
Declustering Using FractalsChristos Faloutsos �Pravin BhagwatInstitute for Advanced Computer StudiesDept. of Computer Science,University of Maryland at College ParkAbstractWe propose a method to achieve declustering for cartesian product �les on M units. Thefocus is on range queries, as opposed to partial match queries that older declustering methodshave examined. Our method uses a distance-preserving mapping, namely, the Hilbert curve, toimpose a linear ordering on the multidimensional points (buckets); then, it traverses the bucketsaccording to this ordering, assigning buckets to disks in a round-robin fashion. Thanks to thegood distance-preserving properties of the Hilbert curve, the end result is that each disk containsbuckets that are far away in the linear ordering, and, most probably, far away in the k-d addressspace. This is exactly the goal of declustering. Experiments show that these intuitive argumentslead indeed to good performance: the proposed method performs at least as well or better thanolder declustering schemes.Categories and SubjectDescriptors: E.1 [Data Structures]; E.5 [Files]; H.2.2 [Data BaseManagement]: Physical Design - Access Methods; H.2.6 [Data Base Management]: DatabaseMachines;Index terms: declustering, disk allocation, error correcting codes, fractals, Hilbert curve.1 INTRODUCTIONDistributing a �le on multiple units can reduce the response time for partial match and rangequeries. A �le is de�ned as a collection of records; a unit can be a disk unit in a multidisk system,or a node of a multiprocessor etc.. Good declustering can improve performance in many situations,including� database machines [5], [4] where a relation may be distributed over several nodes,� multiprocessor systems [20] when they are used to search large databases,� in multiple-disk systems [17] etc.We examine cartesian product �les, ie., �les which are divided into buckets (= disk pages =disk blocks), such that each bucket contains records with attributes in a given range. Figure 1illustrates an employee �le, with k=2 attributes (e.g., age and salary), which is organized as a�This research was sponsored partially by the National Science Foundation under the grants IRI-8719458 andIRI-8958546, by a donation by EMPRESS Software Inc. and by a donation by Thinking Machines Inc.1



cartesian product �le. Crosses correspond to records; the dashed lines de�ne the borders of thebuckets.Many secondary key access methods map a real �le on a cartesian product �le, for example,multiattribute hashing [19] [1], or the grid �le [16] and its derivatives [12]. All these methods areused to answer e�ciently partial match or range queries, or to perform fast joins (e.g., the superjoinalgorithm [21] for disk-resident, deductive databases).In a cartesian product �le, let di be the number of ranges that domain Di is divided into. Thus,a bucket is characterized by a string of k numbers [i1; i2; : : : ; ik], called bucket-id. Clearly, each ijshould belong to the correct range, [0,dj-1]. Then, the problem can be informally stated as follows:Given the set of all the bucket-ids and a set of M disks,assign the bucket-ids to the disksto minimize the response time for all the possible range queries.Past e�orts focus on partial match queries, mainly assuming binary cartesian product �les, orassuming that the number of disks is a power of 2. In this work we opt for a declustering methodthat will work well for range queries, for an arbitrary number of disks and without restrictions onthe cardinalities of the attribute domains. We propose a new declustering method based on theHilbert Space Filling Curve [10] and we show experimentally that it outperforms older methods.The outline of this paper is as follows: Section 2 presents a brief survey of existing declusteringmethods. Section 3 describes the proposed method. Section 4 gives the experiments and discussesthe results. Section 5 has the conclusions and future research directions.2 SURVEYDistributing a �le on multiple disks can reduce the response time of partial match and range queries.All database machines, therefore, use some form of declustering to improve performance. Severalmethods have been proposed to achieve declustering when the queries are on a single attribute e.g.,the algorithms in GAMMA [5], the hybrid partitioning [6] etc..All these methods try to distribute the load across processors, assuming that the queries or thejoins involve only one attribute. A large number of methods have been proposed in the past, aimingto achieve good declustering for partial match queries, that refer to several attributes. Almost allthese methods focus on Cartesian Product Files [8]. Among the few exceptions is the work in [22],where records are dynamically relocated, to avoid "hot spots". All the rest of the declusteringmethods assume that the allocation of buckets to disks does not change over time. A survey ofsuch declustering methods can be found in [9]. There, the methods are roughly grouped into thefollowing categories: (a) the Disk Modulo family, where they apply the modulo function on someencoding of the bucket-id (b) the FX method, that uses �eldwise exclusive-or (c) methods usingerror correcting codes ECC 2



Before we discuss the merits of various declustering methods, we de�ne some terminology usedthroughout this report. We assume that the �le is being declustered over M disks, which arenumbered as 0; 1; 2; : : : ;M � 2;M � 1.
