
Inspector Joins

Shimin Chen† Anastassia Ailamaki† Phillip B. Gibbons‡ Todd C. Mowry†,‡

†Carnegie Mellon University ‡Intel Research Pittsburgh
5000 Forbes Avenue 4720 Forbes Avenue, Suite 410

Pittsburgh, PA 15213, USA Pittsburgh, PA 15213, USA
{chensm,natassa,tcm}@cs.cmu.edu phillip.b.gibbons@intel.com

Abstract
The key idea behind Inspector Joins is that dur-
ing the I/O partitioning phase of a hash-based join,
we have the opportunity to look at the actual data
itself and then use this knowledge in two ways:
(1) to create specialized indexes, specific to the
given query on the given data, for optimizing the
CPU cache performance of the subsequent join
phase of the algorithm, and (2) to decide which
join phase algorithm best suits this specific query.
We show how inspector joins, employing novel
statistics and specialized indexes, match or exceed
the performance of state-of-the-art cache-friendly
hash join algorithms. For example, when run on
eight or more processors, our experiments show
that inspector joins offer 1.1–1.4X speedups over
these previous algorithms, with the speedup in-
creasing as the number of processors increases.

1 Introduction
Our ability to minimize the execution time of queries of-
ten depends upon the quality of the information we have
about the underlying data and the existence of suitable in-
dexes on that data. Thus, database management systems
(DBMS) maintain various statistics and indexes on each re-
lation, which fuel all of the optimizer’s decisions. Because
it is not feasible to maintain statistics and indexes specific
to every query, the DBMS must rely on general statistics
and indexes on the relations in order to optimize and pro-
cess specific queries, often resulting in incorrect decisions
and ineffective access methods. This problem is particu-
larly acute for join queries, where (1) characteristics of the
join result often must be inferred from statistics on the in-
dividual input relations and (2) it is impractical to maintain
indexes suitable for all join query and predicate combina-
tions. In this paper, we address this problem in the context
of hash joins, one of the most frequent join algorithms.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

The key observation in this paper is that because hash-
based join algorithms visit all the data in the I/O parti-
tioning phase before they produce their first output tuple,
we have the opportunity to inspect the data during this
earlier pass and then use this knowledge to optimize the
subsequent join phase of the algorithm. In particular, we
show how statistics and specialized indexes, specific to
the given query on the given data, can be used to signifi-
cantly reduce the primary performance bottleneck in hash
joins, namely, the poor CPU cache performance caused by
the random memory accesses when building and probing
hash tables [3, 4, 12, 17]. Although improving hash join
cache performance has been the focus of many recent stud-
ies [3, 4, 12, 17], we show that our approach, which we
call Inspector Joins, matches or exceeds the performance of
state-of-the-art hash join algorithms, achieving up to 1.4X
speedups. Moreover, the specialized indexes created by in-
spector joins are particularly well-suited to two common
join scenarios: foreign key joins and joins between two
nearly-sorted relations.1

1.1 Previous Cache-Friendly Approaches
Previous studies propose two approaches to improving the
CPU cache performance of hash joins: cache partitioning
and cache prefetching. Given a pair of build and probe
partitions in the join phase, cache partitioning [3, 12, 17]
recursively divides the two memory-sized partitions into
cache-sized sub-partitions so that a build sub-partition and
its hash table fit into the CPU cache, thus reducing the num-
ber of cache misses caused by hash table visits. However,
the re-partition cost is so significant that cache partition-
ing is at least 50% worse than cache prefetching for for-
eign key joins [4]. Moreover, cache partitioning is sensi-
tive to cache interference by other concurrent activities in
the system because it assumes exclusive use of the cache.
Cache prefetching [4] exploits memory system parallelism
in today’s processors and uses software prefetch instruc-
tions to overlap cache misses with computation. The cache
prefetching techniques are effective only when there is suf-
ficient memory bandwidth. However, modern database
servers typically run on multiprocessor systems. In an
SMP (symmetric multiprocessing) system, the entire mem-

1Joins between nearly-sorted relations arise, for example, in the TPC-
H benchmark, where the lineitem table and the orders table are nearly
sorted on the (joining) order keys. We also observe joins between nearly-
sorted relations in a commercial workload.

 2 4 8 16 32
0

2

4

6

8

10

num cpus used in join phase

ex
ec

ut
io

n
tim

e
(G

 c
yc

le
s)

GRACE
cache part
cache pref

 2 4 8 16 32
0

10

20

30

40

50

num cpus used in join phase

ag
gr

eg
at

e
ex

ec
ut

io
n

tim
e(

G
 c

yc
le

s)

GRACE
cache part
cache pref

(a) Execution time varying (b) Aggregate time of all
the number of CPUs CPUs used in join phase

Figure 1: Impact of memory bandwidth sharing on join
phase performance in an SMP system

ory bandwidth is shared across all the processors. Because
cache prefetching essentially trades off bandwidth for re-
duced execution time, its benefit gradually disappears as
more and more processors eagerly compete for the limited
memory bandwidth.

