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1 IntroductionSequences constitute a large portionof data stored in computers. Therehave been several e�orts to model time-sequenced data, to design languages toquery such data, and to develop accessstructures to e�ciently process suchqueries (see [25] for a bibliography).Most of the work, however, has fo-cussed on \exact" queries. New emerg-ing applications, particularly databasemining applications [2], require thatdatabases be enhanced with the capa-bility to process \similarity" queries.The following are some examples ofthe similarity queries over sequencedatabases:� Identify companies with similar pat-tern of growth.� Determine products with similarselling patterns.� Discover stocks with similar move-ment in stock prices.� Find if a musical score is similar toone of the copyrighted scores.Similarity queries can be classi�ed intotwo categories:a. Whole Matching. The sequences tobe compared have the same length



n.b. Subsequence Matching. The querysequence is smaller; we look for asubsequence in the large sequencethat best matches the query se-quence.We concentrate on whole matching,and present an indexing technique thatcan be used to e�ciently process suchqueries. Within the whole matchingcase, we consider the following prob-lems:a1. Range Query. Given a query se-quence, �nd sequences that aresimilar within distance �.a2. All-Pairs Query (or `spatial join').Given N sequences, �nd the pairsof sequences that are within � ofeach other.The parameter � is a distance param-eter that controls when two sequencesshould be considered similar. It couldbe either user-de�ned, or determinedautomatically (eg., �=10% of the 'en-ergy' of the query sequence; see Eq. 3for the de�nition of 'energy').Approximate matching has beenattracting increasing interest lately.Motro described a user interface forvague queries [18]. Shasha andWang [24] proposed an indexingmethod that uses the triangular in-equality and some precomputed dis-tances to prune the search. How-ever, the space overhead of the methodseems quadratic on the number of ob-jects, which maymake it prohibitive forlarge databases. Aurenhammer [5] sur-veyed recent research on Voronoi dia-grams, along with their use for nearestneighbor queries. Although Voronoidiagrams work well for approximatematches in 2-dimensional spaces, they

need intricate transformations to workfor a 3-d space, and they do not workat all for higher dimensionalities. Ja-gadish [15] suggested using a few min-imum bounding rectangles to extractfeatures from shapes and subsequentlymanaging the resulting vectors using aspatial access method, like k-d-B-trees,grid �les, etc.For numerical sequences, we proposeextracting k features from every se-quence, mapping it to k-dimensionalspace, and then using a multidimen-sional index to store and search thesepoints. The multidimensional in-dexing methods currently in use areR�-trees [6] and the rest of the R-tree and k-d-Btree family [12, 14,16]; linear quadtrees [22]; and grid-�les [19]. There are two subtle prob-lems with this approach that must beaddressed:� Completeness of feature extraction:How to extract features, and how toguarantee that we do not miss anyqualifying object (time sequence,in our case). To guarantee no\false dismissal", objects should bemapped to points in k-dimensionalspace such that the Euclidean dis-tance in the k-dimensional space isless than or equal to the real dis-tance between the two objects.� Dimensionality \curse": Most multi-dimensional indexing methods scaleexponentially for high dimensionali-ties, eventually reducing to sequen-tial scanning. For linear quadtrees,the e�ort is proportional to the hy-per surface of the query region [13];the hyper surface grows exponen-tially with the dimensionality. Grid�les face similar problems, since theyrequire a directory that grows ex-ponentially with the dimensional-



ity. The R-tree based methods seemto be most robust for higher di-mensions, provided that the fanoutof the R-tree nodes remains > 2.Experiments [21] indicate that R�-trees work well for up to 20 di-mensions. The feature extractionmethod should therefore be suchthat a few features are su�cient todi�erentiate between objects.We propose to use the DiscreteFourier Transform [20] for feature ex-traction. Given a sequence, we trans-form it from the time domain to thefrequency domain. We then index onlyon the �rst few frequencies, droppingall other frequencies. This approachaddresses the two problems cited aboveas follows:� Completeness of feature extraction:Parseval's theorem [20], discussed inSection 2, guarantees that the dis-tance between two sequences in thefrequency domain is the same as thedistance between them in the timedomain.� Dimensionality curse: As we discussin subsection 3.3, a large family ofinteresting sequences exhibit strongamplitudes for the �rst few frequen-cies. Using the �rst few frequenciesthen avoids the dimensionality prob-lem, while still introducing few falsehits. The false hits are removed in apost-processing step.The organization of the rest of thepaper is as follows. Section 2 givessome background material on the Dis-crete Fourier Transform, and intro-duces Parseval's theorem that providesthe basis for the indexing techniquewe propose. A resume of our index-ing technique is given in Section 3.

