
Improving Logging and Recovery Performance in Phoenix/App
Roger Barga Shimin Chen David Lomet

Microsoft Research
Redmond, WA 98052, USA

barga@microsoft.com

Carnegie Mellon University
Pittsburgh, PA 15213, USA

chensm@cs.cmu.edu

Microsoft Research
Redmond, WA 98052, USA

lomet@microsoft.com

Abstract

Phoenix/App supports software components whose
states are made persistent across a system crash via redo
recovery, replaying logged interactions. Our initial
prototype force logged all request/reply events resulting
from inter-component method calls and returns. This
paper describes an enhanced prototype that implements:
(i) log optimizations to improve normal execution
performance; and (ii) checkpointing to improve recovery
performance. Logging is reduced in two ways: (1) we
only log information required to remove non-
determinism, and we only force the log when an event
“commits” the state of the component to other parts of the
system; (2) we introduce new component types that
provide our enhanced system with more information,
enabling further reduction in logging. To improve
recovery performance, we save the values of the fields of
a component to the log in an application “checkpoint”.
We describe the system elements that we exploit for these
optimizations, and characterize the performance gains
that result.

1. Introduction

1.1 Persistent Stateful Components

Component-based programming is widely used in
enterprise applications, such as web services and middle-
ware systems, where high availability is usually a
requirement [8,9,11,14]. In contrast to fault tolerant
operating systems [2,3], a common practice here to
achieve high availability without loss of critical work is to
enforce a form of “workflow” programming model in
which stateless components communicate with each other
through recoverable stateful message queues [4,10]. At
every invocation, a component must read state
information from a queue before processing and write it
back after processing, which is an unnatural model. And
distributed commits for the distributed message queues
are potentially expensive. This stateless programming
model is the same one supported by traditional TP
monitors [4].

To support natural, stateful components and avoid
distributed commits, we built Phoenix/App based on the
recovery guarantees framework in [6], which generalized
the client-server protocols of [12]. Programmers simply

specify a component to be persistent. The Phoenix/App
runtime transparently intercepts and logs incoming and
outgoing messages of the component in a local log with
pessimistic logging [1,7]. If the component fails, the
runtime automatically recovers its state via redo recovery,
replaying the messages from the local log. Thus,
Phoenix/App guarantees exactly-once execution for
persistent components.

Our first prototype [5], referred to as the baseline
system, demonstrated the feasibility of the solution using
the simplest approach, immediately forcing the log for
every message between persistent components. Moreover,
recovering a component state required replaying all the
messages from the creation of the component, leading to
potentially high recovery cost for long-lived components.

1.2 This Paper’s Contributions

In this paper, we study log optimizations to improve
normal execution performance and checkpointing to
improve recovery performance in Phoenix/App.

We consider two ways to reduce logging cost.
1. For persistent components in general, we only log

information required to remove non-determinism and
only force the log when an event “commits” the state
of the component to other parts of the distributed
system. This is usually at an outgoing message.

2. We introduce three special types of components
(subordinate, read-only, and functional components)
that provide enhanced knowledge about the states of
the components and their interactions with other
components in the system. This permits us to further
reduce logging, sometimes dramatically.

To improve recovery performance, we save the values

of the fields of a component to the log in an application
“checkpoint”. We study how to transparently save
component states, how to coordinate the saving operations
for component states and the in-memory data structures of
Phoenix/App runtime, and how to recover from a crash.

The remainder of the paper is organized as follows.
We describe the baseline system in section 2. Then we
discuss log optimization in Section 3 and checkpointing in
Section 4. We evaluate our approaches with experiments
in Section 5. Section 6 provides conclusions.

2. Achieving Persistence in Baseline System

We first explain the component model and the
sufficient conditions for persistence. Then we describe
how these conditions are satisfied in the baseline system.

2.1 Component Model

A component is typically a (C++, Java, or C#, etc.)
object instance, as in CORBA [14], Enterprise Java Beans
[8], and .NET [9]. Component states are held in object
fields; operations are provided through methods.

Components communicate via (remote) method calls.
As shown in Figure 1, a component sees four kinds of
messages: an incoming method call from a client
component; the subsequent reply message to the client; an
outgoing method call to a server component; and the
response from the server.1

2.2 Exactly-once Semantics- Sufficient Conditions

Phoenix/App is based on .NET remoting [9].
Programmers specify a component as persistent using a
customized attribute. Phoenix/App detects the attribute
and transparently logs interactions. Unspecified
components are external components by default, for
which we take no actions and make no guarantees. For
persistent components only making method calls to
persistent components, we guarantee “exactly-once”
semantics in case of failures, i.e. state changes are exactly
the same as if there were no failures. “Exactly-once”
semantics is achieved if the following are satisfied [6]:
1. When sending a message (message 2 or 3 in Figure 1),

a persistent component ensures that its state as of the
send and the message are persistent.

2. When making a method call, a persistent component
attaches a globally unique ID to the outgoing method
call message which is deterministically derived.

3. When receiving a method call from another persistent
component, a persistent component checks the
globally unique ID. It executes normally if it has not

1 Components must be piece-wise deterministic (PWD) to be replayable
in [6]. To ensure PWD, Phoenix/App requires components to be single-
threaded, serving one incoming method call at a time. This avoids the
non-determinism caused by interleaved thread accesses to local data in a
component. But of course, there can be multiple threads executing in
multiple different components in a process.

seen the ID before. Otherwise, it returns the reply of
the previous method call with the same ID.

