
Abstract

We describe the design and implementation of QBISM
(Query By Interactive, Spatial Multimedia), a prototype
for querying and visualizing 3D spatial data. Our first
application is in an area in medical research, in particular,
Functional Brain Mapping. The system is built on top of
the Starburst DBMS extended to handle spatial data types,
specifically, scalar fields and arbitrary regions of space
within such fields. In this paper we list the requirements of
the application, discuss the logical and physical database
design issues, and present timing results from our proto-
type. We observed that the DBMS’ early spatial filtering
results in significant performance savings because the sys-
tem response time is dominated by the amount of data
retrieved, transmitted, and rendered.

1: Introduction
The goal of the QBISM project is to study the exten-

sions of database technology that enable efficient, interac-
tive exploration of numerous large spatial data sets from
within a visualization environment. In this work we focus
on the logical and physical database design issues to han-
dle 3-dimensional spatial data sets. We also present timing
results collected from our prototype. As a first application
area we have chosen the Functional Brain Mapping
project. Our prototype serves as a tool medical researchers
can use to visualize and to spatially query 3-d human brain
scans in order to investigate correlations between human
actions (e.g., speaking) and physiological activity in brain
structures. The spatial techniques presented here could
also be applied to other medical applications involving
anatomic modelling, such as surgery or radiation treatment
planning.

Many other application domains involve access to and
visualization of large spatial databases. In particular, Geo-
graphic Information Systems (GIS) [26] (e.g., environ-
mental and archeological [25] applications); scientific
databases (e.g., molecular design systems); and multime-

dia systems [19] (e.g., image databases [20]). In these
classes of applications it is essential to provide accurate
and flexible data visualization as well as powerful explora-
tion tools [5, 15].

The scalar field is a data type common to several of
these applications. In particular, a 3-d scalar field is a col-
lection of <x, y, z, value> tuples. In a medical database,
the “value” could be a measure of glucose consumption at
the <x, y, z> point in the brain as depicted in a PET1 study;
in a meteorological database, the value could be the tem-
perature at a given point in the atmosphere; and in a chem-
ical database, the value could be the charge at a point in a
molecular model. Scalar fields can have other dimension-
alities as well; for example, the price history of a stock can
be represented as a 1-d scalar field of <time, price> sam-
ples. Furthermore, fields can also represent non-scalar
data, such as wind velocity. More generally, ann-d m-vec-
tor field is a field of samples in n-d where the value is an
m-dimensional vector. The techniques presented in this
paper can be extended to handle fields of dimensionalities
other than 3 in a straightforward manner, and to handle
vector fields by simply storing vectors in place of scalars
in the appropriate data structures.

We believe our results on medical image databases will
be useful in many of the above applications because they
all share some basic traits: (a) the principal data objects
have spatial extent, (b) the users would like to ask ad-hoc
queries in an exploratory, interactive format, (c) the users
need visualization tools to view 3-d or higher dimensional
data in a variety of ways, (d) the spatial data objects are
large, and finally, (e) the number of spatial data objects
over which the user wants to query is increasing. This last
characteristic is especially important in our current work
in which queries like “display the PET studies of 40-year
old females that show high physiological activity inside
the hippocampus” are essential for understanding struc-

1.  Positron Emission Tomography. PET images generally show physio-
logical activity.
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tural and functional relationships in the brain over popula-
tion groups.

To provide such a flexible query environment for non-
traditional data, we utilized the extensibility features of the
Starburst DBMS developed at IBM’s Almaden Research
Center and built an operational prototype. We added new
data types and associated query processing operators. We
studied compact representations for these data types and
assessed their performance. We integrated IBM’s Data
Explorer/6000 into our prototype as a visual, query front-
end. Finally, we populated our prototype with anatomic
models and acquired human brain imagery from the Labo-
ratory of Neuro-Imaging of the U.C.L.A. School of Medi-
cine.

The remainder of the paper is organized as follows:
Section 2 describes the particular medical research prob-
lem we studied and its query and data characteristics;
Section 3 describes the logical database design; Section 4
analyzes compact representation schemes for the data;
Section 5 describes our prototype implementation, con-
centrating on extensions to Starburst and Data Explorer/
6000; Section 6 provides initial performance results
derived from the prototype; and finally, Section 7 summa-
rizes the paper and describes the overall project and its
future directions.

2: The medical application

2.1: Problem definition

As mentioned above, we have chosen the brain map-
ping project as a sample application for QBISM. The goal
of the brain mapping research is to discover spatial corre-
lations between activity in the brain and functional behav-
ior, e.g. speaking or arm movement. Such activity in the
brain is frequently characterized by localized, non-uni-
form intensity distributions involving sections or layers of
brain structures, rather than uniform distributions across
complete structures. Discovering the precise locations of
brain activity, correlating it with anatomy, and construct-
ing functional brain atlases is the goal of an ongoing major
medical research initiative [32]. Ultimately, this under-
standing has clinical applications in diagnosis and treat-
ment planning, as well as scientific and educational value.

Our system must support queries across multiple medi-
cal image studies. Astudy is actually a “billing” term
referring to a set of medical images collected for a single
purpose on a single patient, such as a 50 slice MRI2 study
or three x-rays of a fractured elbow. Querying across col-
lections of these will enable the return of statistical

2.  Magnetic Resonance Imaging. MRI images generally show soft-tissue
structural information.

responses and support the visualization of multiple data
sets [11]. This will extend the power of medical visualiza-
tion environments which today typically deal with a single
study at a time. The system we envision will provide query
capability over large image databases in a very investiga-
tive, interactive and iterative fashion. The following sce-
nario illustrates a sample session with such a system in
which each step generates a database query:

• The medical researcher may start by selecting from a
standard atlas [29] a set of brain structures for the sys-
tem to render, for example those supporting the visual
system.

• After repositioning the scene to a desired viewing
angle, structures may be texture mapped with a
patient’s PET study to highlight activity along their
surfaces.