We also justify our choice of similar-ity measure and the selection of DFTfor feature extraction in this section.Section 4 contains performance exper-iments that empirically show the e�ec-tiveness of our technique. We concludewith a summary in Section 5.2 Discrete FourierTransformWe start with a brief overview ofthe Discrete Fourier Transform (DFT).The importance of the DFT is theexistence of a fast algorithm, theFast Fourier Transform (FFT), thatcan calculate the DFT coe�cients inO(n logn) time. Further informationon the Fourier transform can be foundin any digital signal processing text-book, for example, [20].The n-point Discrete Fourier Trans-form [20] of a signal ~x = [xt], t =0; : : : ; n� 1 is de�ned to be a sequence~X of n complex numbers Xf , f =0; : : : ; n� 1, given byXf = 1=pn n�1Xt=0 xt exp (�j2�ft=n) f = 0; 1; : : : ; n�1(1)where j is the imaginary unit j = p�1.The signal ~x can be recovered by theinverse transform:xt = 1=pnn�1Xf=0Xf exp (j2�ft=n) t = 0; 1; : : : ; n�1(2)Xf is a complex number (with the ex-ception of X0, which is a real, if thesignal ~x is real). There are some mi-nor discrepancies among books: somede�ne Xf = 1=nPn�1t=0 : : : or Xf =Pn�1t=0 : : :. We have followed the def-inition in (Eq 1), for it simpli�es the



upcoming Parseval's theorem (Eq 4).De�nitions: For a complex numberc = a+ jb = A exp(j�)� A � jcj is said to be the amplitudeand � to be the phase of the numberc.� The conjugate c� of c is de�ned asa� jb.� The energy E(c) of c is de�ned asthe square of the amplitude (E(c) �jcj2 � c c�).� The energy E(~x) of a sequence ~x isde�ned as the sum of energies at ev-ery point of the sequence:E(~x) �k ~x k2� n�1Xt=0 jxtj2 (3)A fundamental observation for thispaper is Parseval's theorem [20]:Theorem 1 (Parseval) Let ~X be theDiscrete Fourier Transform of the se-quence ~x. Then we haven�1Xt=0 jxtj2 = n�1Xf=0 jXf j2 (4)That is, the energy in the time domainis the same as the energy in the fre-quency domain.The Discrete Fourier Transform in-herits the following properties fromthe continuous Fourier transform. Let`()' indicate Fourier pairs, i.e.,[xt]()[Xf ] (5)means that [Xf ] is the Discrete FourierTransform of [xt]. The Discrete FourierTransform is a linear transformation:If[xt]()[Xf ]; [yt]()[Yf ] (6)

then[xt + yt]()[Xf + Yf ] (7)[axt]()[aXf ] (8)Also, a shift in the time domainchanges only the phase of the Fouriercoe�cients, but not the amplitude.[xt�t0]()[Xf exp (2�ft0j=n)] (9)Given the above, Parseval's theoremgivesk ~x� ~y k2 � k ~X � ~Y k2 (10)The latter implies that the Euclideandistance between two signals ~x and ~yin the time domain is the same as theirEuclidean distance in the frequency do-main.We believe that for a large numberof time sequences of practical interest,there will be a few frequencies withhigh amplitudes. Thus, if we indexonly on the �rst few frequencies, weshall have few false hits. This is a keyobservation for our proposed method.3 ProposedTechniqueWe propose using the square root of thesum of squared di�erences as the dis-tance function between two sequences.Speci�cally, the distance D(~x; ~y) be-tween two sequences ~x and ~y is thesquare root of the energy of the di�er-ence:D(~x; ~y) � (n�1Xt=0 jxt � ytj2)1=2 � (E(~x � ~y))1=2 (11)If this distance is below a user-de�nedthreshold �, we say that the two se-quences are similar.