Figure 1 shows the join phase performance of joining a
500MB build relation with a 2GB probe relation, varying
the number of CPUs used in the join phase. In each ex-
periment, the number of I/O partitions generated is a mul-
tiple of the number of CPUs. Then the same join phase
algorithm is run on every CPU to process different parti-
tions in parallel. (Please see Section 6.1 for setup details.)
As shown in Figure 1(a), both cache partitioning (cache
part) and cache prefetching (cache pref) perform signifi-
cantly better than the original GRACE hash join. Cache
partitioning is worse than cache prefetching because of the
re-partition cost. The effect of memory bandwidth sharing
is more clearly shown in Figure 1(b), which reports the total
aggregate time of all CPUs for the join phase for this same
experiment. We can see that the benefit of cache prefetch-
ing gradually disappears as more and more processors are
competing for the memory bandwidth. Cache prefetching
becomes even worse than the GRACE hash join when there
are 16 processors or more. Interestingly, the GRACE hash
join also suffers from memory bandwidth sharing when
there are 32 processors.

1.2 The Inspector Join Approach
To achieve good performance even when memory band-
width is limited, we need to reduce the number of cache
misses of the join phase algorithm, in addition to apply-
ing prefetching techniques to hide cache miss latencies.
Our approach exploits the multi-pass structure of the hash
join algorithm. During the I/O partitioning phase, inspec-
tor joins create a special multi-filter-based index with lit-
tle overhead; this index will enable us to have “in-place”
cache-sized sub-partitions of the build table. Unlike cache
partitioning our approach reduces the number of cache
misses without moving tuples around. The join phase,
which we refer to as a cache-stationary join phase because
of its in-place nature, is performed using the index.

Our cache-stationary join phase is specially designed
for joins with nearly unique build join keys, which in-
clude primary-foreign key joins, the majority of all the

real-world joins. On the other hand, if probe tuples fre-
quently match multiple build tuples in a given join query,
the cache-stationary join phase is not the best choice. An
inspector join can detect this condition during its inspec-
tion and switch to use a different join phase algorithm (see
Section 6.5 for details). Moreover, as mentioned above, in-
spector joins can detect nearly-sorted relations (after any
predicates being applied before the join). Our initial in-
tuition was that a sort-merge based join phase algorithm
should be applied in this case. However, surprisingly, the
cache-stationary join phase performs equally well, due to
the effectiveness of its multi-filter-based index.

1.3 Contributions
This paper makes the following contributions. First, we
propose and study the inspector join, which to our knowl-
edge, is the first hash join algorithm that exploits the free
information obtained from one pass of the algorithm to im-
prove the performance of a later pass. Second, we propose
a specialized index that addresses the memory bandwidth
sharing problem, and can take advantage of nearly-sorted
relations. Moreover, we utilize cache prefetching to im-
prove the robustness of inspector joins in the face of cache
interference. Third, we present an illustrative example of
how inspector joins can use its collected statistics to select
between two join phase algorithms for the given query and
data. Finally, our experiments demonstrate that as we run
on 8 or more processors, inspector joins achieve 1.1–1.4X
speedups over previous state-of-the-art cache prefetching
and cache partitioning algorithms, with the speedup in-
creasing as the number of processors increases.

The paper is organized as follows. Section 2 discusses
related work. Section 3 illustrates the high level ideas in
our solution. Section 4 and 5 describe our algorithms in
detail. Section 6 presents our experimental results. Finally,
Section 7 concludes the paper.

2 Related Work
Hash join cache performance. Hash join has been stud-
ied extensively over the past two decades [5, 10, 11, 16].
Because of its I/O partitioning approach, a hash join se-
quentially visits the disk pages in source relations and in-
termediate partitions. By using advanced I/O techniques,
such as I/O prefetching, hash join is CPU bound if there is
sufficient I/O bandwidth [4]. Therefore, this paper focuses
on the CPU cache performance of the algorithm.

Previous studies show how cache partitioning and/or
cache prefetching can be used to improve the CPU cache
performance of hash joins. Shatdal et al. show that
cache partitioning achieves 6-10% improvement for joining
memory-resident relations with 100B tuples [17]. Boncz,
Manegold and Kersten propose using multiple passes in
cache partitioning to avoid cache and TLB thrashing when
joining vertically-partitioned relations (essentially joining
two 8B columns) [3, 12]. However, Chen et al. show
that when the tuple size is more than 20B, the re-partition
cost of cache partitioning is so significant that cache par-
titioning is at least 50% worse than cache prefetching [4].
Chen et al. propose exploiting the inter-tuple parallelism
to overlap the cache misses of a tuple with the processing

of multiple tuples [4]. They propose two prefetching algo-
rithms, group prefetching and software-pipelined prefetch-
ing, and evaluate their performance through detailed cycle-
by-cycle simulations.2

As shown in Figure 1, the performance of cache
prefetching degrades significantly when more and more
CPUs are eagerly competing for the memory bandwidth in
a multiprocessor system. Our inspector joins exploit infor-
mation collected in the I/O partitioning phase to fit address-
range-based sub-partitions in cache, thus reducing the num-
ber of cache misses without incurring additional copying
cost. Our approach is effective for tuples that are 20B or
more. For smaller tuples, we revert to cache partitioning.

Inspection concept. Several studies exploit informa-
tion collected while processing queries previously submit-
ted to the DBMS: reusing partial query results in multi-
query optimization [15], maintaining and using material-
ized views [1], creating and using join indices [19], and
collecting up-to-date statistics for future query optimiza-
tions [18]. Unlike these studies the inspection and use of
the information in our approach are specific to a single
query. Therefore, we avoid the complexities of deciding
what information to keep and how to reuse data across mul-
tiple related queries. Moreover, our approach is effective
for any join query and predicate combinations.