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   a b c dFigure 1: Cartesian product �le: Each rectangle corresponds to a bucketA �le F is called a Cartesian product �le if it satis�es the following de�nition:De�nition 1 Let Di denote the ith attribute domain of a k-attribute �le and let each Di be par-titioned into di disjoint subsets Di1; Di2; : : : ; Didi. We call F a cartesian product �le if allrecords in every bucket are in D1i1 � D2i2 � : : : � Dkik , where each Djij is one of the subsetsDj1; Dj2; : : : ; Djmj . The bucket b � D1i1 � D2i2 � : : : � Dkik is denoted by [i1; i2; : : : ; ik].As an example, consider Figure 1: Let D1 = D2 = fa, b, c, dg, D11 = fa, bg = D21 and D12= fc,dg = D22. Then the following arrangement constitutes a cartesian product �le.bucket[1,1] = f(a,a), (a, b), (b,a)g � D11 x D21bucket[1,2] = f(a,c), (a, d), (b,c), (b,d)g� D11 x D22bucket[2,1] = f(c,a), (c, b), (d,b)g � D12 x D21bucket[2,2] = f(c,c), (c, d), (d,c), (d,d)g � D12 x D22De�nition 2 The response time of a query is de�ned as : max(N0; N1; : : : ; NM�1), whereNi(0 � i � N � 1) is the number of qualifying buckets on disk i.De�nition 3 An allocation method is strictly optimal for a query Q if the response time ofquery Q is dNM e, where N is the total number of qualifying buckets for query Q.De�nition 4 An allocation method is strictly optimal if it is strictly optimal for all possiblequeries. 3



Symbol De�nitionM number of disksk number of attributesDi domain of i-th attributedi number of ranges of i-th domaindiskOf() function that maps bucket-ids to disksTable 1: Symbols and De�nitionsNotice that there need not exist a strictly optimal allocation method for a given �le [7].Table 1 contains a list of mathematical symbols and their de�nitions. Given the above de�ni-tions, our goal can be described more formally as follows:Problem De�nition:Given { a cartesian product �le with k attributes and domains D1; D2; : : : ; Dk{ M units (e.g, disks)Assign buckets to units (i.e., determine the diskOf() function)so that the average response time for range queries is minimized.Next we describe briey the major representatives of some older declustering methods.2.1 Disk Modulo Allocation Method (DM)In the Disk Modulo allocation method [8], each bucket [i1; i2; : : : ; ik] is assigned to disk unitdiskOf(i1; i2; : : : ; ik) = (i1 + i2 + : : :+ ik) modM (1)For example, consider a relation R with two attributes, R(X; Y ). Suppose that each domain isdivided into 8 ranges (d1 = d2 = 8). Thus, relation R consists of 64 buckets. Figure 2 shows howDisk Modulo Method would allocate these buckets to M=4 disks.Derivatives of the Disk Modulo method include the Generalized Disk Modulo allocation methodand the Binary Disk Modulo method [7]; a similar approach is followed in [3]. For the rest of thispaper we shall use the Disk Modulo method, because it is simpler than the rest of the Moduloallocation methods and because it requires no restrictions on the number of disks or the cardinalitiesof the attributes.2.2 Field-wise Exclusive-or Distribution (FX)Kim and Pramanik [14] proposed the FX(Fieldwise eXclusive-or) distribution method which givesbetter performance for a wider range of parameter values than older methods. The main idea4
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Figure 2: The Disk Modulo (DM) method for bucket allocationbehind the FX distribution is the use of bitwise exclusive-or operation(
) on the binary values ofa bucket-id. Speci�cally, if [i1; i2; : : : ; ik] is a bucket-id, the FX method allocates it to diskdiskOf(i1; i2; : : : ; ik) = TM [i1 
 i2 
 : : :
 ik] (2)where TM is a function which returns the rightmost log2M bits of domain values, that is, themodM function. The values i1; i2; : : : ; ik are assumed to be encoded in binary. For example, if wehave M=4 disks, the bucket with bucket-id [3, 7] gives3
 7 = (011)2 
 (111)2 = (100)2and eventually will be stored in diskT4(100)2 = (100)2 mod 4 = (00)2 = 0As a larger example, Figure 3 shows how the relation R of the previous example would be allocatedto 4 disks using the FX distribution.In general, for partial match queries, the FX distribution gives better probability of strictoptimality than DM. It has been proved in [14] that when the number of devices and the sizeof each �eld are powers of two, the set of partial match queries which are optimal under FXdistribution is a superset of those for the DM distribution.2.3 Error correcting codes (ECC)This method [9] works for binary attributes, or attributes where every di is a power of 2. For thebinary case, the problem is reduced into grouping the 2k binary strings on k bits in M groups of5