4. A persistent component repeats an outgoing method
call to a server component until it gets some response.

5. When recovering from a failure, if a persistent
component was responding to an incoming method
call before the failure, it does not send the reply
(message 2). Rather, this message is sent upon
request from the client as in condition 3.
We assume all the above conditions are satisfied and

examine how the system ensures “exactly-once”
semantics for persistent components when external
components are not servers. Without loss of generality,
we consider the failures as shown in Figure 2. Suppose a
persistent component receives an incoming method call
from a persistent client component. In serving the method
call, it sends an outgoing call to a persistent server
component and receives the response for this call. After
that, it sends the reply for the incoming call to the client.
As shown in Figure 2, the persistent component may fail
at three failure points. (In all cases, the boundaries of the
failure situations are defined by the interactions that the
recovering component finds on the log.) We discuss the
recovery processing for each failure point:

 Failure before message 3 is sent: Component state
before message 1 can be recovered because either it is
the state after creation or the component has finished a
previous incoming call. In the latter case, it has sent a
reply message and can be recovered according to
condition 1. If the component has remembered
message 1, it performs the method call. By condition
4, the client resends message 1 in case the component
has not remembered the message. Duplicates are
eliminated by condition 3.

 Failure after message 3 is sent but before message 2 is
sent: By condition 1, the component recovers message
3 and its state at the send of message 3. By condition
4, it resends message 3 if it has not yet remembered
message 4. The ID is the same by condition 2. The

3. Outgoing
method call

2. Reply to
the incoming call

4. Reply from
the outgoing call

Component Server Client

1. Incoming
method call

Figure 1 Messages of a component

Persistent
Component

Persistent
Server

Persistent
 Client

Failure
points

tim
e

3

Message 1

Message 3

Message 4

Message 2

2

1

Figure 2 Failure situations

server eliminates duplicates by condition 3, returning
the same message 4, even if message 3 had previously
been received. Component execution then continues.

 Failure after message 2 is sent: By condition 1, the
component can recover message 2 and the state at the
send of message 2. By condition 5, the component
does not resend message 2 to the client. If the client
has not received message 2, it retries the method call
by condition 4. The component detects the duplicate
message by checking its globally unique ID and
returns message 2 to the client.

The task of the baseline system is to enforce the five
conditions to achieve “exactly-once” semantics. Section
2.3 discusses condition 2 and 3. Section 2.5 describes how
the other three conditions are satisfied.

2.3 Runtime Logging

In .NET remoting, a component resides in a structure
called a “context”. Within a context, method calls are
local calls. Across context boundaries method calls are
remote procedure calls: method names and parameters are
packaged (marshalled) into messages and sent to the
remote contexts, where the messages are unmarshalled,
etc. After processing, replies are sent back through
messages in the similar fashion. Message interceptors at
context boundaries can intercept all the four kinds of
messages described in Section 2.1.

In our baseline system, every persistent component
resides in its own context. So we can intercept all
messages of persistent components as shown in Figure 3.
The baseline system logs and immediately forces every
message to the log, implementing Algorithm 1.

A process may host multiple contexts and a machine
can run many processes. So the globally unique ID of a
method call consists of: caller’s machine name; unique
process “logical” ID on that machine, assigned by
Phoenix/App; unique caller component “logical” ID in the
process, also assigned by Phoenix/App runtime; and local
method call ID which is incremented for every outgoing
method call of a component. Phoenix/App ensures that
the logical process IDs and the component IDs remain the
same in spite of failures. The last local method call ID
before a failure is obtained from the log.

On an outgoing method call, a message interceptor
attaches the globally unique ID to the message, satisfying
condition 2. On an incoming method call message, a
message interceptor checks for the ID. If the ID does not
exist, the caller must be an external component.

To enforce condition 3 for method calls from
persistent clients, method call IDs and their replies are
stored in a last call table indexed by the first three parts of
the ID. On an incoming method call message from a
persistent client, a message interceptor checks the last call
table and compares the new ID to the last call ID from the

same component. If equal, the stored reply is sent back to
the client. Otherwise, the call is delivered normally to the
persistent component. Before sending a reply message,
the message interceptor updates the last call table.

We only keep information on the last method calls
from persistent clients. If we receive a method call from a
persistent client, the client can independently recover its
state to the send message time by condition 1. So its
earlier last call entry is no longer needed.

2.4 Failure Detection

Failures are detected in two ways. (1) All processes
that host persistent components register at start time with
the Phoenix/App recovery service running on their
machine, as shown in Figure 4. The recovery service
monitors the abnormal exits of the registered processes
and restarts those processes. It keeps the information of
registered processes in a table and force writes updates to
the table to its log to make the table persistent. (2) In
.NET, message interceptors can detect exceptions raised
by outgoing calls. Phoenix/App handles particular
exceptions that indicate a component failure. (Not all
exceptions indicate failures, e.g., an invalid argument
exception indicates an error, but the remote component is
still alive.)

2.5 Automatic Recovery

To recover a failed component, the baseline system
replays all logged incoming method calls from component
creation until failure. Since all messages are forced to the

Context Boundary
Message

Interceptor

log

Incoming
Calls P

Log a message
then force the log

Message
Interceptor

Outgoing
Calls

Figure 3 Intercepting and logging messages

Message 1: Incoming method call
Log message 1
Force Log

Message 2: Reply to incoming call
Log message 2
Force Log

Message 3: Outgoing method call
Log message 3
Force Log

Message 4: Reply from outgoing call
Log message 4
Force Log

Algorithm 1 Baseline system logging

log, we can recover the component state to the time of the
last send message and execution can continue from there.

As shown in Figure 5, to replay an incoming method
call, Phoenix/App runtime calls the logged method with
the logged parameters. An outgoing call is suppressed by
the message interceptor if a reply to the call is found in
the log. Instead, the reply is read from the log and
returned. Otherwise, either the previous send message or
the last logged outgoing call must be the last send
message and component state has already been recovered
to the time of the last send message. We begin normal
processing and send the outgoing call as in normal
execution.