Dynamic re-optimization techniques augment query
plans with special operators that collect statistics about the
actual data during the execution of a query [9, 13]. If the
operator detects that the actual statistics deviate consider-
ably from the optimizer’s estimates, the current execution
plan is stopped and a new plan is used for the remainder of
the query. Compared to the global re-optimization of query
plans, our inspection approach can be regarded as a com-
plementary, local optimization technique inside the hash
join operator. When hash joins are used in the execution
plan, our inspection approach creates specialized indexes to
enable the novel cache-stationary optimization and allows
informed choice of join phase algorithms. Because the in-
dexes and informed choice account for which tuples will
actually join as well as their physical layout within the in-
termediate partitions, this functionality cannot be achieved
by operators outside the join operator.

3 Inspector Joins: Overview
In this section, we describe (i) how we create the multi-
filters as a result of data inspection, (ii) how we minimize
the number of cache misses without moving any tuples
around, (iii) how we exploit cache prefetching to hide the
remaining cache misses and to improve robustness against
cache interference, and (iv) how we choose join phase al-
gorithms based on obtained information about the data.

3.1 Inspecting the Data: Multi-Filters
While partitioning tables for a hash join, commercial
DBMS often construct a filter to quickly discard probe tu-

2The cache prefetching algorithms require faulting prefetch instruc-
tions, meaning that a prefetch should succeed even if it incurs a TLB
miss. IA64 processors support faulting prefetches [7]. We believe that
since faulting prefetches are very important to database applications, they
will be supported in more and more processors.

Relation

Intermediate
Partitions

Build

A Single Filter

Hash
Relation

Partitions
Intermediate

Sub−partition
A Filter per

Build

Address−range based
Sub−partitions

Hash

(a) Single-filter scheme (b) Multi-filter scheme

Figure 2: Using multiple filters to inspect the data

ples that do not have any matches [11]. Such filters may
improve join performance significantly when a large num-
ber of probe tuples do not match any tuples in the build
relation (e.g., there is a predicate on the build relation in a
foreign-key join). As shown in Figure 2(a), a single filter is
computed from all the build tuples to approximately repre-
sent all the join attribute values in the build relation. Test-
ing a value against the filter is conservative: while a neg-
ative answer means that the value is not in the filter, false
positives may occur with a low probability. (Bloom filters,
detailed in Section 4, are a typical example.) When parti-
tioning the probe relation, the algorithm tests every probe
tuple against the filter. If the test result is negative for a
tuple, the algorithm simply drops the tuple, thus saving the
cost of writing it to disk and processing it in the join phase.

Instead of using a single large filter that represents the
entire build relation, the inspector join creates multiple
shorter filters (illustrated in Figure 2(b)), each represent-
ing a disjoint subset of build tuples. Testing a probe tuple
against the filters will (conservatively) show which subsets
the probe tuple has matches in. The build relation sub-
sets are address-range-based sub-partitions; that is, a subset
represents all build tuples in K consecutive pages in a build
partition. K is chosen to make the sub-partition fit in the
cache in the join phase, as will be described in Section 3.2.

The inspector join builds the set of small filters by in-
specting the build relation during the partitioning phase. To
keep track of the sub-partition boundaries, we use a page
counter for every partition. Then, every build tuple is used
to compute the filter corresponding to the sub-partition the
tuple belongs to. Note that the multi-filter scheme tests
filters differently than the single-filter scheme. For every
probe tuple, after computing its destination partition, the
algorithm checks the join attribute value in the tuple against
all the filters in the partition. The algorithm drops the probe
tuple only if all filter tests for all sub-partitions are nega-
tive. The positive tests show which sub-partition(s) may
contain matching build tuples of the probe tuple, and this
information is used in the join phase of the inspector algo-
rithm. Section 4 demonstrates that our multi-filter scheme
incurs the same number of cache misses as the single-filter
scheme during the inspection and filter-construction phase,
and it can achieve the same aggregate false positive rate
with moderate memory space requirements.

Probe

Table
Hash

Build

a build tuple

a probe tuple

sub0

sub1

sub2

Build
Probe

CPU Cache

��������������������

�����������
�����������
���������
���������

�����������
�����������
���������
���������

��������������������

	�	�	�	�	�	
�
�
�
�

��������������������

�������������

Build
Probe

sub0

sub1

sub2

Cache

probe tuple belonging to sub1

(a) GRACE/Prefetching: join (b) Cache partitioning: re-partition (c) Cache-stationary: join address-range-based
memory-sized partitions and join cache-sized sub-partitions sub-partitions with no tuple movement

Figure 3: Comparing the cache behaviors of different join phase algorithms

Table 1: Terminology used throughout this paper
Name Definition

P page size (in bytes)
N # of build tuples in build relation
n # of build tuples per partition page
H # of bytes in hash table for every key
C effective cache size (in bytes)3

L cache line size (in bytes)
K # of build pages per sub-partition
S # of sub-partitions per build partition

bpk # of bits per key for a single Bloom filter
fpr Bloom filter false positive rate

3.2 Improving Locality for Stationary Tuples
During the join phase, the inspector join algorithm knows
which probe tuples match every address-range-based sub-
partition of the build relation, and therefore processes tu-
ples one sub-partition at a time. For every sub-partition, the
algorithm builds a cache-resident hash table on the build tu-
ples, and probes it with all the probe tuples associated with
this sub-partition. We ensure that the build tuples of a sub-
partition and its hash table fit into the cache by choosing
the number of pages per build sub-partition, K, as follows:

K · P + K · n · H ≤ C

The variables used above and throughout the paper are
summarized in Table 1.