The importance of Parseval's theo-rem (Eq 4) is that it allows to translatethe query from the time domain to thefrequency domain. Coupled with theconjecture that few Fourier coe�cientsare enough, it allows us to build an ef-fective index with a low dimensionality.The following is a resume of our pro-posed technique:1. Obtain the coe�cients of the Dis-crete Fourier Transforms of everysequence in the database.2. Build a multidimensional index us-ing the �rst fc Fourier coe�cients,where fc stands for `cut-o� fre-quency'. Thus, each sequence be-comes a point in a 2fc-dimensionalspace (recall that the Fourier coef-�cients are complex numbers). Wediscuss in subsection 3.3 why fc canbe taken to be small (< 5). As dis-cussed earlier, we recommend theR�-trees as the indexing structure,since it has been shown to work wellfor at least up to 20 dimensions [21].This index will be called `F -index'henceforth.3. For a range query, obtain the �rst fcFourier coe�cients of the query se-quence. Use the F -index to retrievethe set of matching sequences thatare at most � distance away fromthe query sequence.4. For an all-pairs query, we do a spa-tial join using the F -index. The re-sult of the join will be a superset ofthe answer set.5. The actual answer set is obtainedin a post-processing step in whichthe actual distance between two se-quences is computed in the time do-main and only those within � dis-tance are accepted.

The `completeness' of this method isbased on the following lemma:Lemma 1 The F -index introduces nofalse dismissals.We only give the proof for rangequeries; the proof for `all-pairs' queriesis very similar. Suppose we want allsequences ~x that are similar to a querysequence ~q, within distance �, i.e.:D(~x; ~q) � � (12)or, equivalently:k ~x� ~q k2= n�1Xt=0 jxt � qtj2 � �2 (13)Using Parseval's theorem (Eqs. 4, 10),we want all ~X such thatk ~X � ~Q k2= n�1Xf=0 jXf � Qf j2 � �2 (14)Keeping only the �rst fc < n coe�-cients, we havefc�1Xf=0 jXf �Qf j2 � n�1Xf=0 jXf �Qf j2 � �2 (15)Thus, equation (14) implies the follow-ing conditionfc�1Xf=0 jXf � Qf j2 � �2 (16)In other terms, the condition of(Eq. 16) will retrieve all ~X that are inthe answer, plus some false hits. Thus,our index acts as a �lter that returns asuperset of the answer set.3.1 Choice of SimilarityMeasureThe similarity measure is clearlyapplication-dependent. Several simi-laritymeasures have been proposed, for



1-d and 2-d signals. In a recent surveyfor images (2-d signals), Brown [7](p.367, sect. 4.2) mentions that one ofthe typical similarity measures is thecross-correlation (which reduces to theEuclidean distance, plus some additiveand multiplicative constants). We havechosen the Euclidean distance, because(a) it is useful in many cases, as is (b) itcan be used with any other type of sim-ilarity measure, as long as this measurecan be expressed as the Euclidean dis-tance between feature vectors in somefeature space.In fact, the Euclidean distance is theoptimal distance measure for estima-tion [11], if signals are corrupted byGaussian, additive noise. Thus, if ~qis our query and ~x is a corrupted ver-sion of it in the database, a searchingmethod using the Euclidean distanceshould produce good results.A valuable feature of the Euclideandistance is that it is preserved under or-thonormal transforms. Other distancefunctions, like the Lp normsLp(~x; ~y) = (X jxt � ytjp)1=p (17)do not have this property, unless p = 2(because L2 �Euclidean distance).3.2 Using DFTHaving decided on the Euclidean dis-tance as the distance measure, wewould like a transform that (a) pre-serves the distance (b) is easy to com-pute and (c) concentrates the energy ofthe signal in few coe�cients.The distance-preservation require-ment is met by any orthonormaltransform [10], DFT being one ofthem. Orthonormal transforms formtwo classes: (1) the data-dependentones, like the Karhunen-Loeve (K-L)

