
On Packing R-treesIbrahim Kamel and Christos Faloutsos�Department of CSUniversity of MarylandCollege Park, MD 20742AbstractWe propose new R-tree packing techniques for static databases. Given a collection of rect-angles, we sort them and we build the R-tree bottom-up. There are several ways to sort therectangles; the innovation of this work is the use of fractals, and speci�cally the hilbert curve,to achieve better ordering of the rectangles and eventually better packing. We proposed andimplemented several variations and performed experiments on synthetic, as well as real data(TIGER �les from the U.S. Bureau of Census). The winning variation (`2D-c') was the onethat sorts the rectangles according to the hilbert value of the center. This variation consistentlyoutperforms the packing method of Roussopoulos and Leifker [24], as well as other R-tree vari-ants. The performance gain of the our method seems to increase with the skeweness of thedata distribution; speci�cally, on the (highly skewed) TIGER dataset, it achieves up to 58%improvement in response time over the older packing algorithm and 36% over the best knownR-tree variant. We also, introduce an analytical formula to compute the average response timeof a range query as a function of the geometric characteristics of the R-tree.1 IntroductionOne of the requirements for the database management systems (DBMSs) of the near future is theability to handle spatial data. Spatial data arise in many applications, including: Cartography [27];Computer-Aided Design (CAD) [22] [12]; computer vision and robotics [2]; traditional databases,where a record with k attributes corresponds to a point in a k-d space; temporal databases, wheretime can be considered as one more dimension [18]; scienti�c databases, with spatial-temporal data,etc.�Currently on sabbatical at IBM Almaden Research Center. This research was partially funded by the SystemsResearch Center (SRC) at the University of Maryland, and by the National Science Foundation under Grant IRI-8958546 (PYI), with matching funds from EMPRESS Software Inc. and Thinking Machines Inc.1



In the above applications, one of the most typical queries is the range query: Given a rectangle,retrieve all the elements that intersect it. A special case of the range query is the point query orstabbing query, where the query rectangle degenerates to a point.We focus on R-trees, which is one of the most e�cient methods that support range queries.The original R-tree [13] and almost all of its variants are designed for a dynamic environment,being able to handle insertions and deletions. Operating in this mode, the R-tree guarantees thatthe space utilization is at least 50%; experimental results [3] showed that the average utilizationis � 70%. However, for a static set of data rectangles, we should be able to do better. Improvingthe space utilization through careful packing will have a two bene�ts: Not only does it reduce thespace overhead of the R-tree index, but it can also o�er better response time, because the R-treewill have a higher fanout and it will possibly be shorter.Static data appear in several applications. For example, in cartographic databases, insertionsand deletions are rare; databases with census results are static; the same is true for databases thatare published on CD-ROMs; databases with spatio/temporal meteorological and environmentaldata are seldom modi�ed, too. The volume of data in these databases is expected to be enormous,in which case it is crucial to minimize the space overhead of the index.In this paper we study the problem of how to create a compressed R-tree for static data.Our goal is to develop a packing method such that the resulting R-tree (a) will have 100% spaceutilization and (b) will respond to range queries at least as fast as the R-tree of any other knownmethod, (e.g. , the R� � tree or the quadratic-split R-tree).We design and study several heuristics to build the R-tree bottom-up. Most of these heuristicsare based on space �lling curves, and speci�cally, the Hilbert curve. We report experiments from2-dimensional data, although our method can handle higher dimensionalities. The experimentalresults showed that, the most e�ective of our heuristics is the one that sorts the data rectanglesaccording to the hilbert value of their centers (`2D-c' heuristic). This heuristic consistently givessigni�cant saving in response time over all the known R-tree variants, namely, the quadratic-splitR-tree, the R� � tree, as well as the method proposed by Roussopoulos and Leifker [24], which isthe only R-tree packing known up to now.We also propose an analytical formula to compute the average response time of a range queryby using the area and perimeter of the R-tree nodes. This formula works for any R-tree variation,either static or dynamic.The paper is organized as follows. Section 2 gives �rst a brief description of the R-tree and itsvariants. Section 3 describes our proposed heuristics to build the compressed R-tree. In section 4, weintroduce the analytical formula to compute the average response time for a given R-tree instance,given some information about the minimum bounding rectangles of its nodes. Section 5 presents2