Figure 3 compares the cache behaviors of all the join-
phase algorithms that we are considering. As shown in Fig-
ure 3(a), the GRACE algorithm joins memory-sized parti-
tions. It builds an in-memory hash table on all the build
tuples, then probes this hash table using every tuple in the
probe partition to find matches. Because of the inherent
randomness of hashing, accesses to the hash table have lit-
tle temporal or spatial locality. Since the build partition and
its hash table are typically much larger than the CPU cache
size, these accesses often incur expensive cache misses, re-
sulting in poor CPU cache performance.

Figure 3(a) shows that the cache prefetching algo-
rithms [4] perform the join in the same way as the GRACE
algorithm [10]. The prefetching algorithms do not reduce
the number of cache misses; rather, they use prefetch in-
structions to hide the time needed to service cache misses

3Note that we usually set C to be a fraction (e.g. 0.5) of the total cache
size so that call stacks and other frequently used data structures can stay
in the cache as well.

when repeatedly visiting the hash table. To achieve that,
they rely on sufficient memory bandwidth to quickly ser-
vice cache misses and prefetch requests. When multiple
processors compete for limited bandwidth, however, the
performance of the prefetching algorithms is likely to de-
grade significantly, as shown previously in Figure 1.

Figure 3(b) illustrates how cache partitioning joins pairs
of cache-sized partitions to avoid excessive cache misses
because of hash table visits. The algorithm recursively
partitions memory-sized partitions into cache-sized sub-
partitions, and then joins the sub-partitions using cache-
resident hash tables. Essentially, cache partitioning vis-
its every tuple at least once more than the GRACE al-
gorithm, thereby incurring significant re-partition cost, as
shown previously in Figure 1.

Figure 3(c) shows the cache behavior of the cache-
stationary join phase of inspector join. It reads memory-
sized partitions into memory and processes one cache-sized
partition at a time, avoiding the cache misses caused by
hash table visits. It simply visits the consecutive pages of
a build sub-partition to build a hash table. Random mem-
ory accesses are avoided while building the hash table be-
cause the build sub-partition and the hash table fit into the
cache. Since the algorithm already knows which probe
tuples may have matches in the given build sub-partition,
it can directly visit these probe tuples in place without
moving them. Compared to cache partitioning, inspector
joins eliminate unnecessary cache misses without moving
any tuples, thereby avoid the excessive re-partitioning over-
head. The algorithm almost never revisits probe tuples
when join attribute values in the build relation are unique
(or almost unique). Values in the build relation are unique,
for instance, in foreign-key joins, which constitute most
of the real-world joins. (As detailed below, the inspector
join verifies the assumption and selects one of the other
join phase algorithms when the assumption does not hold.)
Moreover, the algorithm utilizes prefetching techniques to
further hide the latency for the probe tuples, as we describe
in the next subsection.

3.3 Exploiting Cache Prefetching
We exploit cache prefetching techniques in addition to us-
ing cache-sized sub-partitions for two reasons. First, cache
prefetching can hide the latency of the remaining cache

misses, such as the cold cache misses that bring a build
sub-partition and its hash table into the CPU cache, and
the cache misses for accessing the probe tuples. Second,
cache prefetching can improve the robustness of our algo-
rithm when there is interference with other processes run-
ning concurrently in the system. As shown in [4], cache
partitioning performance degrades significantly when the
CPU cache is flushed every 2-10 ms, which is comparable
to typical thread scheduling time. To cope with this prob-
lem, we issue prefetch instructions as a safety net for im-
portant data items that should be kept in the cache, such as
the build tuples in a build sub-partition. If the data item is
in cache, there is no noticeable penalty. On the other hand,
if the data item has been evicted from cache, the prefetch
instruction brings it back into the cache significantly ear-
lier, making this approach worthwhile. In a sense, we use
double measures to maximize cache performance when ac-
cessing important data items.

3.4 Choosing the Best Join Phase Algorithm

Based on the statistics collected from the actual data in the
partition and inspection phase, inspector joins can choose
the join phase algorithm best suited to the given query. For
example, we detect duplicate build keys by counting the
number of sub-partitions each probe tuple matches. Since
a probe tuple must be tested against all the possible match-
ing sub-partitions for correctness, the time for the cache-
stationary join phase of the inspector join increases with the
number of duplicate build keys. When this number is above
a threshold, inspector joins select a different join phase al-
gorithm, as will be shown in Section 6.5.

Our inspection approach can also detect relations that
are nearly-sorted on the join key. Our initial intuition is
that a sort-merge based join phase should be applied in this
case. To verify our intuition, we implemented an inspection
mechanism to detect nearly-sorted tuples. The basic idea is
to keep tuples that are out of order in a memory buffer when
partitioning an input relation. The input is nearly sorted if
the memory buffer does not overflow when all the tuples are
read. At this point, all the intermediate partitions contain
in-order tuples. We then partition the (small number of)
out-of-order tuples and store them separately from the in-
order tuples. In the join phase, given four inputs per parti-
tion (out-of-order and in-order build and probe inputs), the
sort-merge algorithm first sorts the out-of-order inputs and
then merges all four inputs to find matching tuples. Surpris-
ingly, we find in our experiments that the cache-stationary
join phase performs as well as the sort-merge implementa-
tion. We will discuss the results in Section 6.5.