• The intensity range may be histogram segmented and
other regions in this PET study identified in the same
range.

• An arbitrary region may be compared with the same
(or a nearby) region from a previous PET study.

• Targeting electrodes or radiation beams to regions of
interest may be calculated or simulated to visualize
anatomical structures intersected.

• An individual PET (or other study) may be compared
with data from a comparable subpopulation of the
same demographic group.

The above scenario is representative of the queries that
medical researchers (i.e., those at the U.C.L.A. Laboratory
of Neuro Imaging) would like to ask. To help provide a
general classification of these queries, we use the concept
of a scalar field: a study is represented as a collection of
<x, y, z, value> tuples, where “value” is an intensity level
in our application. We then have the following classifica-
tion of queries:

• Spatialqueries specify a condition on the <x,y,z> part
of a scalar field (e.g., show the intensity values in a
given query region of a particular MRI study).

• Attribute queries specify a condition on the value part
of a scalar field (e.g., show regions of high intensity in
a PET study).

• Mixed queries involve both spatial and attribute speci-
fications (e.g., show the regions of high intensity in the
right brain hemisphere).

• Data mining queries (not part of the current work) seek
to discover patterns and “association rules” [1] in sub-
population groups (e.g., find PET study intensity pat-
terns that are associated with any neurological
condition, such as focal epilepsy, in any subpopula-
tion).



2.2: Data characteristics

Basically, the database will consist of a large, growing
collection of static, 3-dimensional scalar fields and a col-
lection of anatomic models (i.e., atlases) that describe the
spatial extent of anatomical structures.

The 3-dimensional scalar fields correspond to the stud-
ies. These are collected via an assortment of medical
imaging modalities used to capture structural (e.g., MRI,
CT3, histology4) and functional / physiological (e.g., PET,
SPECT5) information about the human brain. Each of
these studies results in a 3D “volume” of intensity read-
ings that can consume 1-100 megabytes of storage using
current spatial resolutions and image depths. This volume
is essentially a scalar field comprised of 3 spatial coordi-
nates and an associated scalar intensity value. As a refer-
ence point, for clinical purposes a medium sized hospital
(e.g., 500 beds) typically performs about 120,000 radio-
logical image studies a year, including standard X-ray film
studies. If all this imagery were stored in digital form (as
hospitals are beginning to do [33]), the size of this hospi-
tal’s yearly radiological data is estimated to be about 2 ter-
abytes uncompressed, or 1 terabyte after lossless
compression. In our work we must save the raw data vol-
umes from the tomographic modalities as well as consider-
able amounts of derived data. The derived data is
generated as a result of transformations to align and regis-
ter the raw data, to create models suitable for surface and
volume rendering of the data, and to build database repre-
sentations that enable exploratory query.

As mentioned above, the database also contains atlases
of reference brains for each demographic group. These
models provide anatomical access to the acquired imagery
via computed spatial transformations stored in the data-
base and the spatial query operators. Their use is illus-
trated in the previous scenario by the step in which a struc-
ture in the visual system is used to select a particular
patient’s PET data. The spatial extent of that structure
from the appropriate reference atlas is used to drive selec-
tive spatial extraction of the functional data.

An important point is that a PET study of a patient is
not perfectly aligned with the corresponding atlas. To
solve this problem, spatial and statistical warping tech-
niques [24, 30, 31] are used to derive affine transforma-
tions that allow a study to be registered to an appropriate
atlas. Thus, when a study is loaded into the database,

3.  Computed Tomography. CT studies generally show hard-tissue struc-
tural information (e.g., bones).

4.  Histology images are acquired by slicing and photographing tissue,
one thin layer at a time.

5.  Single Photon Emission Computed Tomography. SPECT studies, like
PET studies, show physiological information.

warping matrices are computed and stored along with the
original and warped study. The details of the warping tech-
niques are outside the scope of this paper. However, these
automatic or semi-automatic warping algorithms are
extremely important for this application. It is precisely this
technology that permits anatomic access to acquired medi-
cal images as well as comparisons among studies, even of
different patients, that have been warped to the same atlas.
Furthermore, it enables the database to grow, and be que-
ryable, with minimal human analysis of the data. The
coordinate system of the original study is calledpatient
space while that of the atlas (and therefore, warped study)
is calledatlas space.

3: Logical design
We discuss the logical data types, spatial operations,

and database schema relevant to the medical application in
this section. For implementation details, refer to Section 4
and Section 5.

3.1: Data types

The data typesREGION andVOLUME are of particular
importance in this application; we store instances of these
types, as well as other large objects, in long fields (see
Section 5.1). A REGION encodes the spatial extent of an
arbitrarily shaped entity, such as an anatomical structure.
A VOLUME encodes all values from a 3D scalar field
(e.g., a PET study) sampled on a complete, regular, cubic
grid (e.g., 128x128x128 positions evenly-spaced along
each axis corresponding to a 20x15x30 cm. real-world
scalar field); the samples are stored in a linearized form in
an implied order. We discuss these representations at
length in Section 4.

3.2: Spatial operations

To efficiently execute the queries discussed in
Section 2, we need spatial operators to manipulate
REGIONs and VOLUMEs. We defined and implemented
the following useful subset:

• INTERSECTION(REGION r1, REGION r2) returns a
REGION representing the spatial intersection of r1 and
r2.

• CONTAINS(REGION r1, REGION r2) returns a bool-
ean value indicating whether r1 is a spatial superset of
r2.

• EXTRACT_DATA(VOLUME v, REGION r) returns a
long field6 containing exactly those intensity values
from v that are inside r.

6.  A recent version of the prototype includes the data type
DATA_REGION to represent the return value of EXTRACT_DATA(); it
contains a REGION and data values for each point in the REGION.



Other spatial operations would be useful as well, such
as UNION(r1, r2) and DIFFERENCE(r1, r2), and would
be straightforward to implement.