our experimental results that compare the proposed schemes with others. Section 6 gives theconclusions and directions for future research.2 SurveySeveral spatial access methods have been proposed. A recent survey can be found in [25]. Thesemethods fall in the following broad classes: methods that transform rectangles into points in ahigher dimensionality space [15]; methods that use linear quadtrees [8] [1] or, equivalently, the z-ordering [21] or other space �lling curves [7] [17]; and �nally, methods based on trees (R-tree [13],k-d-trees [4], k-d-B-trees [23], hB-trees [19], cell-trees [11] e.t.c.)One of the most promising approaches in the last class is the R-tree [13]. It is the extension ofthe B-tree for multidimensional objects. A geometric object is represented by its minimum boundingrectangle (MBR). Non-leaf nodes contain entries of the form (ptr,R) where ptr is a pointer to achild node in the R-tree; R is the MBR that covers all rectangles in the child node. Leaf nodescontain entries of the form (obj-id, R) where obj-id is a pointer to the object description, and Ris the MBR of the object. The main innovation in the R-tree is that father nodes are allowed tooverlap. This way, the R-tree can guarantee at least 50% space utilization and remain balanced.
0 1

0

1

4
5

6

7
8

9

10

11 12

1

2

3Figure 1: Data (dark rectangles) organized in an R-tree with fanout=3Figure 1 illustrates data rectangles (in black), organized in an R-tree with fanout 3. Figure 2shows the �le structure for the same R-tree, where nodes correspond to disk pages. In the rest ofthis paper, the term `node' and the term `page' will be used interchangeably. Guttman proposedthree splitting algorithms, the linear split, the quadratic split and the exponential split. Their namescome from their complexity; among the three, the quadratic split algorithm is the one that achieves3



Root

1 2 3

4 5 6 7 8 9 10 11 12Figure 2: The �le structure for the R-tree of the previous �gure (fanout=3)the best trade-o� between splitting time and search performance.Subsequent work on R-trees includes the work by Greene [9], the R+-tree [26], R-trees usingMinimum Bounding Polygons [16], and �nally, the R�-tree [3], which seems to have the best perfor-mance among the R-tree variants. The main idea in the R�-tree is the concept of forced re-insert,which is analog to the deferred-splitting in B-trees. When a node overows, some of its childrenare carefully chosen and they are deleted and re-inserted, usually resulting in a R-tree with betterstructure.All the above R-tree variants support insertions and deletions, and are thus suitable fordynamic environments. For a static environment, the only R-tree packing scheme we are aware ofis the method of Roussopoulos and Leifker [24]. They proposed a method to build a packed R-treethat achieves (almost) 100% space utilization. The idea is to sort the data on the x or y coordinateof one of the corners of the rectangles. The sorted list of rectangles is scanned; successive rectanglesare assigned to the same R-tree leaf node, until this node is full; then, a new leaf node is createdand the scanning of the sorted list continues. Thus, the nodes of the resulting R-tree will be fullypacked, with the possible exception of the last node at each level. Thus, the utilization is � 100%.Their experimental results on point data showed that their packed R-tree performs much betterthan the linear split R-tree for point queries. In our experiments (section 5), their packed R-treeoutperformed the quadratic split R-tree and the R�� tree as well, for point queries on point data.However, it does not perform that well for region queries and/or rectangular data.For the rest of this paper, we shall refer to this method by lowx packed R-tree. In our imple-mentation of their method, we sort the rectangles according to their x value of the lower left corner(`lowx'). Sorting on any of the other three values gives similar results; thus our implementationdoes not impose an unfair disadvantage to the lowx packed R-tree.4