4 I/O Partition and Inspection Phase
In this section, we begin by introducing a typical filter im-
plementation: Bloom filters. Then, we discuss the memory
space requirement of our multi-filter scheme, and we illus-
trate how our scheme achieves the same number of cache
misses as the single-filter scheme. Finally, we describe the
I/O partition and inspection algorithm that uses the multi-
filter scheme to determine the sub-partition information for
probe tuples.

1 1 1

h (key)=b0 0 h (key)=b1 1 h (key)=b2 2

Figure 4: A Bloom filter with three hash functions

Table 2: Number of bits per key (bpk) under different false
positive rates (fpr) with d = 3

fpr 0.1 0.05 0.01 0.005 0.001 0.0005
bpk 4.808 6.529 12.364 15.997 28.474 36.277

4.1 Bloom Filters: Background
A Bloom filter represents a set of keys and supports mem-
bership tests [2]. As shown in Figure 4, a Bloom filter
consists of a bit vector and d independent hash functions,
h0, h1, . . . , hd−1 (d = 3 in the figure). To represent a set
of keys, we first initialize all the bits in the bit vector to be
0. Then, for every key, we compute d bit positions using
the hash functions and set the bits to 1 in the bit vector. (A
bit may be set multiple times by multiple keys.)

To check whether a test key exists in the set of known
keys, we compute d bit positions for the test key using the
hash functions and check the bits in the bit vector. If some
of the d bits are 0, the set of known keys can not contain the
test key. If all of the d bits are 1, the test key may or may
not exist in the set of known keys. Therefore, Bloom filter
tests may generate false positives but may never generate
false negative results.

Intuitively, the larger the Bloom filter vector size, the
smaller the probability that a test generates a false positive,
which is called the false positive rate. In fact, the false
positive rate fpr and the number of bits per key bpk of the
bit vector are closely related to each other [2]:

fpr ≈ (1 − e−d/bpk)d, when bit vector size � 1

Table 2 shows the bpk values for various fpr. In this paper,
we only consider Bloom filters with d = 3. We point out,
however, that our algorithm works for any choice of d.

4.2 Memory Space Requirement
In a single filter scheme, the total size of the filter in bytes
can be computed as follows, where N is the total number
of build tuples (assuming that keys are unique):

total filter sizesingle = bpk · N/8

Our multi-filter scheme constructs a filter per sub-partition
in every build partition. However, the filters represent dis-
joint subsets of build tuples; every build tuple belongs to
one and only one sub-partition. Therefore, every build tu-
ple is still represented by a single filter. Let bpk′ be the
number of bits per key for an individual filter. Then the
total filter size of the multi-filter scheme is:

total filter sizemulti = bpk′ · N/8

We can quantify the increase in memory space by using
the ratio between the filter sizes of the multi-filter and the
single-filter schemes:

space increase ratio =
total filter sizemulti

total filter sizesingle
=

bpk′

bpk

Table 3: Total filter size varying build tuple size (1GB build
relation, fpr = 0.05, S = 50 sub-partitions)

tuple size 20B 60B 100B 140B
of tuples 50M 16.7M 10M 7.1M
single-filter 40.8MB 13.6MB 8.2MB 5.8MB
multi-filter 178.0MB 59.4MB 35.6MB 25.3MB

To obtain bpk′, we need to compute the false positive rate
fpr′ for an individual filter in the multi-filter scheme.

Suppose there are S sub-partitions per build partition.
Then, a probe tuple will be checked against all the S filters
in the partition to which the probe tuple is hashed. If any
filter test is positive, the join phase algorithm has to join
the probe tuple with the corresponding build sub-partition
for matches. In order to keep the number of additional
probes caused by false positives the same as the single-
filter scheme, the single-filter scheme fpr and the individ-
ual fpr′ of the multi-filter scheme should satisfy:

fpr′ = fpr/S

For example, if the single-filter scheme’s fpr is 0.05,
we can compute the space increase ratio as follows. Since
fpr′ = fpr/S, fpr′ = 0.001 if S = 50. Then, bpk =
6.529 and bpk′ = 28.474, according to Table 2. Therefore,
space increase ratio is 4.4. Similarly, if S = 100, we
can compute that space increase ratio is 5.6.

Table 3 compares the filter size of the multi-filter
scheme with the single-filter scheme when the aggregate
false positive rate is 0.05 and there are 50 sub-partitions per
partition.4 The build relation is 1GB large, and we vary the
tuple size from 20 to 140 bytes. We can see that the space
requirement is moderate when the tuple size is greater than
or equal to 100B, which is typical in most real-world ap-
plications. Even if the tuple size is as small as 20B, the
memory requirement of 178MB can still be satisfied easily
in today’s database servers.5

4.3 Minimizing the Number of Cache Misses
The single-filter scheme writes three bits in the Bloom filter
for every build tuple. For every probe tuple, it reads three
bits in the Bloom filter. Since the bit positions are ran-
dom because of the independent hash functions, the single-
filter scheme potentially incurs three cache misses for every
build tuple and for every probe tuple, assuming the total fil-
ter size is larger than the CPU cache size. (We do not use
our algorithm if the relation is so small that the computed
single filter size is smaller than cache, but the total size of
the multiple filters may be larger than cache.)