During recovery, the message interceptor rebuilds the
last call table from incoming call log records. Hence both
component state and last call table are recovered to the
time of the last send message, which satisfies condition 1.

Condition 5 is satisfied because the replies of the
replays are not sent to any components. Moreover, when a
message interceptor detects a recognized exception for an
outgoing method call message, it waits for a while and
retries the call using the same method call ID. This
satisfies condition 4.

In summary, the baseline system provides sufficient
conditions for “exactly-once” semantics. It logs and
forces every message. To recover a failed persistent
component, it replays all the method calls from the
creation of a component until the failure.

3. Improving Logging Performance

Every method call in the baseline system incurs at
least two log writes and forces at a persistent component,

even if no outgoing calls are made. Here we focus on
reducing log writes and forces to improve performance.

3.1 Log Optimizations for Persistent Components

We discuss two situations based on whether external
components are involved or not.

3.1.1. Interacting components are both persistent. The
purpose of logging messages is to satisfy condition 1
(recover a persistent component to the point of the last
send message). A send message is important because it
may change the states of other components, hence
“committing” the component state to other parts of the
distributed system. Such “commits” usually need a log
force. However, forcing receive messages, as the baseline
system does, is unnecessary. We can log receive messages
without forcing. The send message log force ensures all
previous messages (including receive messages) are stable
in the log. Losing messages received after the last send
message does not affect correctness since component state
has not been committed after the last send.

Moreover, since the last send message can be re-
created in the replay of all the previous messages, it is not
necessary to write a send message to the log. But we still
need to force all the previous log records before sending a
message. This optimization is important as it allows more
opportunities to combine log forces from multiple
components that share the same log.

The improved logging algorithm, shown in Algorithm
2, saves a log force for every receive message and saves a
log write for every send message.

3.1.2. Client component is an external component. No
logging strategy fully masks failures when external
components are involved. However, we may be able to
mask failures when persistent and external components do
not fail simultaneously. For this purpose, we force log
messages promptly, as in the baseline system. Below we
analyze when persistent component failures are masked:
• If a persistent component fails after it receives and

immediately force logs a call (message 1) from an
external component, it recovers and finishes the
incoming call, masking the failure from the external
component. But a call from an external component
may have to be repeated since the persistent
component may fail before logging.

• If a persistent component fails before force logging a
reply (message 2) to an external component, it
recovers, realizes that message 2 has not been sent,
and proceeds to force log and send it. But we cannot
know whether the external component has received
the output message or not, even if it is logged. What
we can mask is persistent component failures before
the log force. Failures after log forcing, including
message delivery failures, may not be masked.

Recovery Service

Process
hosting

persistent
components

Process
Information

Figure 4 Recovery service monitors registered
processes that host persistent components.

Context Boundary
Message

Interceptor

log

Replay
Incoming

Calls

P

Construct replies
from the log

Message
Interceptor

Suppress
Outgoing Calls

Figure 5 Replaying method calls during recovery.
recovery

Hence there is a “window of vulnerability”, i.e. if a
persistent component fails during an interaction, before
the log is forced for message 1, or after the force but
before the send for message 2, the failure may not be
masked. Persistent component failures at other times are
known to be masked, i.e., after logging message 1, we
know that persistent component failures are masked until
message 2 is logged. Masking begins again with the next
message 1 received from the same external component.

We can nonetheless improve on the baseline algorithm
a bit. Since message 2 can be regenerated via replay of the
component, we do not need to save the whole send
message contents. We only need to save the fact that the
message was sent (attempted to be sent). We call a full
message with all its content a long record, and a message
with only identity information a short record. Algorithm
3 shows this logging discipline.

3.2 Additional Kinds of Components

We introduce three additional types of specialized
components: subordinate, functional, and read-only
components exploit them to further reduce logging.

3.2.1. Subordinate Components. A subordinate
component is a persistent component associated with a
persistent parent component and restricted to only service
method calls from its parent and other subordinates of its
parent. Only the parent accepts calls from outside callers.

Hence execution is single-threaded within a parent and its
subordinate components. Only incoming calls are
restricted; subordinate components can call any
component.

Since a persistent component services method calls
from many persistent and/or external components, we
must log the calls to capture their non-deterministic
arrival order. For subordinate components, this non-
determinism is not present. We do not need to log the
messages among a parent and its subordinate components
because these messages are fully determined given the
incoming method call messages to the parent, and reply
messages for outgoing method calls.

We could intercept parent-subordinate and
subordinate-subordinate calls, check component types and
use different logging algorithms. But to minimize
overhead, we instead put a subordinate into the same
context as its parent component, as shown in Figure 6. In
this way, method calls among a parent and its
subordinates do not cross context boundaries and
messages are neither seen by message interceptors nor
logged. This avoids interception overhead as well as
logging overhead.

3.2.2. Functional Components. Functional components
are stateless components that either make no calls or call
only functional components. They do not call components
of other kinds. Methods of functional components are
purely functional: given the same parameters, a call
always returns the same value.

We needn’t log messages nor maintain last call tables
at functional components. Moreover, at a persistent
component, if the server of an outgoing call can be
determined to be a functional component, we do not need
to force the log or log the return message. This algorithm
is shown in Algorithm 4.