3.3: Schema

In Figure 1 we present an E-R diagram capturing a sub-
set of a full medical schema appropriate for our applica-
tion. Each entity (in a rectangular box) corresponds to a

table in our extended relational DBMS implementation of
the system. TheNeural System andNeural Structure enti-
ties capture various neuro-anatomic data and relationships
common to all human brains, (e.g., which structures com-
prise the visual system). ThePatient entity records infor-
mation pertinent to each individual (e.g., name and age).
TheRaw Volume entity captures information pertinent to a
particular study of a patient, including the actual study
data stored in scanline order in a long field. We will not
discuss these entities in any further detail.

TheWarped Volume entity is particularly important for
our current work; its most significant attribute is a long
field VOLUME that stores the warped study. As men-
tioned in Section 2.2, a Raw Volume can be warped to one
or more atlas reference brains; we generate and store the
warped volume here at database load time (rather than
query time) since the computation is expensive. Addi-
tional attributes of theWarped Volume entity include the
actual warping parameters, the raw study id, and the atlas
id, among others. For the rest of this paper, the term VOL-
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Figure 1. An entity-relationship diagram of the
medical database schema. Darker boxes
represent the most important entities that
support spatial operations.

UME implies warped VOLUME, unless explicitly speci-
fied otherwise.

Another key entity is theAtlas Structure entity. Its most
important attribute is a long field REGION, storing the
spatial representation of the interior of the given structure
in the specified atlas space. A second long-field column
stores a triangular mesh representing the surface of the
structure to support faster rendering of the structure itself,
optionally with study data mapped onto its surface.

The Atlas entity has several string and numeric
attributes, describing the characteristics of the reference
population it represents and the coordinate system it
defines (e.g., resolution and voxel size in real world units).

Finally, theIntensity Band entity serves as an index on
the Warped Volume entity that allows rapid access to
VOLUME data based on intensity (it is shown in a dotted
box because it is redundant). We define anintensity band
as a REGION representing the subset of the voxels in a
VOLUME that have intensities in a particular interval
(with fixed width and uniform spacing in our current pro-
totype), such as 0-31 or 32-63. The most important
attributes of anIntensity Band are the intensity interval
end-points and a long field for the associated REGION.

3.4: Queries

To demonstrate how we use the schema and the spatial
operators (see Section 5 for more details), we show below
two Starburst Structured Query Language (SQL) queries
that the system generates in response to the user query
“retrieve the intensity values from study number 53 inside
the putamen (a neural structure) from the Talairach atlas”:

select a.n, a.x0, a.y0, a.z0, a.dx, a.dy, a.dz,
a.atlasId, p.name, p.patientId, rv.date

from atlas a, rawVolume rv,
warpedVolume wv, patient p

where a.atlasId = wv.atlasId and
wv.studyId = rv.studyId and
rv.patientId = p.patientId and
rv.studyId = 53 and a.atlasName = ‘Talairach’

select as.region,
extractVoxels(wv.data, as.region)

from warpedVolume wv, atlasStructure as,
neuralStructure ns

where wv.studyId = 53 and
wv.atlasId = <from first query> and
as.structureId = ns.structureId and
ns.structureName = ‘putamen’

The first query checks that an appropriate warped study
exists and obtains information about the atlas coordinate
space and patient (necessary for rendering and annota-
tion), while the second one retrieves the actual region and
data values.



For a more complicated user query, such as “retrieve
the intensity values from some study inside some neural
structure that are in the interval [100-200],” the SQL is
similar, but includes a call to intersection() in the select list
and additional joins.

4: Physical database design: static studies of
representations

As mentioned before, there are two basic data types:
VOLUMEs and REGIONs. A warped MRI study is an
instance of a VOLUME, with intensity values defined over
all the points of a 3D grid; an intensity band and an ana-
tomical structure are instances of REGIONs. In the sub-
sections that follow, we present methods of storing these
data types so that the queries of interest can be answered
efficiently.

In our discussion we present measurements from actual
human brain data obtained from the Laboratory of Neuro
Imaging at UCLA. The atlas was digitally extracted from
the Talairach & Tournoux atlas [29] and represented 11
neuro-anatomic structures as REGIONs in a 128x128x128
atlas space grid. The radiological data consisted of 5 PET
studies (each with 51 128x128 8-bit deep image slices)
and 3 MRI studies (each with 44 512x512 8-bit deep
image slices). Each study was warped and resampled to
produce a 128x128x128 8-bit per voxel VOLUME and
banded with uniformly spaced intensity intervals 32 units
wide covering the range 0-255 to produce 8 intensity band
REGIONs.

We make heavy use of space filling curves and specifi-
cally, of the Hilbert curve. On a 4x4 grid, Figure 3 shows a
2-dimensional example of the Peano curve (dotted line,
also known as the Z curve [21], bit-shuffling, or Morton
key [26]) and the Hilbert curve (solid line). The latter has
been shown to have better spatial clustering properties [9].
Both curves require O(n) complexity to convert between
locations on the curve and Cartesian coordinates where n
is the number of bits used to store a position along the
curve. A general algorithm for the Hilbert curve is pre-
sented in [4] and a simpler algorithm for 2 dimensions in
[16].

Some terminology is necessary. Refer to Figure 2 and
Figure 3 for examples. We give the definitions for the Z
curve, using the prefix “z-”; the same terms with the “h-”
prefix correspond to the Hilbert curve.

• The z-id of a voxel is its position in the Z ordering.
Typically, it is considered as a binary string. In
Figure 2, the z-id of the shaded 1x1 square is 2, or
“0010”. Alternatively, one can compute the z-id by
interleaving the voxel’s x and y coordinates; for the
same shaded 1x1 square, x1x0=01 and y1y0=00, so the
z-id=x1y1x0y0=0010.