In the multi-filter scheme, a build tuple is still repre-
sented by a single filter corresponding to its sub-partition.
Therefore, the multi-filter scheme still writes three bits
for every build tuple, incurring the same number of cache
misses as the multi-filter scheme.

4S = 50 is a reasonable choice. Even if the cache size is as small as
1MB, and the I/O partition phase can produce up to 500 partitions (limited
by the capability of the storage manager), it allows the build relation size
to be as large as 25GB.

5Hash join may choose to hold intermediate partition pages in mem-
ory. Therefore, the above additional memory space requirement may re-
sult in extra I/Os. However, hash join is CPU bound with reasonable I/O
bandwidth [4], and this is a minor effect.

0
1
0
1
0
1
0
1

0
0
1
0
1
1
1
0

sub0

b0

b1

b2

1
0
0
1
1
0
1
0

1 0 0

sub1 sub2

and

0 0 1 0 1 1 1 0

1 0 0 1 1 0 1 0

0 1 0 1 0 1 0 1

sub0

sub1

sub2

(a) Vertical layout (b) Horizontal layout

Figure 5: Layouts of multiple Bloom filters

������
������
���

������
������
���

����������������������������

����������������������������

�������������������������

�������������������������Horizontal layout

Vertical
layout

Converting

Prefetching8L
bits

8L
bits

Figure 6: Horizontal to vertical layout conversion

However, the multi-filter scheme checks S filters for ev-
ery probe tuple, where S is the number of sub-partitions
per partition. We ensure that the filters are of the same
size. Given a probe tuple, the multi-filter scheme still com-
putes the same number of bit positions as the single-filter
scheme, then it simply checks the same bit positions for all
S filters. However, the filter tests may incur 3S cache
misses, which is much more than the single-filter scheme.

This problem can be solved by laying out the filters ver-
tically for every partition. As shown in Figure 5(a), the bits
at the same bit position in all the filters of a partition are
consecutive in memory. That is, the first bits of all the fil-
ters are stored together, which are followed by the second
bits of all the filters, so on so forth. Note that the cache
line size is typically 32B to 128B, or 256-1024 bits, which
is much larger than the number of filters per partition S.
Therefore, under the vertical layout, we can read the bits of
a given position from all the filters while incurring only a
single cache miss. In this way, the multi-filter scheme can
keep the number of cache misses the same as the single-
filter scheme for testing a probe tuple.

Figure 5(a) shows that we can test all the filters for a
given probe tuple using a bit operation under the vertical
layout. We simply compute a bit-wise AND operation of
the b0 bits, the b1 bits, and the b2 bits. A 1 in the re-
sult means all three bits for the corresponding filter are 1.
Therefore, a 1/0 resulting bit means a positive/negative test
result for the corresponding filter.

A new problem occurs when we lay out the filters verti-
cally: new filters can not be easily allocated and the number
of filters in a partition must be determined before allocating
the memory space for the vertical filters. Since the actual
partition size may vary due to data skew, using the maxi-
mal possible number of sub-partitions may waste a lot of
memory space.

We solve this dynamic allocation problem by using hori-
zontal layout when partitioning the build relations and gen-
erating the filters, as shown in Figure 5(b). Then, we con-

tuple

Input buffer

FiltersPartition buffers

1 1 1

Input buffer

FiltersPartition buffers

tuple

(a) Partition build relation (b) Partition probe relation

Figure 7: I/O partition algorithm

vert the horizontal layout into an equivalent vertical layout
before partitioning the probe relation.

Figure 6 illustrates the conversion algorithm. Hori-
zontal filters are allocated at cache line boundaries. We
transpose the filters one block at a time. Every block con-
sists of a cache line (8L bits) for all the filters. The source
cache lines of different filters in the horizontal layout are
not contiguous in memory, while the destination block is
a continuous chunk of memory. Every outer-loop iteration
of the algorithm prefetches the next source and destination
blocks in addition to converting the current block. In this
way, we hide most of the cache miss latency of accessing
the source and destination filters.

4.4 Partition and Inspection Phase Algorithm
The algorithm consists of the following three steps:

1. Partition build relation and compute horizontal filters;
2. Convert horizontal filters to vertical layout;
3. Partition probe relation and test vertical filters.

We have already described the algorithm for step 2. This
subsection describes the other two steps in the algorithm.

As shown in Figure 7(a), step 1 allocates an input buffer
for the build relation and an output buffer for every inter-
mediate partition. It uses horizontal filters. Each parti-
tion keeps a page counter for the outgoing pages. When
the counter equals to K, the number of pages per sub-
partition, a new filter is allocated from a memory pool and
the counter is reset to 0. For every build tuple, the algorithm
extracts the join attribute to compute a 32-bit hash code. It
determines the partition number by using the hash code and
copies the tuple (with projection if needed) to the output
buffer. The algorithm also computes and sets the three bit
positions of the current horizontal filter. For better cache
performance, we employ group prefetching as described
in [4]. The only difference is the addition of prefetching for
the Bloom filter positions. Moreover, a tuple’s hash code is
stored in the page slot area as recommended in [4].6

As shown in Figure 7(b), Step 3 is similar to Step 1 with
the following differences. First, the algorithm tests every
probe tuple against the set of vertical filters in the tuple’s
partition. A tuple is dropped when all the resulting bits
are 0. Second, positive results show which sub-partitions
may contain matching tuples for the given probe tuple. The