3 Proposed designWe assume that the data are static, or that the frequency of modi�cation is low. Our goal isto design a simple heuristic to construct an R-tree with 100% space utilization, which, on thesame time, will have as good response time as possible. The lowx packed R-tree [24] is a steptowards this goal. However, it su�ers from a subtle pitfall. Although it performs very well forpoint queries on point data, its performance degrades for larger queries. Figures 3 and 4 highlightthe problem. Figure 4 shows the leaf nodes of the R-tree that the lowx packing method will createfor the points of �gure 3. The fact that the resulting father nodes cover little area explains whythe lowx packed R-tree achieves excellent performance for point queries; the fact that the fathershave large perimeters, in conjunction with the upcoming Eq. 3 (section 4), explains the degradationof performance for region queries. Intuitively, the packing algorithm should ideally assign nearbypoints to the same leaf node; ignoring the y-coordinate, the lowx packed R-tree to tends violatethis empirical rule.
-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0.00 20.00 40.00 60.00 80.00 100.00Figure 3: 200 points uniformly distributedIn order to cluster the data in a better way than the lowx packed R-trees, we propose to usespace �lling curves (or fractals), and speci�cally, the Hilbert curve.A space �lling curve visits all the points in a k-dimensional grid exactly once and never crossesitself. The Z-order (or Morton key order, or bit-interleaving, or Peano curve), the Hilbert curve,and the Gray-code curve [6] are examples of space �lling curves. In [7], it was shown experimentallythat the Hilbert curve achieves the best clustering among the three above methods.Next we provide a brief introduction to the Hilbert curve: The basic Hilbert curve on a 2x2grid, denoted by H1, is shown in Figure 5. To derive a curve of order i, each vertex of the basiccurve is replaced by the curve of order i� 1, which may be appropriately rotated and/or reected.Figure 5 also shows the Hilbert curves of order 2 and 3. When the order of the curve tends to5



-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0.00 20.00 40.00 60.00 80.00 100.00Figure 4: MBR of nodes generated by the `lowx packed R-tree' algorithm
0

1 2

3
0 1

23

4

5 6

7 8

9 10

11

1213

14 15

H HH
1 2 3Figure 5: Hilbert Curves of order 1, 2 and 3in�nity, the resulting curve is a fractal, with a fractal dimension of 2 [20]. The Hilbert curve can begeneralized for higher dimensionalities. Algorithms to draw the two-dimensional curve of a givenorder, can be found in [10], [17]. An algorithm for higher dimensionalities is in [5].The path of a space �lling curve imposes a linear ordering on the grid points, which may becalculated by starting at one end of the curve and following the path to the other end. Figure 5shows one such ordering for a 4 � 4 grid (see curve H2). For example the point (0,0) on the H2curve has a hilbert value of 0, while the point (1,1) has a hilbert value of 2.After this preliminary material, we are in a position now to describe the proposed methods.Exploiting the superior clustering that the Hilbert curve can achieve, we impose a linear orderingon the data rectangles and then we traverse the sorted list, assigning each set of C rectangles to anode in the R-tree. The �nal result is that the set of data rectangles on the same node will be closeto each other in the linear ordering, and most likely in the native space; thus the resulting R-treenodes will have smaller areas. Figure 5 illustrates the intuitive reasons that our hilbert-basedmethods will result in good performance. The data are points (the same points with Figure 3 andFigure 4). We see that, by grouping the points according to their hilbert values, the MBRs of theresulting R-tree leaf nodes tend to be small square-like rectangles. This indicates that the nodes6