transform, which need all the data sig-nals to determine the transformationmatrix and (2) the data-independentones, like the DFT, Discrete Cosine(DCT), Harr, or wavelet transform,where the transformation matrix is de-termined a-priori.The data-dependent transforms canbe �ne-tuned to the speci�c data set,and therefore they can achieve betterperformance, concentrating the energyinto fewer features in the feature vec-tor. Their drawback is that, if the dataset evolves over time, e.g., a recom-putation of the transformation matrixmay be required to avoid performancedegradation, requiring expensive datareorganization. We, therefore, favordata-independent transforms.Among them, we have chosen theDFT because it is the most well known,its code is readily available and it doesa good job of concentrating the energyin the �rst few coe�cients, as we shallsee next. In addition, the DFT hasthe attractive property that the ampli-tude of the Fourier coe�cients is invari-ant under shifts (Eq. 9). Thus, usingFourier transforms for feature extrac-tion has the potential that our tech-nique can be extended to �nding simi-lar sequences ignoring shifts.Note that our approach can be ap-plied with any orthonormal transform.In fact, our response time will improvewith the ability of the transform to con-centrate the energy: the fewer the coef-�cients that contain most of the energy,the faster our response time. Thus, theperformance results presented next arejust pessimistic bounds; better trans-forms will achieve even better responsetimes.



3.3 Using Few Fourier Co-e�cients for IndexingUsing a small value for the number ofFourier coe�cients retained fc does nota�ect the correctness | the F -indexis a �lter that returns a superset ofthe answer set. However, our proposedtechnique will not be very e�ective ifthe choice of a small fc results in a largenumber of false hits.The worst-case signal for our methodis white noise, where each value xt iscompletely independent of its neigh-bors xt�1, xt+1. The energy spec-trum of white noise follows O(f0) [23],that is, it has the same energy in ev-ery frequency. This is bad for theF -index, because it implies that allthe frequencies are equally important.However, we have strong reasons to be-lieve that real signals have a skewedenergy spectrum. For example, ran-dom walks (also known as brown noiseor brownian walks) exhibit an energyspectrum of O(f�2) [23], and there-fore an amplitude spectrum of O(f�1).Stock movements and exchange rateshave been successfully modeled as ran-dom walks (e.g., [8, 17]). Usingthe data set available through ftp froms�.santafe.edu, we show in [1] that theFourier transform of the movement ofthe exchange rate between the Swissfranc and the US dollar follows closelythe same 1=f behavior as for a randomwalk.Our mathematical argument forkeeping the �rst few Fourier coe�-cients agrees with the intuitive argu-ment of the Dow Jones theory forstock price movement (see, for exam-ple, [9]). This theory tries to detect pri-mary and secondary trends in the stockmarket movement, and ignores minortrends. Primary trends are de�ned as

changes that are larger than 20%, typ-ically lasting more than a year; sec-ondary trends show 1/3-2/3 relativechange over primary trends, with a typ-ical duration of a few months; minortrends last roughly a week. From theabove de�nitions, we conclude that pri-mary and secondary trends correspondto strong, low frequency signals whileminor trends correspond to weak, highfrequency signals. Thus, the primaryand secondary trends are exactly theones that our method will automati-cally choose for indexing.In addition to stock movements andexchange rates, it is believed that sev-eral families of real signals are notwhite noise. For example, 2-d sig-nals, like photographs, are far fromwhite noise, exhibiting a few strong co-e�cients in the lower spatial frequen-cies. The JPEG image compressionstandard [26] exactly exploits this phe-nomenon, e�ectively ignoring the high-frequency components of the DiscreteCosine Transform, which is closely re-lated to the Fourier transform. Ifthe image consisted of white noise,no compression would be possible atall. Birkho�'s theory [23] claims that`interesting' signals, such as musicalscores and other works of art, con-sist of pink noise, whose energy spec-trum follows O(f�1). The argumentof the theory is that white noise withO(f0) energy spectrum is completelyunpredictable, while brown noise withO(f�2) energy spectrum is too pre-dictable and therefore boring. The en-ergy spectrum of pink noise lies in-between. Signals with pink noise alsohave their energy concentrated in the�rst few frequencies (but not as few asin the random walk). In addition tothe above, there is another group of