6A build partition page slot consists of a 4B hash code and a 2B tuple
offset. Every two slots are combined together to align the hash codes at
4B boundaries.

slots

slots

num_sub0

num_sub1

num_sub2

sub0

sub1

sub2
Pages
Partition
Probe

tuple ptr
hash code

Figure 8: Extracting probe tuple information for every sub-
partition using counting sort

sub-partition ID(s) is recorded in the slot area of the same
output page containing the tuple.7 In most cases, a single
sub-partition ID is found. Note that slots may be of vari-
able size now. This is not a problem since the probe slots
will only be visited sequentially (in the counting sort step)
in the join phase algorithm, as will be described in Sec-
tion 5. Third, the number of probe tuples associated with
each sub-partition is counted, which is used (in the count-
ing sort step) in the join phase algorithm.

5 Cache-Stationary Join Phase
The join phase algorithm consists of the following steps:

1. Read build and probe partitions into main memory;

2. Extract per-sub-partition probe tuple pointers;

3. Join each pair of build and probe sub-partitions.

By using the sub-partition information collected in the par-
tition and inspection phase, the algorithm achieves good
cache performance without copying any tuples. The sub-
partition information is stored in the order of probe tuples
in the probe intermediate partitions. However, Step 3 visits
all the probe tuples of a single sub-partition and then moves
on to the next sub-partition. It requires the sub-partition
information in the order of sub-partition IDs. Therefore,
probe tuple sub-partition information has to be sorted be-
fore use. In the following, we first describe how Step 2
performs counting sort, then discuss the use of prefetching
to improve performance and robustness in Step 3.

5.1 Counting Sort
The algorithm knows the number of sub-partitions and the
number of probe tuples associated with each sub-partition;
the latter is collected in the I/O partition phase. There-
fore, we can use counting sort, which is a fast O(N) al-
gorithm, for extracting probe tuple information (the probe
tuple pointers and hash codes) for every sub-partition.

As shown in Figure 8, for every sub-partition, we allo-
cate an array, whose size is equal to the number of probe
tuples associated with the sub-partition. The algorithm vis-
its the slot area of all the probe partition pages sequentially.
For every slot, it computes the tuple address using the tuple
offset. Then the algorithm copies the tuple address and the
hash code to the destination array(s) that are specified by
the sub-partition ID(s) recorded in the page slot. Assuming

7From high address to low address, a probe partition page slot con-
sists of a 4B hash code, a 2B tuple offset, a 1B number of sub-partitions, a
sequence of sub-partition IDs each taking 1B. We align slots on 4B bound-
aries and a slot takes 8B when there is a single sub-partition ID.

������������������������

������������������������

�������������
�������������
�����������
�����������
������������������������

������������������������
 � � � � � � !�!�!�!�!�!

sub1

sub2

sub0 Cache

Probe
Partition

& probe tuple pointer
Array of hash code

Build Partition

Figure 9: Joining a pair of build and probe sub-partitions

the build join attribute values are mostly unique, there is of-
ten a single sub-partition ID for a probe tuple, and the tuple
address and hash code are only copied once. After process-
ing all the probe page slots, the algorithm obtains an array
of (tuple pointer, hash code) pairs for every sub-partition.
Note that the tuples themselves are not visited nor copied
in the counting sort.

We use cache prefetching to hide the cache miss la-
tency of reading page slots and writing to the destination
arrays. We keep a pointer to the next probe page and issue
prefetches for the next page slot area while processing the
slot area of the current page. Similarly, for every destina-
tion array, we keep a pointer to the next cache line starting
address. We issue a prefetch instruction for the next cache
line before we start using the current cache line in the array.

5.2 Exploiting Prefetching in the Join Step
For every pair of build and probe sub-partitions, the algo-
rithm first constructs a hash table. (We assume the same
hash table structure as in [4].) Since the hash codes are
stored in the build page slot area, the algorithm does not
need to access the actual build tuples for creating the hash
table. However, we expect the build tuples to be used fre-
quently during probing. Therefore, we issue prefetch in-
structions for all build tuples of the sub-partition to bring
them into cache, as shown in Figure 9.

After building the hash table, the algorithm visits the ar-
ray containing the probe tuple pointers and hash codes of
the sub-partition, as shown in Figure 9. It probes the hash
table with hash codes in the array. If a probe is successful,
the algorithm visits the probe tuple and the build tuple to
verify that their join attributes are actually equal. It pro-
duces an output tuple for a true match.

We issue prefetches for the probe tuples and for the ar-
ray containing probe tuple information. Here, we use a spe-
cial kind of prefetch instruction, non-temporal prefetches,
which are supported by Intel Itanium 2 and Pentium 4 ar-
chitectures [6, 8]. Non-temporal prefetches are used to
read cache lines that do not have temporal locality; the
cache lines are supposed to be used only once. There-
fore, cache lines read by non-temporal prefetches ignore
the LRU states in the cache, and they go to a particular loca-
tion in the corresponding cache set, thus minimizing cache
pollution by the prefetched line. Since we aim to keep the
build sub-partition and the hash table in cache, minimiz-
ing the cache pollution caused by visiting other structures
is exactly what we want.