• An octant is a cube of maximal size that is the result of
the recursive decomposition of space, and entirely
inside some REGION of interest (e.g., the shaded
upper-left square in Figure 2 is a quadrant, or 2D
octant). More generally, anoblong octant (or z-ele-
ment) of rank r is the complete set of 2r voxels that
have the same prefix in their z-ids, differing only in
their r least significant bits (e.g., the shaded 1x2 rectan-
gle in Figure 2). For a regular (cubic) octant in n-d,r
must be a multiple of n.

• Thez-value of an oblong octant is the common prefix
of the z-ids of the constituent voxels (e.g., the upper-
left quadrant in Figure 2 has “01**” as its z-value,
where “*” stands for “don’t care”). Typically, the z-
value is represented as a pair of the form <z-id, rank>,
using the smallest z-id of the constituent voxels. Using
bit operations, the two components can be packed into
4 bytes for grids as large as 512x512x512.

• A z-delta is a maximal set of voxels with consecutive
z-ids all either entirely inside or outside a REGION.
When these voxels are inside, we call it az-run; when
outside, we call it az-gap. For example, one z-run in
Figure 3 stretches from z-id 1100 to 1101.

4.1: Representation of a VOLUME

Our goal is to choose the best way to store a volume,
with the following requirements:

1. efficient random access: spatial probes into a VOL-
UME should be fast and simple (e.g., “what is the
value at point <10, 10, 10>”).

2. good spatial clustering: neighboring grid points in 3D
should be stored close to each other on disk to reduce
the number of random disk accesses into a VOLUME
during extraction queries.
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Figure 2. Illustration of (oblong) quadrants
in 2D on the Z curve.
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The first requirement makes compression methods unat-
tractive; the second leads to “distance preserving” k-
dimensional-to-1-dimensional mappings. Since the Hilbert
curve has the best clustering properties among the known
curves, we propose to store a volume by sorting the voxels
in Hilbert order and storing only the intensities, since their
positions are implied. We have implemented the Z order-
ing, too, but it gives inferior clustering (yielding about
27% more runs for each of the REGIONs we tried).

4.2: Representation of a REGION

Here we study the problem of storing REGIONs to effi-
ciently support spatial operations such as intersections
(e.g., “find the voxels that belong to the intersection of the
hippocampus and the 32-63 intensity band”) and “extrac-
tions” (e.g., “find the intensities in the hippocampus of
Sue’s last PET study”). We discuss alternative representa-
tions, compression methods, and spatial approximations.

Given the above operations, we have chosen a volumet-
ric representation of the REGIONs. Surface models cannot
support these spatial operations efficiently; Constructive
Solid Geometry is not applicable since arbitrary
REGIONs of interest do not necessarily have simple ana-

Figure 3. Illustration of h- and z-runs in
2D for the shaded REGION.
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lytical descriptions. With a volumetric representation, we
can tap the vast literature on quadtrees/octrees [13, 26]
with a wealth of algorithms for indexing and spatial opera-
tions (e.g., the spatial join [22]). We use surface models
only on atlas structures (in addition to the volumetric one)
because they support faster, better quality rendering.

Using a volumetric representation, a REGION is typi-
cally encoded as a list of the z-values of its (oblong)
octants. We propose two improvements:

• Use “runs” instead of (oblong) octants because they
generally merge more voxels together. Note that every
(oblong) octant is either a run or a part thereof, and
every run consists of one or more (oblong) octants;
therefore, the number of runs never exceeds the num-
ber of octants. Also note that most algorithms that effi-
ciently process octants have close analogs that
efficiently process runs, including the “spatial join”
algorithm for computing intersections [22]. These
algorithms operate by linearly scanning the runs or
octants of two REGIONs in parallel (analogous to a
merge of two sorted lists), optionally with some opti-
mizations.

• Use Hilbert order, as opposed to Z order (i.e., h-runs
instead of z-runs) because the Hilbert curve offers bet-
ter spatial clustering and yields fewer runs.

Both of these proposals reduce the number of “pieces”
algorithms must process, so they are expected to acceler-
ate spatial operations. For illustration, Table 1 and Table 2
show how these methods represent the 2D shaded
REGION of Figure 3.

Our first step was to illustrate that h-runs do indeed pro-
duce fewer “pieces” than z-runs and (oblong) octants. For
each of the various anatomic and intensity band
REGIONs, we plotted the number of z-runs, octants, and
oblong octants against the number of h-runs. As expected,

TABLE 1. Z-curve encodings for REGION in Figure 3.
octants
<z-id, rank>

<0001,0> <0100,2> <1100,0> <1101,0>

oblong octants
<z-id, rank>

<0001,0> <0100,2> <1100,1>

runs
<start, end>

<1,1> <4,7> <12,13>

TABLE 2. Hilbert-curve encodings for REGION in
Figure 3.

octants
<h-id, rank>

<0011,0> <0100,2> <1000,0> <1001,0>

oblong octants
<h-id, rank>

<0011,0> <0100,2> <1000,1>

runs
<start, end>

<3,9>



the Hilbert curve resulted in fewer runs than the Z curve.
Furthermore, the scatter-plots were well approximated by
lines: the correlation coefficients for the linear fits were
0.998, 0.974, and 0.991 for the z-runs, the octants, and the
oblong octants respectively. In summary, we found that for
typical brain regions, the number of h-runs, z-runs,
octants, and oblong octants are in constant ratios:

(#h-runs):(#z-runs):(#oblong octants):(#octants) =
1: 1.27: 1.61: 2.42

It is interesting to note the similarity to the results reported
in [9], in which the ratio for all possible 3-d rectangles is:

(#h-runs): (#z-runs) = 1: 1.20

Since h-runs consistently outperform z-runs in our experi-
ments, as well as in all other published experiments of
which we are aware, we concentrate mainly on h-runs
throughout the rest of this paper.

Compression methods for runs: Compressed repre-
sentations of REGIONs should improve system perfor-
mance because, as we show in Section 6, the database
component of the system is I/O bound. In this subsection,
we seek to determine the most compact method to encode
the h-run representation of a REGION on disk. The
straightforward approach (termed “naive”) is to store the
starting and ending h-ids each as long integers (4+4 bytes
per run). For the example REGION in Figure 3, this
method would store 1 run in 8 bytes.