3.2.3. Read-only Components. Read-only components
are also stateless, but unlike functional components, they
can also call other persistent components. These calls read
the states of persistent server components and persistent
component state can change between method calls. So
generally the reply from calling a read-only component is

Message 1: Incoming method call
Log message 1

Message 2: Reply to incoming call
Force all the previous messages

Message 3: Outgoing method call
Force all the previous messages

Message 4: Reply from outgoing call
Log message 4

Algorithm 2 logging for persistent components
 Message 1: Incoming method call

Log message 1 (long record)
Force all messages

Message 2: Reply to incoming call
Log message 2 (short record)
Force all messages

Algorithm 3 persistent component logging for
external client

Context Boundary
Message

Interceptor

log

Incoming
Calls

Log a message
then force the log

Message
Interceptor

Outgoing
Calls

S
P S

S

Figure 6 Subordinate components in the same
context as their parent component

At a functional component: do nothing

At a persistent component:
Message 3. Outgoing method call

IF (server is functional)
 Do nothing

Message 4. Reply from outgoing call
IF (server is functional)

 Do nothing

Algorithm 4 logging for functional components

unrepeatable. Motivating examples are statistics collectors
and meta-search engines.

Since read-only components are stateless, we do not
need to recover their states and hence we do not log any
messages at read-only components. Further, outgoing
method calls from read-only components do not change
server component states. Thus at a persistent component,
we do not log calls from read-only components. However,
persistent component callers of a read-only component
must log (but not force) the reply message, as it is not
guaranteed to be recreated via replay.

A method call to a read-only component does not
change any state. So a call message from a persistent
component does not “commit” its state to other
components. Thus, we do not force the log when calling
a read-only component.

Finally, it is not necessary to detect duplicate calls to
or from a read-only component because the calls do not
change any states. Hence read-only components do not
have last call table entries at persistent components and
we do not maintain outgoing call IDs and last call tables
at read-only components.

 Algorithm 5 describes the logging associated with
read-only components.

3.3 Read-only Methods

A stateful persistent component may provide
methods to query its state (without changing it). We call
such methods read-only methods. More strictly, a read-
only method is a method that neither changes any field of
the component nor makes a non-read-only outgoing
method call. Programmers can specify a read-only
attribute on a method, and message interceptors can check
for it.

We treat read-only method calls like method calls to
read-only components. For a read-only method call, the
client does not need to force the log, and the server does
not need to log. Algorithm 5 also describes this logging.

3.4 Detecting Component Types

Programmers specify subordinate, functional, or
read-only components just as they specify persistent
components, via a declarative attribute accessible within a
context. Hence, a message interceptor can obtain
information about the components inside its context.

To detect the component types of remote components,
a message interceptor attaches information about the
(parent) component of its context to the messages being
sent. When receiving messages, a message interceptor
obtains the component information from the messages. In
this way, client component types can be determined.

To determine server component types, we keep a
remote component type table. Initially, the types of server
components (targets of outgoing calls) are unknown, and
the most conservative logging algorithms are used. From
reply messages, we gradually learn server component
types and store them in the remote component type table,
which is checked when sending an outgoing method call.

3.5 Multi-call Optimization

Other optimization opportunities exist if we are
permitted to take into account the effects of multiple calls,
rather than examining each call in isolation. The
optimization described here is not currently supported by
our Phoenix/App system, but including it is
straightforward.

Consider a persistent component that calls multiple
server components. Without context information, each of
these calls commits component state, and hence must
force the log. The first force at the first outgoing server
call captures the nondeterminism associated with the
incoming method call. After this first call, our component
does the force to capture the nondeterminism resulting
from having read the earlier server replies.

Each server is responsible for the persistence of its
reply message. Thus, the nondeterminism for our
persistent component that results from reading the replies
from the outgoing calls is already captured at the
respective servers in their last call tables. Recovery can
exploit those persistent replies to recover our component.

We can then choose to force the log only when a
component itself replies to its caller, or when it invokes
the same server a second time during its method
execution. This requires that we remember not only the
last call for each component, but each server that a
component has called so far in the execution of a method.
But saving a log force is a large reward for this extra
bookkeeping.

4. Improving Recovery Performance

The baseline system recovers a failed component by
replaying all its method calls from component creation
until the failure. However, a long-lived component may

At a read-only component: do nothing

At a persistent component:
Message 1. Incoming method call

IF (client/method is read-only)
 Do nothing

Message 2. Reply to incoming call
IF (client/method is read-only)
 Do nothing

Message 3. Outgoing method call
IF (server/method is read-only)
 Do nothing

Message 4. Reply from outgoing call
IF (server/method is read-only)

 Log message 4

Algorithm 5 logging for read-only components
and read-only methods

handle many method calls before failure, leading to very
high recovery cost. In this section, we describe how to
take checkpoints to keep recovery cost low.

4.1 Intra-process Architecture

Both context states and process data structures must
be saved in order to recover from a process crash. Figure
7 shows the Phoenix/App runtime structures inside a
process. There can be multiple contexts hosting
components. In a context, there can be a parent persistent
component and zero or more subordinates, or a functional
or read-only component.

Phoenix/App maintains a set of data structures outside
of all contexts in a process. The context table contains an
entry for every context hosting Phoenix/App components.
The component table has an entry for every Phoenix/App
component in the process. A context entry and entries for
components of the context are associated through
pointers. The remote component table contains
component type information for remote components seen
so far. As described in Section 3.4, this table saves remote
server component types so that optimal logging
algorithms will be chosen. The last call table maintains
information on the last incoming method calls indexed by
client component ID, which is used to detect and answer
duplicate method calls. The last call table is shared
among all the contexts in a process so that the entry for a
client is updated even if the client calls two different
components in the same process. Moreover, the last call
table also keeps the list of last call entries associated with
every context, which is used in context saving.
Descriptions of the table entries are shown in Table 1.

Message records and checkpoints are stored in disk
based log files. We manage disk files on a per-process
basis to simplify file access. Logging is performed
through a log manager in a process.

There is a recovery manager in every process. At
process start, the recovery manager registers the process
with the recovery service of the machine to obtain the
virtual process ID, which is part of a method call ID. If
the recovery service notifies the recovery manager that
the process exited abnormally, the recovery manager first
recovers the process tables, contexts and components.