will likely have small area and small perimeter. Small area results in good performance for pointqueries; small area and small perimeter leads to good performance for larger queries. Eq. 3 con�rmsthe above claims.Algorithm Hilbert-Pack: packs rectangles into an R-treeStep 1. Calculate the hilbert value for each data rectangleStep 2. Sort data rectangles on ascending hilbert valuesStep 3. /* Create leaf nodes (level l=0) */While (there are more rectangles)generate a new R-tree nodeassign the next C rectangles to this nodeStep 4. /* Create nodes at higher level (l+ 1) */While ( there are > 1 nodes at level l)sort nodes at level l � 0 on ascending creation timerepeat Step 3Figure 6: Pseudo-code of the packing algorithmWe studied several methods to sort the data rectangles. All of them use the same algorithm(see Figure 6) to build the R-tree. The only point that the proposed hilbert-based methods distin-guish themselves from each other is on the way they compute the hilbert value of a rectangle. Weexamine the following alternatives:4d Hilbert through corners ("4D-xy"): Each data rectangle is mapped to a point in fourdimensional space formed by the lower left corner and the upper right corner namely (lowx,lowy, highx, highy). The hilbert value of this 4-dimensional point is the hilbert value of therectangle.4-d Hilbert through center and diameter ("4D-cd"): Each data rectangle is mapped tothe 4-dimensional point (cx; cy; dx; dy). where cx; cy are the coordinates of the center of therectangle and dx; dy the `diameters' or sides of the rectangle. As in 4D-xy, the hilbert valueof this 4-dimensional point is the hilbert value of the rectangle.2-d Hilbert through Centers Only ("2D-c"): Each data rectangle is represented by its cen-ter only; the hilbert value of the center is the hilbert value of the rectangle.7



Y

X

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 2.00 4.00 6.00Figure 7: Peano (or z-order) curve of order 3Method name Description2D-c sorts on the 2d-hilbert value of the centers (cx; cy)4D-xy sorts on the 4-d hilbert value of the two corners,i.e., (lowx; lowy; highx; highy)4D-cd sorts on 4-d hilbert value of the center anddiameters, i.e., (cx; cy; dx; dy)2Dz-c sorts on the z-value of the center (cx; cy)lowx packed R-tree [24] sorts on the x coordinate of the lower left cornerlinear-split R-tree [13] Guttman's R-tree, with linear splitquadratic-split R-tree [13] Guttman's R-tree with quadratic splitR�-tree [3] R-tree variant, better packing, forced reinsertTable 1: List of methods - the proposed ones are in italicsFor the sake of comparison, we also examined a method that uses the Peano curve, or `z-ordering', despite the fact that the z-ordering achieves inferior clustering compared to the hilbertcurve. The z-value of a point is computed by bit-interleaving the binary representation of its x andy coordinates. For example, in Figure 7, the point (0,0) has a z-value of 0, while the point (1,3)has a z-value of 7.Z-order through Centers only ("2Dz-c"): The value of the rectangle is the z-value of itscenter.Table 1 gives a list of the methods we compared, along with a brief description of each. Thenew methods are in italics; R-tree methods for static environments are above the double horizontalline; the rest can be applied for dynamic environments, as well.8



Symbols De�nitionsp page size, in bytesC page capacity (max. number of rectangles per page)P (qx; qy) avg. pages retrieved by a qx � qy queryNd number of data rectanglesN number of tree nodesd density of datani node i in the R-treeni;x length of node i in x directionni;y length of node i in y directionLx sum of x-sides of all nodes in the treeLy sum of y-sides of all nodes in the treeTotalArea sum of areas of all nodes in the treeqx length of the query in x directionqy length of the query in y directionTable 2: Summary of Symbols and De�nitions4 Analytical formula for the response timeIn this section we introduce an analytical formula to evaluate the average response time fora query of size qx� qy as a function of the geometric characteristics of the R-tree. This means thatonce we built the R-tree we can estimate the average response time of the query qx � qy withoutgenerating random queries and computing the average and variance of their response times. Inthis discussion we assume that queries are rectangles uniformly distributed over the unit squareaddress space. Without loss of generality we consider a 2-dimensional space. The same idea canbe generalized to higher dimensionalities.The response time of a range query is mainly a�ected by the time required to retrieve thenodes touched by the query plus the time required by the CPU to process the nodes. Since theCPU is much faster than the disk, we assume that the CPU time is negligible (=0) compared tothe time required by a disk to retrieve a page. Thus, the measure for the response is approximatedthe number of nodes (pages) that will be retrieved by the range query.The next lemma forms the basis for the analysis:Lemma 1 If the node ni of the R-tree has an MBR of ni;x�ni;y, then the probability DA(ni;x; ni;y)that this node will contribute one disk access to a point query isDA(ni;x; ni;y) = Prob(a point query retrieves node ni) = ni;x � ni;y (1)Proof: Since we assume that the (point) queries are uniformly distributed in the address space9