When considering compression schemes, the most
promising point of view is to envision the REGION as a
set of runs and gaps (called “deltas”) on the Hilbert curve,
and to encode their lengths. To achieve optimal compres-
sion, we need to know the probability distribution of the
length of a “delta”. Our measurements showed that the
distribution roughly obeys the relationship:

count = (constant) * (length) (-a) (EQ 1)

where a is ~1.5-1.7 for several atlas structure and intensity
band REGIONs we tried. Thus, we should rule out all the
compression methods that are tailored for geometric distri-
butions, such as the “infinite Huffman codes” method [14,
12] and the “variable length - fixed increment” codes [28].

In light of the above, we have chosen the -code of
Elias [8], and we will refer to it as “elias”. It uses small
codes for small numbers and achieves excellent compres-
sion because the majority of lengths are small. Let “logx”
denote the binary logarithm ofx. This method encodes the
integerx as its length in unary followed by the binary rep-
resentation of x. That is, it encodes  in unary
(i.e.,  0-bits followed by a 1-bit), followed by

 in binary (i.e., the binary representation of x,

γ

xlog 1+

xlog

x 2 xlog–

except for the most significant digit, which is always “1”).
For example:

1:  1
2:  0 1 0
3:  0 1 1
4:  00 1 00

We also calculate theentropy of the collection of deltas
of a given REGION. Ifpl is the fraction of lengthl deltas
among the total, then the entropy theorem states that we
cannot use less than

(EQ 2)

bits per delta. We use this lower bound as a “yardstick” to
assess the performance of each method.

We compared the relative performance of these com-
pression methods on h-runs by plotting their space
requirements against the entropy bound for each REGION
(see Figure 4); we also included the octant and oblong
octant methods (using 4 bytes per octant). Interestingly,
the linear regression fits were very good (ranging from
0.968 to 0.985), despite the variety of the REGIONs we
used (atlas structures, MRI-bands, and PET-bands), and
the ratios of average REGION sizes were:

(entropy):(h-run-elias):(h-run-naive):
(oblong-octant):(octant) =

1 : 1.17 : 9.50 : 10.4 : 17.8

This led us to the following conclusions:

• Without compression, the h-run-naive method outper-
forms the octant method, roughly by a factor of 2
(17.8/9.50), and it requires approximately the same
amount of space as the oblong octant method.

• The h-run-elias method achieves the smallest storage,
only 1.2 times the entropy bound, so we are confident
that it is difficult to improve upon. Compared to the h-
run-naive and the oblong octant methods, it achieves
an 8-fold improvement.

Approximate representation of REGIONs: Addi-
tional space savings in REGIONs can be achieved by sac-
rificing some spatial accuracy. For the z- and h-run
representations, we eliminate all the gaps that are shorter
than some threshold (“mingap”) by merging together the
runs on each side. For the octant representation, we
require that octants have a minimum size of GxGxG rather
than 1x1x1, where G is a power of two, even when only
one voxel of the octant is in the REGION (similar to the
error-bound criterion described in [23]). Both techniques
effectively increase the volume of a REGION by including
outside space while simultaneously reducing the number
of octants or runs required to represent it. Queries involv-
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ing such over-approximated REGIONs require post-pro-
cessing with exact REGIONs; we do not consider them
further in this paper.

4.3: Conclusions

From this section, we come to the following conclu-
sions:

• We will store VOLUMEs as a list of intensity values,
sorted on Hilbert order.

• We will store REGIONs as a compressed list of Hilbert
runs. The “elias” method provides excellent space con-
sumption results.

• We observe that the ratio of the number of h-runs to z-
runs is approximately 1:1.2 in this application for vari-
ous query regions.
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Figure 4. Comparison of REGION sizes for various methods (using the Hilbert curve) relative
to the entropy limit.

5: System issues

5.1: Starburst extensions

Our prototype makes use of several extensibility fea-
tures in Starburst [27, 18], most notably long fields and
user-defined functions.

Long-fields: We store each large object, such as a
REGION or VOLUME, in a separate long field. The Long
Field Manager (LFM) stores long fields directly in an
operating system disk device (not a file system) using a
buddy allocation scheme to promote contiguity, thereby
exploiting the clustering properties of the Hilbert curve.
The LFM supports fast random I/O to arbitrary pieces of
long fields directly to and from client memory without
internal buffering. The long field is a Structured Query
Language (SQL) data type in Starburst that SQL functions
may accept and return. We rely heavily on these low-level
features to reduce disk traffic and response time in our pro-
totype. (Although the Starburst SQL query compiler sees



Figure 5. A sample QBISM session. After entering a query in the upper-left window, the user can see the results in the lower-right (and change the
viewpoint with the controls in the upper-right corner). The partially-visible window on the lower-left shows a portion of the DX visual program, which is
typically hidden from the user.



our REGIONs and VOLUMEs as instances of the same
long-field type, we “encapsulate” these “types” by using
SQL functions to operate on them.)

User-defined SQL Functions: We implemented the
operators of Section 3.2 in Starburst as user-defined SQL
functions. Starburst embeds these operators (like all other
SQL functions) within query execution plans at compile
time and invokes them in the run-time environment. We
can therefore use the complex predicate construction and
query block nesting features of the SQL language to
express and execute a wide variety of spatial queries, even
over multiple studies.