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disk 3Figure 3: The FX method for bucket allocationunsimilar strings. The main idea proposed in that paper is to group the strings so that each groupforms an Error Correcting Code (ECC). This construction guarantees that the strings of a givengroup will have large Hamming distances, ie., they will di�er in many bit positions. Intuitively,this should result into good declustering.Figure 4 shows the same relation R declustered according to the ECC method. In this example,each bucket is a pair of octal digits, or, equivalently, a 6-bit string. We have (arbitrarily) decidedthat the �rst 3 bits will come from the �rst attribute. Since there areM = 2m=4 disks, we have touse an error-correcting code with 6 bits, out of which m=2 bits will be parity-check bits and therest 4 will be information bits. Tables in [18] give the appropriate parity check equations. In ourexample, we have the following parity check equationsa1 + a2 + a3 = c1a1 + a2 + a4 = c2where the bucket-id is the bit string (a1; a2; a3; a4; c1; c2). Then, the bit strings that correspond tothis code are assigned to one of the disks (say, disk 0). For example, the bucket (0,0)=(000, 000)gives the string 000000, which belongs to this code, and is therefore assigned to disk 0; this diskis indicated by white in Figure 4. Similarly, the bucket (6,0)=(110, 000) gives the string 110000,which also belongs to the same code.Each of the cosets of this code is assigned to one of the remaining disks. Intuitively, the cosetsare created by changing the parity checks from even to odd parity for every combination of the6
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parameters chosen valueDimension of relation 2Grid size of relation 16x16 - 64x64Number of disks M 8 - 32Range query size nxn 2x2 - 10x10Table 3: Experiment parametersstudied the response time of range queries as a function of the following parameters: the size ofthe (2-dimensional, square) grid, the number of disks M and the size n of the (square) range querynxn. These parameters are listed in Table 3.
Grid size = 16x16,   disks = 32
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Grid size = 64x64,   disks = 32
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4.2 ObservationsThe �rst set of experiments involved a grid of dimensions 16x16. The results of our experimentsare shown in Figures 7-9. Each graph shows the plot of response time as a function of the size ofrange queries. The number of disks and grid size of relation is kept constant in each graph. Thenumber of disks M was 8, 16 and 32 for Figure 9, 8 and 7 respectively. From these plots, we seethat all the methods show similar performance if (a) the number of disks is small or if (b) the sizeof the query is large (Figure 9 ). However, for large number of disks and small queries, the HCAMand ECC methods achieve the best results, followed by the FX method. Notice that Figure 7 isunfair for the FX method, because for a 16x16 grid size, the FX method cannot make use of morethan 16 disks. As a result, 16 out of 32 disks are not utilized by FX method at all.In order to see whether these observations hold for larger grids, we performed the same ex-periments for a 64x64 grid (see Figures 10-12) The plots are similar to their 16x16 counterparts,with the same trends and the same ranking of methods (HCAM with similar or better performancethan ECC; they both outperform FX, which in turn outperforms DM). Similar experiments for a256x256 grid lead to the same observations and are omitted for brevity.Finally, we run experiments with a number of disks that is not a power of 2, to see whether thetrends carry over. In this case, the FX and ECC methods can not be applied. Figure 13 shows theresults for M=29 disks on a 64x64 grid. The HCAM method gives better performance than DM,often achieving up to twice the speed of the DM method.Thus, the major conclusions out of all our experiments are:1. for small queries and many disks, the HCAM performs similarly or better than ECC; ECC isbetter than FX, which outperforms DM.2. for large queries or few disks, all methods give more or less the same response time. The