and the address space is the unit square. The probability that a random point fall in the rectangle(ni;x; ni;y) is the area of the rectangle ni;x � ni;y .DA() is the expected number of disk accessed that the speci�c node will contribute in anarbitrary point query. Notice that the level of the node in the R-tree is immaterial.The next two lemmas calculate the expected number of disk accesses for point and rectangularqueries respectively.Lemma 2 (Point query) For a point query, the expected number of disk accesses P (0; 0) is givenby P (0; 0) = NXi=1 ni;x � ni;y (2)Proof: Every node ni in the R-tree is represented in the native space by its minimum boundingrectangle (MBR) of size say ni;x, ni;y in the x, y direction respectively. Given Lemma 1, each nodeof the R-tree contributes DA() disk access; to calculate the average number of disk accesses thatall the nodes of the R-tree will result into, we have to sum Eq. 1 over all the nodes.
(a) (b)

qx
q

y

qx

q
y

QQ

Figure 8: a) original nodes along with rectangular query qx � qy b) Extended nodes with pointquery QLemma 3 (Rectangular query) For a rectangular query qx � qy, the expected number of diskaccesses P (qx; qy) is given byP (qx; qy) = NXi=1 ni;x � ni;y + qy � NXi=1 ni;x + qx � NXi=1 ni;y +N � qx � qy (3)Proof: A rectangular query of size qx�qy is equivalent to a point query, if we `inate' the nodes ofthe R-tree by qx and qy in the x- and y-directions respectively. Thus, the node ni with size ni;x�ni;ybehaves like a node of size (ni;x+qx)� (ni;y+qy). Figure 8 illustrates the idea: Figure 8(a) shows a10



range query qx � qy with upper-left corner at Q; this query is equivalent to a point query anchoredat Q, as long as the data rectangles are `inated' as shown by the dotted lines in Figure 8(b).Applying (Eq. 2) on Figure 8(b) we obtain:P (qx; qy) = NXi=1(ni;x + qx) � (ni;y + qy) (4)which gives (Eq. 3), after trivial mathematical manipulations.Notice that Lemma 3 givesP (qx; qy) = TotalArea+ qx � Ly + qy � Lx +N � qx � qy (5)where TotalArea = P (0; 0) is the sum of all the areas of the nodes of the tree, and Lx, Ly arerespectively the sums of x and y extents of all nodes in the R-tree.There are several comments and observations with respect to the above formulas:� The formula is independent of the details of the R-tree creation/insertion/split algorithms; itholds for packed R-trees, for R�-trees e.t.c.� Notice that Eq. 3 for range queries reduces to Eq. 2 for point queries, if qx = qy = 0, asexpected.
-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0.00 20.00 40.00 60.00 80.00 100.00Figure 9: MBR of nodes generated by 2D-c (2-d Hilbert through centers), for 200 random points� The last equation illustrates the importance of minimizing the perimeter of the R-tree nodes,in addition to the area. The larger the queries, the more important the perimeter becomes.This explains why the lowx packed R-tree performs well for point queries (qx = qy = 0),but not so well for larger queries. The nodes produced by the lowx packed R-tree (�gure 4)have small area but large perimeters. Figure 9 shows the leaf nodes produced by the `2D-c'hilbert packing method, for the set of points of �gure 3. Notice that the resulting nodes havesmaller perimeters. 11