signals, called black noise [23]. Theirenergy spectrum follow O(f�b), b > 2,which is even more skewed than thespectrum of the brown noise. Such sig-nals model successfully, for example,the water level of rivers as they varyover time [17].4 PerformanceExperimentsTo determine the e�ectiveness ofour proposed method (the F -indexmethod), we compared it to a sequen-tial scanning method. We used the R�-tree for the index. For range queries,the sequential scanning method com-putes the distance between the querysequence and each data sequence. Inour e�ort to do the best possible im-plementation for the sequential scan-ning, we stop the test as soon as thesquare of the distance exceeds �2, andwe declare the two sequences to bedissimilar. Thus, a data sequence isfully scanned only if it is similar to thequery sequence. For `all-pairs' queries,each sequence in the database is testedagainst every other sequence, for a to-tal of N (N � 1)=2 tests.We investigated the following ques-tions in these experiments:� How to choose the number of Fouriercoe�cients to be retained (cut-o� frequency fc) in the F -indexmethod. A larger fc reduces thefalse hits but at the same time in-creases the dimensionality of the R�-tree, and hence the search time.� How does the search time grow as afunction of number of sequences inthe database?� How does the length n of the se-quences a�ect the performance?

4.1 Experimental setupWe generated synthetic sequences forthe experiments. Each sequence ~x =[xt] was a random walk:xt = xt�1 + zt (18)where zt (t = 1; 2; : : :) are independent,identically distributed (IID) randomvariables. For implementation conve-nience, each zt variable is uniformlydistributed in the range (-500, 500).The probability distribution of each ztis immaterial; the results would be thesame had we chosen a gaussian distri-bution, or a fair, random coin. For eachset S of N sequences, queries were gen-erated by creating a distorted copy [~xt]of each sequence [xt] in S. This was ac-complished by adding a small amountof noise to every xt, i.e.,~xt = xt + p wt (19)where p=0.05 and wt (t = 1; 2; : : :) areIID random variables, each followinga uniform distribution in the range (-500,500).Let Q be the set of distorted se-quences, which we shall use as queries.For range queries, we search S forsequences within distance � for ev-ery distorted sequence in Q. For all-pairs queries, we concatenate S and Q,and ask for all sequence pairs within� distance. The execution time forthe F -index method includes both thesearch time in the R�-tree and the post-processing time.
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Parameter Symbol Values Default value# Fourier coe�cients kept fc 1, 2, 3, 4 2# sequences in S jSj 50, 100, 200, 400 400Length of each sequence n 256, 512, 1024, 2048 1024Distance (tolerance) � sqrt(1000 � n)Table 1: Summary of experimental settingsWe repeated each experiment 10 times by generating 10 sequence sets withdi�erent seeds, and averaged the execution times from these repetitions. Table 1summarizes the parameters of the experiments.4.2 Varying the cut-o� frequency fcFigures 1 and 2 show the execution time per query for range and all-pairs queriesrespectively, for di�erent number of sequences in S. Figures 3 and 4 give thethe total execution time by the F-index method for the two types of queries,broken into (a) search time in the R�-tree and (b) post-processing time (wherethe `false hits' are eliminated). The latter two graphs have been plotted for jSj= 400 sequences in S.As the number of Fourier coe�cients (`cut-o� frequency' fc) increases, thedimensionality of the R�-tree increases. Recall that each Fourier coe�cient,being a complex number, increases the dimensionality of the R�-tree by 2. Theincrease in dimensionality results in better index selectivity, which gives fewerfalse hits. This reduction in false hits is reected in the post-processing time,which decreases with the cut-o� frequency. However, the time to search theR�-tree increases with the dimensionality, because the fanout is smaller, and thetree is taller. Figures 3 and 4 are in complete agreement with the above intuitivearguments.Given the trade-o� between the tree-search time and the post-processing time,it is natural to expect that there is an `optimal' fc. Indeed, the total executiontime of our method shows such a minimum, as illustrated in Figures 1 and 2.Notice that this minimum is rather at, and, more importantly, it occurs forsmall values of the cut-o� frequency fc. This experiment con�rms our earlyconjecture that we can e�ectively use a small number of Fourier coe�cients forindexing sequences.For the rest of the experiments, we kept fc=2 Fourier coe�cients for indexing,resulting in a 4-dimensional R�-tree.4.3 Varying the number of sequences in the databaseThe next experiment compares the F -index method with the sequential scanningmethod for increasing number of sequences in the database. Figures 5 and 6 show