In the next two subsections, we study how to save
context states and process data structures, respectively.

4.2 Saving Context States

States of components in a context (parent and
subordinates) must be saved together because method
calls inside a context are not intercepted or logged.
Component state normally includes stack, and virtual
memory of the process, which could be very expensive to
save. To avoid this overhead, context states are saved
only when the context is not “active”, i.e., after an
incoming method call to a parent finishes and before
another incoming call is delivered to it. At this moment,
component state consists only of field values. So it is
sufficient to save only component fields and context
related data structures to recover the context.

To save or restore the internal fields of a component,
we use the .NET reflection mechanism to obtain its field
types and values. (Serialization and deserialization
utilities exist in .NET to save and restore fields of non-
context objects. But we had to implement the support for
objects in contexts.) Because component fields may be
private and invisible from outside of the component, we
implemented a “persistent” base class and required all
Phoenix/App components to inherit from this class. A
base class can visit all fields in a derived instance and we
implement the support for saving and restoring a
component in the base class.

We specially handle pointer fields referencing
Phoenix/App components. For a remote component
reference, we save the component URI; for a local
component reference (to a component in the same
context), we store the component ID. When restoring a
pointer field, we re-obtain the pointer using the saved URI
or component ID.

Moreover, we save relevant information from the
global component and context tables so that the
component table entries and the context table entry can be
reconstructed. We combine this information with
component field values into a context state record. We
use the parent component ID to identify a context in log

Tables

Recovery
Manager

Context

Message
Interceptor

S
P S

S

Base Class

R F

Log
 Manager

Figure 7 Intra-process architecture

Remote
Component

Last Call Component Context

Table 1 Global tables in a process

Component
table entry

component ID, component type (persistent, read-
only, etc.), object type, pointer to the object
instance, and pointer to its context table entry

Context
table entry

a list of pointers to the component table entries
for the components in the context, the (parent)
component ID and URI, a log sequence number
(LSN) of the latest context state record, and the
last outgoing method call ID of the context

Remote
component
table entry

Remote component type information indexed by
remote component ID

Last call
table entry

method call globally unique ID, a pointer to the
reply message and/or an LSN for the reply
message log record

records for messages and context state. Then the saved
context states can be associated with call message
records.

Reply messages (message 2) are not usually logged.
So the LSNs in the last call table are often empty. We
need the reply messages of last calls to recover the last
call table because, after restoring a saved context state, we
may not be able to re-create the replies of earlier
incoming method calls. Therefore before we save a
context state, we must write the replies of the last call
table entries associated with the context, which are
retrieved from the last call table as described in Section
4.1. We then fill in the LSNs in the last call entries. Next
time we save the context state, if an LSN is not empty, we
know the reply message is in the log and needn’t save it
again. Note that most reply messages are not logged
because their last call table entries have been replaced by
later calls from the same clients before we save context
states.

In summary, during normal execution, a message
interceptor can save context state before sending a reply
message to a client (after processing). It first saves the
context’s reply messages in the last call table. Then it
retrieves component fields and meta-information from
global data structures, combines them into a state record,
and writes it to the log. After that, it updates the state
record LSN in the context table entry, which is saved as
process states and used to retrieve the context state record
during recovery. If no state record has yet been saved, the
LSN of the context table entry corresponds to the creation
record of the (parent) component.

4.3 Taking Process Checkpoints

In addition to saving context states, we save process
state in process checkpoints, which includes the state
record LSNs from the context table. These LSNs are akin
to the recovery LSNs for pages in ARIES [13]. The
relationship of process checkpoints and context state
records is shown in Figure 8.

To allow concurrent accesses to the global tables, we
log a begin checkpoint record before taking the
checkpoint and log an end checkpoint record after we
finish. We use sub-range locks to incrementally save
global tables. When reading a process checkpoint, we

examine all the log records between the begin checkpoint
and end checkpoint record.

There is no need to force the log immediately after
either a state record or a process checkpoint is written,
since we can replay all the method calls from the creation
record or the last forced states. Once a process
checkpoint has been flushed to the log (possibly by a later
send message), the log manager writes and forces the
LSN of the begin checkpoint record into a well-known
file. This LSN always points to a process checkpoint (if
exists).

We take process checkpoints periodically. Context
state records are saved independently of other contexts
and process checkpoints. We will study the runtime
overhead and the recovery performance in Section 5.
From the experiments, we will estimate how frequent
context states should be saved.

4.4 Recovery Processing

Figure 8 shows the process checkpoint and context
state records at the time of a process crash. The well-
known file’s LSN identifies the last process checkpoint.
The process checkpoint contains the LSNs of each
context’s last state record saved before the process
checkpoint. However, more recent context states may
exist after the last process checkpoint. We can recover
contexts from these more recent context state records.

When a process starts, it registers with the recovery
service. If it has been started to recover a prior failure, the
recovery service sends back the original process identity
information and directs the recovery manager in the
process to recover. Its task is to recover the process data
structures and the states of all contexts in the process.

The recovery manager first reads the LSN from the
well-known file. This LSN is used as the start point to
examine the log. If the LSN does not exist, the log is
examined from the very beginning.

In the first pass, the log is examined from the start
point to the end of the log. The recovery manager finds
all the contexts that existed when the process crashed. It
obtains the latest state record LSNs (or creation record
LSNs) of the contexts by reading the context table records
in the process checkpoint and by reading the context state
records and creation records found during the log scan.
After the first pass, the recovery manager restores the
context states of all the contexts that have state records.
Ordinary field’s values are restored. References for
remote and local components are kept in a list in every
context, to be resolved later. (Newly created contexts
without state records are processed in the second pass
because component construction methods are allowed to
make method calls to other components.)