� Eq. 3 has theoretical as well as practical value: From a practical point of view, it can assistwith the cost estimation and query optimization for spatial queries [1]: Maintaining only afew numbers about the R-tree (total area, total perimeter), a query optimizer can make agood estimate for the cost of a range query. Moreover, researchers working on R-trees canuse Eq 3 to avoid issuing queries in their simulation studies. This eliminates one randomnessfactor (the query), leaving the generation and insertion order of the data as random variables.From a theoretical point of view, it makes one step towards the theoretical analysis of theR-trees; the only missing step is a good estimate of the average size and perimeter of nodes,for a given data set and a given packing/insertion/split algorithm.5 Experimental resultsTo assess the merit of our proposed hilbert-based packing methods, we ran simulation experimentson a two-dimensional native space. The code for the packed R-tree is written in C under UNIXand the simulation experiments ran on a SUN SPARC station. Since the CPU time required toprocess the node is negligible, we based our comparison on the number of nodes (=pages) retrievedby range queries. Without loss of generality, the address space was normalized to the unit square.There are several factors that a�ect the search time; we studied the following ones:Data items: points and/or lines and/or rectanglesFile size: ranged from 10,000 - 100,000 recordsQuery area Qarea = qx � qy: ranged from 0 - 0.25 of the space sizePage size p: varied in the range 1Kb - 4KbAnother important factor, which is derived from N and the average area a of the datarectangles, is the `data density' d (or `cover quotient') of the data rectangles. This is the sum of theareas of the data rectangles in the unit square, or equivalently, the average number of rectanglesthat cover a randomly selected point. Mathematically: d = N � a. For the selected values of Nand a, the data density ranges from 0.25 - 2.0.The rectangles for the synthetic datasets were generated as follows: Their centers were uni-formly distributed in the unit square; their x and y sizes were uniformly distributed in the range[0,max], where max was chosen to achieve the desired data density. Data or query rectangles thatwere not completely inside the unit square were clipped.In addition to synthetic data, we also used real data from the TIGER system of the U.S.Bureau of Census. One data set consisted of 39717 line segments, representing the roads of Mont-12



gomery county in Maryland. Using the minimum bounding rectangles of the segments, we obtained39717 rectangles, with data density d = 0.35. We refer to this dataset as the `MGCounty' dataset.Another dataset consists of 53145 line segments, representing the roads of Long Beach, California.The data density of the MBR that covers these line segments is d = 0:15. We refer to this datasetas the `LBeach' dataset. An important observation is that the data in the TIGER dataset follow ahighly skewed distribution.In the following subsections we present experiments (a) comparing the response time of thebest of our methods (2D-c) with the response time of older R-tree variants (dynamic or static) (b)comparing our hilbert-based packing schemes against each other, to pinpoint the best.5.1 Comparison of 2D-c hilbert packed R-tree vs. older R-tree variants
Montgomery County, MD: 39717 line segements

Hilbert 2D-c

R*-tree

Quad R-tree

Lowx

Pages Touched

-3Qarea x 10
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

160.00

170.00

180.00

190.00

200.00

210.00

220.00

0.00 50.00 100.00 150.00 200.00 250.00Figure 10: Montgomery county, Maryland - real dataHere we illustrate that the 2D-c packing method gives better response times than older R-treevariants. The fact that lowx packed R-tree performs worse than Dynamic designs (e.g. R� � tree)mandated on us to compare our new packing methods with both Static and Dynamic designs,namely lowx packed R-tree, Guttman R-tree and R� � tree. In our plots we omit the results13



TIGER: Long Beach, CA : 53145 line segements

Hilbert 2D-c

R*-tree

Quad R-tree

Lowx

Pages Touched

-3Qarea x 10-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

340.00

360.00

380.00

400.00

420.00

0.00 50.00 100.00Figure 11: Long Beach, California - real dataof the linear-split R-tree, because the quadratic-split R-tree consistently outperformed it. Theexponential-split R-tree was very slow in building the tree, and it was not used.To avoid cluttering the plots, we only plot the best of our proposed algorithms, namely theone using the `2D-c' heuristic. The detailed results for the other, hilbert-based packing algorithmsare presented in the next subsection.We performed experiments with several data sets using di�erent parameters. For brevity wepresent experiments with four sets of data. The �rst two data sets are from the 'TIGER' system,while the last two are synthetic data. The reason for using synthetic data is that we can control theparameters (data density, number of rectangles, ratio of points to rectangles etc.). Figure 10, 11show the results for the TIGER data sets , they represent the roads of Montgomery county ofMaryland and the roads of Long Beach of California respectively. Figure 12 shows the results fora synthetic data set, which contains a mix of points and rectangles; speci�cally 50,000 points and10,000 rectangles; the data density is d = 0.029 and the page size p = 1Kb. The forth set (Figure13) contains no points; only 100,000 rectangles; the data density d = 1 and the page size p = 1Kb.All Figures 10- 13 plot the number of pages retrieved by a range query (from Eq. 3) as a14