5.2: System architecture

User interface: IBM Data Explorer/6000 (DX), a sci-
entific visualization package [7, 6], provides the founda-
tion for the end-user interface in our prototype. We wrote a
DX “visual program” which accepts the user’s query spec-
ifications through entry fields and renders the result in a
variety of ways in 3D. Figure 5 shows the workstation
screen during a sample session. The user can specify a
study, some anatomical structures, and intensity values of
interest (e.g., the data from Jane’s last PET study with
intensity above 200 in the right brain hemisphere). DX
renders the selected information in a variety of ways: just
the anatomical data, just the intensity data, both together,
or a solid-textured mapping of the intensity data onto the
surfaces of the structures (see Figure 6). The user can
interact with the rendered picture to change the viewpoint
and zoom factor, or further manipulate the selected data,
by adding a cutting plane, computing a gradient field, or
generating an animation, for example. Because of the
caching mechanism built into DX, the user can quickly

Figure 6. Sample query results. (a) The atlas structure “ntal1” (one hemisphere of the brain). (b) The
intensity data from a PET study inside the same structure. (c) The PET data mapped onto the surface
of the structure. Note the difference in shading between a and c, which is easier to see on a color screen.

(a) (c)(b)

review and manipulate the results of several recently
issued queries without necessitating a database reaccess.

Division of labor: Figure 7 depicts the overall archi-
tecture of the system. Its components perform the follow-
ing functions:

• DX is responsible for all visualization tasks. It consists
of a user-interface process for interacting with visual
programs and an executive process for performing
most of the computations. We added a new module
called ImportVolume to the DX executive; it accepts
the user’s query and converts the spatially restricted
data from the database into a DX object.

• Starburst manages the medical data and performs the
query processing, including the operations designed to
spatially restrict the answer set.

• MedicalServer translates high-level query specifica-
tions it receives from DX into SQL (consider the
example of Section 3.4), sends the query strings to
Starburst, and then returns the results to DX. Medi-

Figure 7. System architecture. Each box
represents a process. The arrows represent
the network.
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calServer accesses Starburst through a shared-library
application programming interface (API) and runs in
the same process.

• The DX executive and Starburst/MedicalServer pro-
cesses communicate with each other using Remote
Procedure Calls (RPCs) and can thus run on separate
machines (even with different low-level data formats).

6: Performance experiments
We conducted some experiments to see how our proto-

type performs, to identify bottlenecks, and to gather infor-
mation that permits extrapolation of the results to other
hardware, larger databases, and different methods. We
describe the system configuration, the experiments on sin-
gle studies and finally, experiments on multiple studies.

6.1: Experimental environment

Our system consisted of two IBM Risc System/6000
Model 530 workstations running AIX 3.2 (see Figure 8).

• On machine 1, with 64MB of memory, we ran the Star-
burst/MedicalServer process and the DX user-interface
process; this machine did not utilize any special graph-
ics rendering hardware. It held the relational data in a
local AIX file system and the long field data in an AIX
logical volume.

• On machine 2, with 48MB of memory, we ran the DX
executive process. Running the Starburst/Medi-
calServer and DX executive processes on the same
machine may improve performance. However, we
believe that a real world system may benefit from sepa-
rate dedicated visualization and database server
machines and chose to conduct our experiments with a
similar configuration. Note that the DX user interface
process does not perform much processing, so we ran it

Relations

Figure 8. System configuration illustrating the assignment of
storage and processes to machines.

DX User
Interface DX Execu-

tive

Starburst / Medi-
calServer

Machine 1
Machine 2

Long
fields

on the database server machine rather than on a third
workstation.

• Machine 1, on a 16Mbps Token Ring, communicated
through a router with the second, on a 10Mbps Ether-
net (ping reported a 4ms round-trip packet travel time).

We used the same data as in Section 4 and warped and
banded it in advance to produce the schema shown in
Figure 1. Since the atlas space had dimensions
128x128x128, each warped VOLUME consisted of 2 mil-
lion, single-byte intensity values. We did not create
indexes on any of the relation columns. Finally, for each
query, unless otherwise mentioned:

• We used exact spatial REGIONs encoded as runs in
Hilbert order with the “naive” 8 bytes-per-run repre-
sentation scheme.

• We queried intensity ranges (e.g., 224-255) that exactly
matched intensity bands stored in the database.

• We issued each query 4 times and reported the average
measurements for the last 3 runs. The major compo-
nents did not buffer data: we flushed the DX cache
before each run (otherwise, it would buffer the data-
base’s query result), and Starburst’s Long Field Man-
ager performs no buffering anyway. Measurements
varied little across runs.

6.2: Single-study queries

Table 3 shows the results of our single-study run-time
experiments. The queries are all variations of “display the
data from a particular PET study inside a particular
REGION.” Note that:

• The total execution time column shows elapsed time
from start to finish, including database access and visu-
alization of the result with an empty DX cache.



• The Starburst/MedicalServer column covers all data-
base activity. The spatial extensions to Starburst (e.g.,
INTERSECTION() and EXTRACT_DATA()) and the
LFM account for most of the cpu time. LFM I/O wait
time accounts for the difference between the real and
cpu times.

• The network column measures traffic between the Med-
icalServer and DX executive. It shows the number of
network messages sent and their total real time cost,
including both software time (e.g., RPC overhead) and
“wire” time.

• The DX column covers all visualization activity. The
“rendering +” time represents all processing in DX after
ImportVolume is finished, primarily related to comput-
ing the 3D image. It includes some network communi-
cation between the DX user interface and executive
processes, such as the transmission of the final image.

• The “other” column shows any other time the remain-
ing columns do not measure. It consists mainly of time

TABLE 3. Full-system run-time measurements for single-study queries. All times
are in seconds. The numbers in bold are independent real time components of the
totals in the last column.
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to run an atlas query that retrieves coordinate space
information, time to compile the SQL queries, and
some round-off error.

Our single-study queries fall into the following classes:

• A “simple” query, “show a full PET study”, which pro-
vides a reference point for comparing more selective
queries. A “flat file” system that ships the whole VOL-
UME to the visualization module would have similar
disk I/O and network measures as this full-study query.

• Spatial queries, such as “show the data from a PET
study inside a rectangular-solid with corners (30,30,30)
and (100,100,100)”, which demonstrate I/O and time
savings throughout the system for brain structures (e.g.,
ntal and ntal1) or simple geometric objects compared to
the times for the full-study query.