Then the recovery manager reads the log in a second
pass. It scans from the minimum LSN found in the
context table to the end of the log. If a message log record

Process
Checkpoint

Context 2
State

Context 1
State

Context 1
State Crash

point
Last Checkpoint

Position

Log

Figure 8 Context states, process checkpoints

occurs earlier than the latest state record of the same
context, it is ignored since we have already restored the
latest context state records. Process checkpoint records
are also ignored. All the context states up to the failure
point are recovered by replaying incoming messages and
suppressing regenerated outgoing messages. During the
log scan, we buffer message records or creation records
for every context until an incoming method call record is
encountered. At this point the log records for all the
messages related to the previous incoming method call (or
creation call) are in the buffer. This previous call is
replayed with outgoing method calls answered by the
records in the buffer, similar to replay in the baseline
system. If this is the first replay for the context, we check
and resolve pointer fields that are component references
before the replay.

After this pass, the recovery manager replays the
remaining buffered method calls, which are the last
incoming calls. If the last incoming call is successfully
replayed to finish, then we set the context interceptors to
normal execution states and the context begins to wait for
incoming calls. If the reply to an outgoing call is missing
from the log, the outgoing call is not suppressed by the
message interceptor and normal execution begins. Note
that the last incoming call’s return value is returned to the
caller, here the recovery manager, which satisfies
condition 5.

Furthermore, the last call table is reconstructed from
the last call records in the two passes. Only LSNs are
filled in; actual reply messages are only read when they
are required to reply to a duplicate call. The replays of the
final incoming calls update the last call table accordingly,
for the reply messages may not be in the log.

The above describes how we recover from a process
crash. Recovering from a context failure is easier. The
state record LSN can be found in the context table and the
state record (or creation record) can be read from the log
and the context restored to the state of the state record.
Then the log after the state record (creation record) is read
and incoming method calls for the context are replayed.

5. Experimental Results

We evaluated logging and recovery performance
through experiments. In our new prototype, log
optimizations and checkpointing can all be turned on or
off via switches. Log records accumulate in a buffer and
are written at a log force or full buffer. Unless otherwise
noted, we use unbuffered writes with disk write cache
disabled to ensure writes actually go to stable media.

We first describe the experimental setup. Then we
show the experimental results of micro-benchmarks and
an example application.

5.1. Experimental Setup

Our experiments were run on two identical Compaq
Evo D500 machines connected via 100MB Ethernet.
Machines and disks are described in Tables 2 and 3.

We mainly used micro-benchmarks to show the
performance of individual operations. The micro-
benchmark setup consisted of a client component making
method calls to a server component. We measured the
round trip elapsed time of a method call to the server
component from inside the client component (i.e. from
inside the client object instance). We turned on or off log
optimizations and checkpointing and we changed the
component types of the client and the server to show the
runtime performance under various situations. Since the
operating system timer is quite coarse (~15ms resolution),
we batched multiple calls, measured total elapsed time,
and divided total time by number of method calls. Total
elapsed time was at least 1000 times the timer resolution.

For recovery performance, we killed the server
component and measured its recovery time. Because of
the timer resolution issue, which we found hard to deal
with here, our results had rather large variances.

Besides studying individual operations with micro-
benchmarks, we measured the performance of an example
application — an online bookstore. This application is
described in Section 5.5.

We ran every experiment 30 times and report the
mean value. Standard deviations are less than 5% of the
means except for recovery and results marked with *,
where standard deviations are within 12% of the mean.

5.2 Runtime Logging Performance

5.2.1. Log Optimizations for Persistent Components.
Table 4 shows the effect of our optimizations for
persistent components. The local column shows the
performance when both client and server components are
on the same machine, while the remote column shows the
results when they are on separate machines.

Table 2 Test Machines
CPU One 2.20 GHz Pentium 4
L1/L2 cache/RAM 20KB/512 KB/512MB

OS Microsoft Windows XP professional

.NET framework Version 1.0.3705

Table 3 MAXTOR 6L040J2 Disks
Formatted Capacity 40,027 MB
Nominal RPM 7200
Average Read Seek Time 8.5 ms
Average Write Seek Time 10.5 ms
Track-to-track Seek Time 0.8 ms
Disk to Read Buffer Transfer Rate 236~472 Mb/s
Read Buffer to ATA Bus
(Ultra ATA mode)

133 MB/s maximum

We compare the performance of a native .Net system,
the baseline system, and our optimized system. In .NET,
a server component must be a MarshalByRefObject or a
ContextBoundObject. However, any component can be a
client. We use “External” to indicate such a simple
component. Phoenix/App persistent components are all
derived from PersistentObject, which is in turn derived
from ContextBoundObject.
The first four rows in Table 4 show the performance with
basic .NET components for client and server. We see that
the performance of using MarshalByRefObject and
ContextBoundObject are similar. However, installing
message interceptors (without doing any work in the
interceptors) incurs a ~0.08ms overhead. The round-trip
messages through network add ~0.2ms per call.

The last four rows in Table 4 show the performance of
the baseline system and the optimized system. We can see
their overhead is much higher than the native .NET
objects because of logging. When the client is external,
our optimized system performs the same as the baseline
system since the same logging algorithm is employed
under this situation. However, when the client is a
persistent component, optimized logging achieves about a
two fold speedup. The optimized system only forces the
log when sending messages, saving two log forces per
method call. In addition, we do not write log records for
send messages because they can be re-created from
previous messages during recovery.

5.2.2. Understanding the Performance Numbers. For
External Persistent interactions, the server performs a

sequence of log writes and forces, resulting in a sequence
of unbuffered disk writes (because we make multiple
method calls and take their average).