Mixed 50k Points + 10k Rect’s

Hilbert 2D-c

R*-tree

Quad R-tree

Lowx

Pages Touched

-3Qarea x 10

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00Figure 12: Page accesses per query vs. Query area - Rectangles + Pointsfunction of the area of the query. A common observation is that, for point queries, all methodsperforms almost the same, with small di�erences. However, for slightly larger queries, the proposed2D-c hilbert packed R-tree is the clear winner. The performance gap increases with the area of thequeries.The second important observation is that the performance gap seems to increase with theskeweness of the data distribution: for the TIGER data sets, the proposed method achieves up to36% improvement over the next best method (R�-tree) , and up to 58% improvement over the lowxpacked R-tree.Since the performance of the Static lowx packed R-tree (100% space utilization) is worsethan the performance of the Dynamic designs (e.g. quadratic split R-tree and R�� tree) we ascribethe good performance of our proposed methods not only to the higher space utilization but also tothe superior clustering property of the Hilbert curve.5.2 Comparison of hilbert-based packing schemesHere we compare all the packing heuristics that we have introduced in this paper, namely15



1.100k.2000.ana Data Rectangles

Hilbert 2D-c

R*-tree

Quad R-tree

Lowx

Pages Touched

-3Qarea x 10

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00Figure 13: Page accesses per query vs. Query area - Rectangles Only2D-c , 4D-xy, 4D-cd and the only heuristic that uses the z-ordering, 2Dz-c. Table 1 contains a listof these methods, along with a brief description.Table 3 gives the response time versus the query area for all of these heuristics that useHilbert order. The (synthetic) data �le consists of 50K points and 10K rectangles. The page size p= 1Kb. The di�erences between the alternative methods are small. However, from Table 3 we seethat (2D-c) does better, especially for large queries. The next best method is the (4D-cd), whichuses a 4-d hilbert curve on the parameter space (center-x, center-y, diameter-x, diameter-y). Thequery area Hilbert Hilbert HilbertQarea 2D-c 4-cd 4D-xy0.000000 3.74 5.10 7.040.000278 5.60 7.28 9.260.001111 8.22 10.24 12.040.004444 15.20 17.84 20.320.111111 169.76 177.06 180.54Table 3: Comparison Between Di�erent Schemes that uses Hilbert order16



query area Hilbert Z-orderQarea 2D-c 2Dz-c0.000000 3.74 5.980.000278 5.60 8.640.001111 8.22 11.480.004444 15.20 20.280.111111 169.76 183.56Table 4: Schema that uses Hilbert order vs. the one uses z-orderlast contender is the 4D-xy.For the same setting, table 4 compares 2D-c that sorts the data on the 2d hilbert-value ofthe centers of the data rectangles and 2Dz-c that sorts on the 2d z-value of the center. Table 4shows that 2D-c that uses hilbert order always performs better than 2Dz-c that uses z-order.The relative ranking of the methods was the same for every dataset we tried; we omit theresults for brevity.6 ConclusionsWe have examined algorithms to generate packed R-trees for static databases. Our algorithmstry to exploit the superior clustering properties of the Hilbert curve. We propose several schemesto sort the data rectangles, before grouping them into R-tree nodes. We performed experimentswith all these methods and the most promising competitors; the major conclusion is that theproposed algorithms result in better R-trees. Speci�cally, the most successful variation (2D-c =2-d hilbert curve through centers) consistently outperforms the best dynamic methods, namely, theR�-trees and the quadratic-split R-trees, as well as the only previously known static method (lowxpacked R-tree). More importantly, the performance gap seems to be wider for real, skewed datadistributions.An additional, smaller contribution, is the derivation of (Eq. 3), From a practical point ofview, it can help a query optimizer [14] give a good estimate for the cost of an R-tree index.Moreover, it makes the simulation analysis of R-trees easier and more reliable, eliminating the needto ask queries.Future research could examine methods to achieve provably optimal packing, as well as thecorresponding lower bound on the response time.17