• Attribute queries, such as “show the data from a PET
study within the intensity range 224-255”, which dem-
onstrate similar savings for more complicated
REGIONs.



• Mixed queries, such as “show the data from a PET
study inside ntal1 within the intensity range 224-255”,
which demonstrate the ability to filter data even more
finely through spatial intersection computations while
yielding further time savings. Notice that query Q6,
which computes the intersection of queries Q4 and Q5,
requires much fewer I/Os than Q4 and Q5 combined,
and less overall execution time than either Q4 or Q5.

6.3: Multi-study queries

Table 4 shows the Starburst activity from our multi-
study run-time experiments. These queries are all varia-
tions of “compute the REGION in which each study’s
intensity values are consistently in a particular intensity
band.” Such queries require the database to compute an n-
way spatial intersection. We used different REGION
encoding methods, to measure their relative performance.
Specifically, we used z- and h-runs with the “naive”
scheme, as well as octants. We found h-runs to be superior,
as expected.

6.4: Results from the performance experiments

From these measurements we draw the following con-
clusions:

• The database component of the system is I/O bound
since the real times far exceed the cpu times. This
implies that the computational cost of managing
REGIONs and performing spatial operations on them
is low.

• By comparing the full-study query Q1 to the others, we
can see that it is crucial to reduce the data traffic: bytes
read from the disk, shipped through the network and
imported for visualization. Without spatial processing
support, the response time would always be compara-
ble to the full-study time (69 seconds for Q1, versus
15-28 seconds for the others). In short,early filtering
pays off.

TABLE 4. Run-time measurements for Starburst
multiple-study queries. All times are in seconds.

Query: compute the
REGION in which
all 5 PET studies
consistently have
intensities in the
range 128-159

Starburst

LFM
Disk I/Os
(4K
Pages)

Total
Execution
Time

Encoding Method (cpu) (real)

h-runs, naive 446 1.02 5.7

z-runs, naive 593 1.26 7.3

octants (z order) 664 1.49 8.1

• The early filtering will be even more beneficial in mul-
tiple-study queries, such as “display the voxel-wise
average intensity inside ntal for these 1,000 PET stud-
ies”. In such queries, the database need only read the
relevant disk pages of each study, compute the aver-
ages, and return the average values to DX. The reduc-
tion in data traffic will be linear in the number of
studies involved.

7: Conclusions and future work
We have described the design and implementation of

QBISM, a prototype system for querying and visualizing
3D medical images. We believe that such a system should
be built on top of an extensible DBMS engine, appropri-
ately extended to handle spatial data types, and combined
with a high-quality visualization tool as the user interface.
The challenges in the project were to define and imple-
ment operators and types that enable medical researchers
to ask ad-hoc queries over numerous 3-d patient studies,
and to provide fast responses despite the large space
requirements of even a single study.

The primary contributions of this work are:

• The articulation and identification of the database
requirements for supporting medical research into
functional and structural brain mapping.

• The development of a logical database design, includ-
ing the introduction of data types VOLUME and
REGION and the implementation of operations on
them within an extensible DBMS.

• The study of physical database design alternatives,
including the detailed analysis of representation and
compression methods for the REGION data type, the
proposal to use runs along the Hilbert curve suitably
compressed, and formulas for predicting space require-
ments.

• The performance results from our prototype, which
show that the database component of the system is I/O
bound and that reducing data traffic through compact
representations and early filtering significantly
improves performance.

Future directions for this work include:

• Spatial indexing and query optimization techniques for
efficiently locating spatial objects in large populations
of studies [23].

• The integration of data mining [1] and hypothesis test-
ing techniques to support investigative queries like
“find PET study intensity patterns that are associated
with any neurological condition in any subpopulation”.

• The determination of image feature vectors and the
study of multi-dimensional indexing methods [3, 10,
17] for them to enable similarity searching in queries



like “find all the PET studies of 40-year old females
with intensities inside the cerebellum similar to Ms.
Smith’s latest PET study”.

We should note that creating a practically useful brain
mapping environment also requires the integration of
facilities for measurement, statistical analysis and general
image processing of the data. Finally, we want to mention
that we have recently re-implemented our prototype using
the ObjectStore OODBMS from Object Design in place of
Starburst.

Acknowledgments
We’d like to thank Walid Aref and Brian Scassellati for

helping with the implementation and design; Felipe
Cabrera, George Lapis, Toby Lehman, Bruce Lindsay,
Guy Lohman, and Hamid Pirahesh for guiding us to use
Starburst effectively; the UCLA LONI Lab staff for pro-
viding and helping to interpret the human brain data; and
Peter Schwarz for providing a formatting template for this
paper. Furthermore, Christos Faloutsos, who contributed
to this work at the IBM Almaden Research Center while
on sabbatical from the University of Maryland at College
Park, would like to thank SRC and the National Science
Foundation (IRI-8958546) for their support as well as
Empress Software Inc. and Thinking Machines Inc. for
matching funds.

Bibliography
[1] R. Agrawal, T. Imielinski, A. Swami, “Mining Association

Rules between Sets of Items in Massive Databases”,ACM
SIGMOD, May 1993.

[2] M. Arya, W. Cody, C. Faloutsos, J. Richardson and A. Toga,
``QBISM: Extending a DBMS to Support 3D Medical
Images’’, Proceedings of the 10th International Conference
on Data Engineering, IEEE Computer Society Press, Febru-
ary 1994, pp. 314-325. Also available as IBM Research
Report RJ 9480, IBM Almaden Research Center, August
1993.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider and B. Seeger,
“The R*-tree: An Efficient and Robust Access Method
Points and Rectangles”,ACM SIGMOD, pp. 322-331,
Atlantic City, NJ, May 23-25, 1990.