reasonis that several buckets qualify in this case, which are more or less uniformly distributed amongthe (relatively few) disks, thereby giving similar response times.3. HCAM gives results which are usually close to the strictly optimal allocation.Some interesting, minor observations follow:1. the FX method consistently outperformed the DM method in all our experiments. This mightbe the result of a yet-undiscovered theorem, extending the theorem of Kim and Pramanikfrom partial match queries to range queries as well.2. the response time of the DM method increases linearly with the size of range queries. This isbecause the DM method allocates all buckets lying on the diagonal of a range query to thesame disk. 14



3. the FX and DM methods are optimal whenever the size of a range query is a multiple of thenumber of disks. This is because buckets, within a MxM square, are uniformly distributedby both the methods.A �nal note with respect to the applicability of the proposed method: The HCAM method doesnot need the number of disksM to be a power of 2, like the FX and ECC methods do. Moreover, itcan still work even if the cardinalities di (i = 1; : : :k) of the attribute domains are arbitrary. Untilnow, we have made the silent assumption that the di's are equal and are all powers of 2. However,this can be relaxed: Given a cartesian product �le with arbitrary di's, we can still apply the HCAMby clipping the appropriate region from a k-dimensional cube. The details are as follows:1 consider the smallest k-dimensional cube with side S = 2s, which completely encloses ouraddress space2 create the Hilbert curve for this cube3 assign the buckets of this cube to the M disks according to HCAM4 ignore the buckets of the cube that don't correspond to real bucketsFigure 14 illustrates the method for 2 dimensions, with 5x7 grid. The full grid would be the 8x8grid of Figure 6; the proposed allocation scheme is created by clipping the lower-left 5x7 piece fromthe full 8x8 grid.
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5 CONCLUSIONSWe have proposed a simple method to achieve declustering for cartesian product �les on M units.Our method uses a distance-preserving mapping, namely, the Hilbert curve, to impose a linearordering on the multidimensional points (buckets); then, it traverses the buckets according tothis ordering, assigning buckets to disks in a round-robin fashion. Thanks to the good distance-preserving properties of the Hilbert curve, the resulting method achieves good performance forrange queries.We have also performed experiments, to compare the performance of our method with someof the best older declustering methods (DM, FX, ECC). The experiments involved exhaustiveenumeration of all the possible queries; thus, there are no statistical errors in our results.The advantages of the proposed method over the older ones are as follows:� HCAM gives consistently better performance than all the older methods (ECC, FX, DM) ifthe size of the range query is small; the gains grow larger as the number M of disks increases.� HCAM can work for any number of disks. The FX and ECC methods require that M is apower of 2. The DM method, which can work for arbitrary number of disks, too, can notachieve the performance of HCAM.Future research could focus on the mathematical analysis of these methods, trying to deriveclosed formulas for their performance.References[1] A.V. Aho and J.D. Ullman. Optimal partial match retrieval when �elds are independentlyspeci�ed. ACM TODS, 4(2):168{179, June 1979.[2] T. Bially. Space-�lling curves: Their generation and their application to bandwidth reduction.IEEE Trans. on Information Theory, IT-15(6):658{664, November 1969.[3] C.C. Chang and C.Y. Chen. Performance of two-disk partition data allocations. BIT,27(3):306{314, 1987.[4] G. Copeland, W. Alexander, E. Boughter, and T. Keller. Data placement in bubba. Proc. ofACM SIGMOD, pages 99{109, June 1988.[5] D. DeWitt, R.H. Gerber, G. Graefe, M.L. Heytens, K.B. Kumar, and M. Muralikrishna.Gamma - a high performance dataow database machine. In Proc. 12th International Confer-ence on VLDB, pages 228{237, Kyoto, Japan, August 1986.[6] D. J. DeWitt and S. Ghandeharizadeh. Hybrid-range partitioning strategy: A new declusteringstrategy for multiprocessor database machine. Proc. 16th International Conference on VLDB,pages 481{492, 1990. 16
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