Figure 9 shows the performance of 1KB unbuffered
disk writes in a loop (log message size in our experiments
is less than 1KB). We insert some delay after every write
in the loop body and report the elapsed time per iteration.
The time per write is about 8.5 ms with no inserted
delays. This is a little more than a full rotation time (8.33
ms/rotation for 7200 RPM). When delay time increases,
the elapsed time jumps in discrete steps corresponding to
the number of missed rotations. Thus unbuffered writes
indeed miss a full rotation.

Therefore, the elapsed time of External Persistent is
roughly two unbuffered disk writes (missing two full
rotations). The local Persistent Persistent cases show
four unbuffered disk writes for the baseline system and
two for the optimized system, as expected.1 Note that the
first log write in the above cases sees a full rotational
delay because of the way we performed the experiments:
successive client requests interfere. Were client calls
spaced out, e.g., with think time inserted, we would
expect to see, on average, half a rotational delay for the
first write.

For remote Persistent Persistent cases, log writing
and forcing is done at both client and server machines. To
understand the performance, we inserted delays at both
client (between method calls) and server (in a method
call). For the optimized remote Persistent Persistent
case, we did not see discrete steps. So the results are not
caused by full rotational delays. 10.8ms means a delay of
5~6ms per disk write, which could be explained by the
average rotational delay of 4.17ms plus some small seek
times. For the baseline remote Persistent Persistent
case, there are four writes per method call. The timings
for the two writes at the same machine are different. The
first disk write may follow the 5~6ms as in the optimized
remote Persistent Persistent case. The second disk write

1 In our “local” experiments, client and server are in different processes,
using different log files. But we believe newly allocated disk blocks for
the two files are close enough to incur only small disk seek times.

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Delay After a Write (ms)

E
la

p
se

d
 T

im
e

p
er

 It
er

at
io

n
 (

m
s)

Figure 9 Unbuffered disk write performance

Table 4 Log Optimizations for Persistent
Components (ms)

Client / Server Component Types Local Remote

External MarshalByRefObject 0.593 0.798

External ContextBoundObject 0.598 0.804
ContextBoundObject

ContextBoundObject
0.585 0.808

ContextBoundObject
ContextBoundObject(interception)

0.674 0.870

External Persistent (baseline) 17.0 17.3*

External Persistent (optimized) 17.1 17.0

Persistent Persistent (baseline) 34.7* 28.4

Persistent Persistent (optimized) 17.9* 10.8*

Table 5 New Components and Read-only

Methods (ms)
Client / Server Component Types Local Remote
External Read-only 0.689 0.887
External Functional 0.672 0.875
Persistent Read-only 1.351 1.495
Persistent Functional 1.194 1.414
Persistent Subordinate 3.44 x 10-5
Persistent Persistent
(Read-only methods)

1.407 1.547

Read-only Persistent 1.218 1.404

misses a full rotation and costs 8~9ms. Therefore,
altogether four writes cost ~28ms.

5.2.3. New Component Types and Read-only Methods.
Table 5 shows the performance when subordinate, read-
only, or functional components are used, or the read-only
method optimization is enabled. Log forces are then
eliminated, leading to much better performance than the
last four rows in Table 4. The best performance is in the
Persistent Subordinate case, where method calls are
local, without logging and context-crossing overhead.

In External Read-only, External Functional,
Persistent Functional, and Read-only Persistent,
logging is fully eliminated. As expected, the performance
with external clients is similar to the performance of
ContextBoundObject with interceptors (4th row in Table
4). However, there is ~0.5ms more overhead for the other
two cases. This is due to the attachment to the message of
information showing the sender’s component type. In our
initial experiments, the costs were even higher since we
sent attachments with all messages. But we made an
optimization. A client interceptor includes a field in its
message attachment saying whether it knows the identity
of the server. If this field is true, the server interceptor can
omit the attachment in the reply message. The
performance given includes this optimization.

For Persistent Read-only and Persistent Persistent
with read-only methods, reply messages are still written
to the log buffer (without forces), incurring additional
overheads of 0.15~0.2ms versus Persistent Functional.

5.3 Runtime Checkpointing Overhead

Table 6 shows the runtime checkpoint performance.
The result of Persistent Persistent with write cache
disabled is the same as the remote Persistent Persistent
(optimized) result in Table 4. To measure context saving
overhead, we save the server context state after every
method call. For the results in the right column, we
performed the same experiments with disk write caching
enabled, which removes the disk media costs.

In both situations, saving context state incurs an
additional ~1ms overhead, quite reasonable compared to
the disk media cost as shown in the left column and the

computational cost (including the delay from memory to
disk cache) as shown in the right column.

In our experiments, the size of an incoming message
record is 186B and a state record 468B. For many
components, the states could be substantially larger. Our
small state in this example was responsible for the small
computational overhead of saving the state.

5.4 Recovery Performance

Table 7 shows the recovery performance with and
without context states. The elapsed time is measured
inside the recovering process. But it does include the
initialization of all the Phoenix/App runtime structure in
the process. Recovery cost when the log is empty is ~0.5s.

Recovery processing starts by creating an object when
no context state record is found. Otherwise the latest
context state record is used. The recovery performances
for both cases are shown. We vary the number of method
calls replayed after the object creation or state restoration.
The cost of replaying a method is roughly 0.15ms.
Reading the creation records, creating an object, running
the object constructor, and registering the object with
Phoenix cost ~80ms. Restoring the state record costs
~60ms more. This 60ms is the cost of the checkpoint
during recovery. Once the replay cost exceeds 60ms,
recovery will be faster with a checkpoint. 60ms are
approximately equal to the cost of replaying about 400
method calls, which means context states should be saved
every 400 calls or more in the micro-benchmark.

5.5 Application Performance

5.5.1. On-Line Bookstore. In the previous subsections,
we measured the runtime and recovery performance of
Phoenix/App through micro-benchmarks. In this
subsection, we show the performance improvements of an
online bookstore (from [5]).