[4] T. Bially, “Space-Filling Curves: Their Generation and
Their to Bandwidth Reduction”, IEEE Trans. on Informa-
tion Theory, IT-15, 6, pp. 658-664, Nov. 1969.

[5] T.A. DeFanti, M.D. Brown, and B.H. McCormick, “Visual-
ization: Expanding Scientific and Engineering Research
Opportunities”, IEEE Computer, 22, 8, pp. 12-25, Aug.
1989.

[6] IBM AIX Visualization Data Explorer/6000 Programmer’s
Reference, Second Edition, Publication No. SC38-0497-1,
1992.

[7] IBM AIX Visualization Data Explorer/6000 User’s Guide,
Second Edition, Publication No. SC38-0496-1, 1992.

[8] P. Elias, “Universal Codeword Sets and Representations of
Integers”, IEEE Trans. on Information Theory, IT-21,
pp.194-203, 1975.

[9] C. Faloutsos and S. Roseman, “Fractals for Secondary Key
Retrieval”Eighth ACM SIGACT-SIGMOD-SIGART Sympo-
sium Principles of Database Systems (PODS), Philadelphia,
PA, pp. 247-252, March 29-31, 1989. (also available as
UMIACS-TR-89-47 and CS-TR-2242)

[10] M. Freeston, “The BANG File: A New Kind of Grid File”,
Proc. of ACM SIGMOD, pp. 260-269, San Francisco, CA,
May 27-29, 1987.

[11] H. Fuchs, M. Levoy, and S.M. Pizer, “Interactive Visualiza-
tion of 3D Medical Data”,IEEE Computer, 22, 8, pp. 46-51,
Aug. 1989.

[12] R.G. Gallager and D.C. Van Voorhis, “Optimal Source
Codes for Geometrically Distributed Integer Alphabets”
IEEE Trans. on Information Theory, IT-21, pp. 228-230,
March 1975.

[13] I. Gargantini, “An Effective Way to Represent Quadtrees”,
Comm. of ACM (CACM), 25, 12, pp. 905-910, Dec. 1982.

[14] S.W. Golomb, “Run Length Encodings”,IEEE Trans. on
Information Theory, IT-12, pp. 399-401, July 1966.

[15] J. Helman and L. Hesselink, “Representation and Display of
Vector Field Topology in Fluid Flow Data Sets”,IEEE
Computer, 22, 8, pp. 27-36, Aug. 1989.

[16] H.V. Jagadish, “Linear Clustering of Objects with Multiple
Attributes” ACM SIGMOD Conf., pp. 332-342, Atlantic
City, NJ, May 23-25, 1990.

[17] H.V. Jagadish, “A Retrieval Technique for Similar Shapes”,
Proc. ACM SIGMOD Conf., pp. 208-217, Denver, Colo-
rado, May 29-31, 1991.

[18] T.J. Lehman and B. Lindsay, “The Starburst Long Field
Manager,”VLDB Conf. Proc., Amsterdam, Aug., 1989 pp.
375-383.

[19] A. Desai Narasimhalu and S. Christodoulakis, “Multimedia
Information Systems: The Unfolding of a Reality”IEEE
Computer, 24, 10, pp. 6-8, Oct. 1991.

[20] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman,
D. Petkovic, and P. Yanker, “The QBIC Project: Querying
Images By Content Using Color, Texture, and Shape”,SPIE
1993 International Symposium on Electronic Imaging: Sci-
ence &Technology, Conference 1908, Storage and Retrieval
for Image and Video Databases, February 1993.

[21] J. Orenstein, “Spatial Query Processing in an Object-Ori-
ented Database System”Proc. ACM SIGMOD, pp. 326-336,
Washington D.C., May 1986.

[22] J. Orenstein and F. Manola, “PROBE:Spatial Data Model-
ing and Query Processing in an Image Database Applica-
tion” IEEE Trans. on Software Engineering, 14, 5, pp. 611-
629, May 1988.

[23] J. Orenstein, “Redundancy in Spatial Databases”Proc. of
ACM SIGMOD conf., Portland, Oregon, May 1989.

[24] C.A. Pelizzari, G.T.Y. Chen, D.R. Spelbring, R.R. Weich-
selbaum and C.T. Chen, “Accurate three-dimensional regis-
tration of CT, PET and/or MR images of the brain”,J.
Comput. Assisted Tomogr., 13, 1989, pp. 20-26.

[25] P. Reilly, “Data Visualization in Archeology”,IBM Systems
Journal, 28, 4, pp. 569-579, 1989.



[26] H. Samet, “Applications of Spatial Data Structures Graph-
ics, Image Processing and GIS”, Addison-Wesley, 1990.

[27] P. Schwarz, W. Chang, J.C. Freytag, G. Lohman, J. McPher-
son, C. Mohan, and H. Pirahesh, “Extensibility in the Star-
burst Database System,”Proc. 1986 Int’l Workshop on
Object-Oriented Database Systems, Pacific Grove, Septem-
ber 1986, pp. 85-92.

[28] D.G. Severance, “A Practitioner’s Guide to Data Base Com-
pression”,Information Systems, 8, 1, pp. 51-62, 1983.

[29] J. Talairach and P. Tournoux, “Co-planar stereotactic atlas
of the human brain”, Thieme, Stuttgart, 1988.

[30] A.W. Toga, P.K. Banerjee, and E.M. Santori, “Warping 3D
models for interbrain comparisons”,Neurosc. Abs., 16,
1990, pp. 247

[31] A.W. Toga, P. Banerjee, and B.A. Payne, “Brain warping
and averaging”,Int. Symp. on Cereb. Blood Flow and
Metab., Miami, FL 1991.

[32] A. W. Toga, “A digital three-dimensional atlas of structure/
function relationships”,J. Chem. Neuroanat., 4(5):313-318.

[33] A.W.K. Wong, R.K. Taira, and H.K. Huang, “Digital
Archive Center: Implementation for a Radiology Depart-
ment”,AJR 159, pp. 1101-1105, November 1992.