References[1] Walid G. Aref and Hanan Samet. Optimization strategies for spatial query processing. Proc.of VLDB (Very Large Data Bases), pages 81{90, September 1991.[2] D. Ballard and C. Brown. Computer Vision. Prentice Hall, 1982.[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an e�cient and robustaccess method for points and rectangles. ACM SIGMOD, pages 322{331, May 1990.[4] J.L. Bentley. Multidimensional binary search trees used for associative searching. CACM,18(9):509{517, September 1975.[5] T. Bially. Space-�lling curves: Their generation and their application to bandwidth reduction.IEEE Trans. on Information Theory, IT-15(6):658{664, November 1969.[6] C. Faloutsos. Gray codes for partial match and range queries. IEEE Trans. on SoftwareEngineering, 14(10):1381{1393, October 1988. early version available as UMIACS-TR-87-4,also CS-TR-1796.[7] C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pages 247{252,March 1989. also available as UMIACS-TR-89-47 and CS-TR-2242.[8] I. Gargantini. An e�ective way to represent quadtrees. Comm. of ACM (CACM), 25(12):905{910, December 1982.[9] D. Greene. An implementation and performance analysis of spatial data access methods. Proc.of Data Engineering, pages 606{615, 1989.[10] J.G. Gri�ths. An algorithm for displaying a class of space-�lling curves. Software-Practiceand Experience, 16(5):403{411, May 1986.[11] O. Gunther. The cell tree: an index for geometric data. Memorandum No. UCB/ERL M86/89,Univ. of California, Berkeley, December 1986.[12] A. Guttman. New Features for Relational Database Systems to Support CAD Applications.PhD thesis, University of California, Berkeley, June 1984.[13] A. Guttman. R-trees: a dynamic index structure for spatial searching. Proc. ACM SIGMOD,pages 47{57, June 1984. 18



[14] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible query processing instarburst. Proc. ACM-SIGMOD 1989 Int'l Conf. Management of Data, pages 377{388, May1989.[15] K. Hinrichs and J. Nievergelt. The grid �le: a data structure to support proximity querieson spatial objects. Proc. of the WG'83 (Intern. Workshop on Graph Theoretic Concepts inComputer Science), pages 100{113, 1983.[16] H. V. Jagadish. Spatial search with polyhedra. Proc. Sixth IEEE Int'l Conf. on Data Engi-neering, February 1990.[17] H.V. Jagadish. Linear clustering of objects with multiple attributes. ACM SIGMOD Conf.,pages 332{342, May 1990.[18] Curtis P. Kolovson and Michael Stonebraker. Segment indexes: Dynamic indexing techniquesfor multi-dimensional interval data. Proc. ACM SIGMOD, pages 138{147, May 1991.[19] David B. Lomet and Betty Salzberg. The hb-tree: a multiattribute indexing method withgood guaranteed performance. ACM TODS, 15(4):625{658, December 1990.[20] B. Mandelbrot. Fractal Geometry of Nature. W.H. Freeman, New York, 1977.[21] J. Orenstein. Spatial query processing in an object-oriented database system. Proc. ACMSIGMOD, pages 326{336, May 1986.[22] J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott, and G. S. Taylor. Magic: a vlsilayout system. In 21st Design Automation Conference, pages 152 { 159, Alburquerque, NM,June 1984.[23] J.T. Robinson. The k-d-b-tree: a search structure for large multidimensional dynamic indexes.Proc. ACM SIGMOD, pages 10{18, 1981.[24] N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases using packedr-trees. Proc. ACM SIGMOD, May 1985.[25] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1989.[26] T. Sellis, N. Roussopoulos, and C. Faloutsos. The r+ tree: a dynamic index for multi-dimensional objects. In Proc. 13th International Conference on VLDB, pages 507{518, Eng-land,, September 1987. also available as SRC-TR-87-32, UMIACS-TR-87-3, CS-TR-1795.19



[27] M. White. N-Trees: Large Ordered Indexes for Multi-Dimensional Space. Application Math-ematics Research Sta�, Statistical Research Division, U.S. Bureau of the Census, December1981.

20