Figure 10 shows the architecture of the online
bookstore application. There are six kinds of components.
The arrows show the directions of method calls between
components. A Bookstore component maintains the
inventory of a store. The PriceGrabber component
supports keyword searches on all the bookstores. The
TaxCalculator computes sales tax based on total price and
user information. The BookSeller manages a set of Basket
Managers, each maintaining a shopping basket for a Book

Table 6 Checkpointing Performance (ms)
Client / Server

Component Types
Write cache

disabled
Write cache

enabled
Persistent Persistent 10.8* 2.62
Persistent Persistent
(save state on call)

11.8* 3.82

Table 7 Recovery Performance (ms)
Number of method calls replayed

Recovery Cases
0 1000 2000 3000 4000 5000

Empty log 492
From creation 575 728 868 1007 1100 1199

From state 638 794 875 1162 1252 1507

Price
Grabber

Book
store 2 Book

store 1
Book
Seller

Tax
Calculator

Basket
Manager

Shopping
Basket

Figure 10 Online Bookstore Application

Book
Buyer

e

r

p

f

s
p

Buyer. BookBuyer runs in a console. It displays text
menus and communicates with the PriceGrabber,
BookSeller, and TaxCalculator to fulfil user requests.

For baseline system performance, all components are
persistent except BookBuyer, which is external. For the
performance of the optimized system, we specify
component types with the leading letter of the type in the
upper-left corners of component boxes in Figure 11. We
specify read-only methods where appropriate.

To test performance, we rewrote the BookBuyer client
to automatically generate inputs. Console outputs from
the demo are redirected to files. The BookBuyer is run on
one machine and all server components are run on the
other machine. We repeatedly run the following set of
operations: i) Search books with the keyword “recovery”;
ii) Add a book from each bookstore to the shopping
basket; iii) Show the shopping basket and compute total
price including tax; iv) Remove all the books from the
shopping basket. The performance is shown in Table 8.

Elapsed times are listed along with the numbers of log
forces. With the baseline system, there are a total of 64
log forces. Optimizing logging for persistent components
cuts 18 forces. Employing specialized components and
read-only methods save another 12 forces. Note that since
logging is only on the server machine and the methods are
all simple, the elapsed times can be well explained by full
rotational latencies plus small seek times.

Overall, we cut response time approximately in half
for this small sample application. We think that this is
indicative of the kind of performance gains that should be
possible using the optimized logging and new component
types and methods. This kind of performance gain is hard
to achieve in the transaction processing world, and
reflects the very real utility of our optimizations.

5.5.2. Multi-call Optimization. The PriceGrabber
queries a number of Bookstores before rolling up the
results and returning them to the BookBuyer. In our
current prototype, the log is forced by the PriceGrabber at
every Bookstore reply. With the multi-call optimization
in section 3.5, the log would be forced only when the
PriceGrabber itself returned. Hence, the PriceGrabber
forces the log only once, regardless of the number of
Bookstore’s it queries.

6. Summary

In this paper, we have shown that the logging and
recovery performance of Phoenix/App can be greatly
improved. We re-examined the logging requirements for
persistent components and took advantage of special
component and method types to reduce logging overhead.
Further, we implemented a checkpointing mechanism to
reduce the recovery cost. Although our prototype was
implemented in the .NET framework, our schemes to
improve logging and recovery performance are applicable
to other component-based programming environments.
Importantly, our optimizations apply to a programming
model that supports persistent stateful applications, a
more natural model than the stateless, “string of beads”
model supported by traditional TP monitors and workflow
systems.

7. References
[1] L. Alvisi and K. Marzullo. Message Logging: Pessimistic,

Optimistic, and Causal. ICDCS, 1995.
[2] J.F. Bartlett. A NonStop Kernel. SOSP, 1981.
[3] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W.

Oberle. Fault Tolerance under UNIX. ACM TOCS, 7(1),
1989.

[4] P. Bernstein, M. Hsu, and B. Mann. Implementing
Recoverable Requests Using Queues. SIGMOD 1990.

[5] R. Barga, D. Lomet, S. Paparizos, H. Yu, and S.
Chandrasekaran. Persistent Applications via Automatic
Recovery. IDEAS 2003.

[6] R. Barga, D. Lomet, and G. Weikum. Recovery Guarantees
for General Multi-Tier Applications. ICDE, 2002.

[7] E.N. Elnozahy, L. Alvisi, Y. Wang, and D.B. Johnson. A
Survey of Rollback-Recovery Protocols in Message-
Passing Systems. ACM Computing Surveys, 34(3), 2002.

[8] Sun Microsystems. Enterprise JavaBeans Technology.
http://java.sun.com/products/ejb/.

[9] D. Esposito. .NET Remoting: Design and Develop
Seamless Distributed Applications for the Common
Language Runtime. MSDN Magazine, Oct. 2002.

[10] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[11] M. Kirtland. Object-Oriented Software Development Made
Simple with COM+ Runtime Services. Microsoft Systems
Journal, 12(11), 1997.

[12] D. Lomet and G. Weikum. Efficient Transparent
Application Recovery in Client-Server Information
Systems. SIGMOD 1998.

[13] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P.
Schwarz. ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial Rollbacks
Using Write-Ahead Logging. ACM TODS, 17(1), 1992.

[14] Object Management Group. Fault Tolerant CORBA
Specification (V1.0). http://cgi.omg.org/cgi-bin/doc
?ptc/00-04-04, 2000.

Table 8 Performance of Online Bookstore
Application

Optimization levels Elapsed Time Number of Forces
Baseline 589 ms 64

Optimized logging for
Persistent Components

382 ms 46

Specialized components and
read-only methods

296 ms 34

