype, which
show that the database component of the system is I/O
bound and that reducing data traffic through compact
representations and early filtering significantly
improves performance.

Future directions for this work include:

Spatial indexing and query optimization techniques for
efficiently locating spatial objects in large populations
of studies [23].

The integration of data mining [1] and hypothesis test-
ing techniques to support investigative queries like
“find PET study intensity patterns that are associated
with any neurological condition in any subpopulation”.
The determination of image feature vectors and the
study of multi-dimensional indexing methods [3, 10,
17] for them to enable similarity searching in queries



like “find all the PET studies of 40-year old females [8]
with intensities inside the cerebellum similar to Ms.
Smith’s latest PET study”.

We should note that creating a practically useful brain
mapping environment also requires the integration of
facilities for measurement, statistical analysis and general PA, pp. 247-252, March 29-31, 1989. (also available as
image processing of the data. Finally, we want to mention UMIACS-TR-89-47 and CS-TR-2242)
that we have recently re-implemented our prototype using[10] M. Freeston, “The BANG File: A New Kind of Grid File”,

the ObjectStore OODBMS from Object Design in place of ~ Proc. of ACM SIGMODpp. 260-269, San Francisco, CA,

Starburst. May 27-29, 1987.

[11] H. Fuchs, M. Levoy, and S.M. Pizer, “Interactive Visualiza-
tion of 3D Medical Data”|EEE Computer22, 8, pp. 46-51,
Aug. 1989.

[12] R.G. Gallager and D.C. Van Voorhis, “Optimal Source
Codes for Geometrically Distributed Integer Alphabets”
IEEE Trans. on Information TheqryT-21, pp. 228-230,
March 1975.

P. Elias, “Universal Codeword Sets and Representations of
Integers”, IEEE Trans. on Information TheqryiT-21,
pp.194-203, 1975.

[9] C. Faloutsos and S. Roseman, “Fractals for Secondary Key
Retrieval’Eighth ACM SIGACT-SIGMOD-SIGART Sympo-
sium Principles of Database Systems (PQP8jladelphia,
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