the execution time per query for range and all-pairs queries respectively, fordi�erent values of the number of sequences in jSj. Clearly, the F -index methodoutperforms the sequential scanning. As the number of sequences increases, thegain of the F -index method increases, making this method even more attractivefor large databases.4.4 Varying the length of sequencesFirst, we show the results for range queries. We varied the length of sequences,keeping the number sequences in S �xed to 400. The distance parameter � wasset to (1000� n)1=2 (where n is the length of a sequence). Figure 7 shows theexecution time per query for range queries for di�erent sequence lengths. Thegain of the F -index method increases with n.Figure 8 shows the results of the experiments for all-pairs queries. The trendsare similar with the ones for range queries.4.5 DiscussionThe major conclusions from our experiments are:� The minimum in the execution time for both range and `all-pairs' queries isachieved for a small number of Fourier coe�cients (fc = 1 � 3). Moreover,the minimum is rather at, which implies that a sub-optimal choice for fc willgive search time that is close to the minimum.� Increasing the number of sequences in the database results in higher gains forour method.� Increasing the length of the sequences n also results in higher gains for ourmethod.Thus, the experiments show that the proposed F -index method achieves in-creasingly better performance, as the volume of the data increases.Finally, we should mention that we also examined whether a `naive' featureextraction method would work as well. For example, consider a method thatkeeps the �rst few values of each time sequence, and indexes on them. Wecarried out an experiment in which we indexed on the �rst 10 values of eachtime sequence. The performance of this method was very poor comparedto the F -index method; there were many false hits, resulting in a large post-processing time. Judging that further details are of little interest, we omit theexperimental results.5 SummaryWe proposed a method to index time sequences for similarity searching. Themajor highlights of this method are:



� The use of an orthonormal transform, and speci�cally, the Discrete FourierTransform, to extract features from a sequence. The attractive property ofthe DFT is that the Euclidean distance in the time domain is preserved in thefrequency domain, thanks to Parseval's theorem. Thus, the DFT ful�lls the\completeness of feature extraction" criterion. In addition, the DFT is fastto compute ( O(n logn) ).� The recognition that a large family of sequences have only a few (fc) strongFourier coe�cients. For example, random walks, stock price movements, ex-change rates, exhibit an amplitude spectrum of O(1=f). Ignoring the weakcoe�cients, we introduce a few false hits, but no false dismissals. The impor-tance of this observation is that it avoids the \dimensionality curse" at theexpense of a modest post-processing cost. Keeping the �rst fc coe�cients,each sequence becomes a point in a 2fc{dimensional space (recall that theFourier coe�cients are complex numbers).� The use of spatial access methods, and speci�cally R�-trees, to index thosepoints. We believe that R�-trees are more robust than their competitors, formedium dimensionalities.Extensive empirical evaluation demonstrated the e�ectiveness of the proposedmethod. We generated random walks, which model well stock price movements.The conclusions from our experiments are the following: (a) the execution timeof our method shows a rather at minimum for a small cut-o� frequency (fc �1-3) (b) compared to sequential scanning, our method achieves better gains withincreasing number of sequences and increasing length. Thus, our method will bemore and more attractive, as the volume of the database increases to Gigabytesand Terabytes.Although we have made certain choices (Euclidean distance between sequencesin time domain for similarity measure, DFT for feature extraction, and R� treefor maintaining indexes), our technique can be trivially adapted for� any similarity measure that can be expressed as the Euclidean distance be-tween feature vectors in some feature space� any distance-preserving (eg., orthonormal) transform (the more the energyconcentrated on few coe�cients, the faster our response time)� any multi-dimensional index that performs well for the number of featuresused for indexing.Future work could examine the following issues� Examination of other orthonormal transformations, in addition to the DiscreteFourier Transform.� Extensions of our approach to 2-d and higher-dimensionality signals (e.g.,images), in addition to 1-d signals (time sequences) that we have examined.The work reported in this paper has been done in the context of the Questproject [2] at the IBM Almaden Research Center. In Quest, we are exploring the



various aspects of the database mining problem. Besides the problem of queriesover large sequences, some other problems that we have looked into include theenhancement of the database capability with the classi�cation queries [3] andwith \what goes together" kinds of association queries [4]. The eventual goal isto build an experimental system that can be used for mining rules embedded inmassive databases. We believe that database mining is an important applicationarea, combining commercial interest with intriguing theoretical questions.Acknowledgements: We thank Myron Flickner for several constructive com-ments and for his help with Parseval's theorem. We also thank Harpreet Sawh-ney for pointing out the optimality of the Euclidean distance as the similaritymeasure under Gaussian, additive noise.References[1] R. Agrawal, C. Faloutsos, and A. Swami, \E�cient Similarity Search InSequence Databases", Research Report, IBM Almaden Research Center,San Jose, California, 1993.[2] R. Agrawal, T. Imielinski, and A. Swami, \Database Mining: A Per-formance Perspective", IEEE Transactions on Knowledge and Data En-gineering, Special issue on Learning and Discovery in Knowledge-BasedDatabases, (to appear).[3] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami, \An Inter-val Classi�er for Database Mining Applications", VLDB 92 , Vancouver,August 1992.[4] R. Agrawal, T. Imielinski, and A. Swami, \Mining Association Rules be-tween Sets of Items in Large Databases", ACM SIGMOD, Washington D.C.,May 1993.[5] F. Aurenhammer, \Voronoi Diagrams - A Survey of a Fundamental Geo-metric Data Structure" ACM Computing Surveys 23(3):345-405, Sept. 1991.[6] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, \The R*-tree:an e�cient and robust access method for points and rectangles", ACMSIGMOD, pages 322{331, May 1990.[7] L. G. Brown, \A Survey of Image Registration Techniques", ACM Comput-ing Surveys, 24(4), pages 325{376, December 1992.[8] C. Chat�eld, The Analysis of Time Series: an Introduction, Chapman andHall, London & New York, 1984, Third Edition.[9] R. D. Edwards and J. Magee, Technical Analysis of Stock Trends, JohnMagee, Spring�eld, Massachusetts, 1966, 5th Edition, second printing.



[10] K. Fukunaga, Introduction to Statistical Pattern Recognition, AcademicPress, 1990, 2nd Edition.[11] A. Gelb, Applied Optimal Estimation, MIT Press, 1986.[12] A. Guttman, \R-trees: a dynamic index structure for spatial searching",Proc. ACM SIGMOD, pages 47{57, June 1984.[13] G. M. Hunter and K. Steiglitz, \Operations on images using quad trees",IEEE Trans. on PAMI, PAMI-1(2):145{153, April 1979.[14] H. V. Jagadish, \Spatial search with polyhedra", Proc. Sixth IEEE Int'lConf. on Data Engineering, February 1990.[15] H. V. Jagadish, \A retrieval technique for similar shapes", Proc. ACM SIG-MOD Conf., pages 208{217, May 1991.[16] D. Lomet and B. Salzberg, \The Hb-Tree: a Multiattribute IndexingMethod with Good Guaranteed Performance", ACM TODS, 15(4), pages625{658, December 1990.[17] B. Mandelbrot. Fractal Geometry of Nature, W.H. Freeman, New York,1977.[18] A. Motro, \VAGUE: A User Interface to Relational Databases that PermitsVague Queries," ACM Trans. on Information Systems (TOIS), 6(3), pages187{214, July 1988.[19] J. Nievergelt, H. Hinterberger, and K. C. Sevcik, \The grid �le: an adapt-able, symmetric multikey �le structure", ACM TODS, 9(1):38{71, March1984.[20] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, Englewood Cli�s, N.J., 1975.[21] M. Otterman, \Approximate Matching with High Dimensionality R-trees",M.Sc. scholarly paper, Dept. of Computer Science, Univ. of Maryland, Col-lege Park, MD, 1992.[22] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1989.[23] M. Schroeder, Fractals, Chaos, Power Laws: Minutes From an In�nite Par-adise, W.H. Freeman and Company, New York, 1991.[24] D. Shasha and T-L.Wang, \New techniques for best-match retrieval", ACMTOIS, 8(2):140{158, April 1990.[25] R. Stam and R. Snodgrass, \A Bibliography on Temporal Databases", IEEEBulletin on Data Engineering, 11(4), Dec. 1988.[26] G. K. Wallace \The JPEG Still Picture Compression Standard", CACM,34(4):31{44, April 1991.