To prefetch the array containing probe tuple pointers and
probe hash codes, we keep a pointer p to the cache line in

the array that are dist lines ahead of the current cache line
(dist = 20 in our implementation). Suppose there are m
pairs of pointers and hash codes in every cache line. The
algorithm first issues prefetches for the first dist lines and
then sets p to the beginning of dist + 1 line. Whenever
the algorithm finishes processing m probe tuples, it issues
a prefetch for the cache line pointed by p and increases p by
a cache line. The algorithm checks p against the end of the
array to stop prefetching. To prefetch for the probe tuples,
we use a buffer to temporarily store the pairs of pointers
pointing to the build and probe tuples that correspond to
successful hash table probes. When this buffer is full, we
visit these tuple pairs using software-pipelined prefetching.

Finally, we improve the robustness of our algorithm by
issuing prefetches for the build tuples while prefetching for
the probe tuples. In most cases, the build tuples are al-
ready in cache, and these prefetches do not have effects.
However, if the build tuples are replaced somehow, the
prefetches can bring the build tuples back into the cache
quickly. We do not prefetch the hash table for the same
purpose because it requires larger changes to the algorithm
and therefore may incur significant run-time cost.

6 Experimental Results
In this section, we evaluate the CPU cache performance
of our inspector joins against the cache prefetching and
cache partitioning algorithms through detailed cycle-by-
cycle simulations. Moreover, in Section 6.5, we exploit
the inspection approach to detect situations where there are
duplicate build keys or where relations are nearly sorted,
and choose the best join phase algorithm.

6.1 Experimental Setup

Implementation Details. We implemented five hash
join algorithms: group prefetching, software-pipelined pre-
fetching, cache partitioning, enhanced cache partitioning
with advanced prefetching support, and our inspector join
algorithm. We store relations and intermediate partitions
as disk files, and the join algorithms are implemented as
stand-alone programs that read and write relations in disk
files. We keep schemas and statistics in separate descrip-
tion files for simplicity. Statistics about the number of
pages and the number of tuples are used to compute hash
table sizes, numbers of partitions, and Bloom filter sizes.

Our cache prefetching implementations mainly follow
the descriptions in [4]. Prefetch instructions are inserted
into C++ source codes using gcc inline ASM macros. The
only difference is that the algorithms utilize a single Bloom
filter for removing probe tuples having no matches. We add
prefetches for the Bloom filter to the group and software-
pipelined prefetching algorithm in the I/O partition phase.
In our experiments, we find that the performance results of
the two prefetching algorithms are very similar. To simplify
presentation, we only show the group prefetching curves,
which are labeled as “cache pref”.

The two cache partitioning algorithms both use the
group prefetching implementation for the I/O partition
phase; they perform re-partition and join cache-sized sub-
partitions in the join phase. The enhanced cache parti-
tioning performs advanced prefetching similar to that of

the inspector join for joining a pair of cache-sized sub-
partitions. It also performs advanced prefetching to reduce
the re-partition cost. This algorithm serves as a stronger
competitor to our algorithm.

In every experiment, the number of I/O partitions gen-
erated is a multiple of the number of CPUs. Then the same
join phase algorithm is run on every CPU to process dif-
ferent partitions in parallel. The partition phase algorithms
take advantage of multiple CPUs by conceptually cutting
input relations into equal-sized chunks and partitioning one
chunk on every CPU. Every processor generates the same
number of partition outputs. The i-th build partition will
conceptually consist of the i-th build output generated by
every processor. The probe partitions are generated simi-
larly. Every CPU will build its own filter(s) based on the
build tuples it sees. After partitioning the build relation, the
generated filters are merged. For the single-filter scheme,
all filters are OR-ed together to get a single filter. For the
multi-filter scheme, different CPUs actually generate hor-
izontal filters for different sub-partitions. Therefore, the
algorithm can directly perform horizontal to vertical filter
conversion. Then, the same filter(s) is shared across all the
CPUs for testing probe tuples.

Experimental Design. We use a simple schema for all
the relations: a tuple consists of a 4-byte randomly gener-
ated join key and a fixed-length payload. An output tuple
contains all the fields of the matching build and probe tu-
ples. In all the experiments except those in Section 6.5, a
probe tuple can match zero or one build tuple, and a build
tuple may match one or more probe tuples. We test the
performance of our solution in various situations by vary-
ing the tuple size, the number of probe tuples matching a
build tuple (which is the ratio between probe and build re-
lation sizes), and the percentage of probe tuples that have
matches. We vary the latter from 5% to 100% to model the
effects of a selection on a build attribute different from the
join attribute.

In all our experiments, we assume the available memory
size for the join phase is 50MB and the cache size is 1MB,
which follow the settings in [4]. Note that when multiple
join instances are running on multiple processors, the ac-
tual memory allocated is 50MB multiplied by the number
of instances. For example, in the case of 32 CPUs, the to-
tal memory used for the join phase is 1600MB. The Bloom
filter false positive rate for the cache prefetching algorithm,
and the two cache partitioning algorithms is set to be 0.05.
The individual Bloom filter false positive rate for our in-
spector join algorithm is set to be 0.001.

Simulation Parameters. We evaluate the CPU cache
performance (of user mode executions) of all the algo-
rithms through detailed cycle-by-cycle simulations. We
generate fully-functional executables with gcc and run the
programs on a simulator that models a shared-bus SMP
system with 1.5GHz processors. We vary the number of
processors in our experiments. The memory hierarchy is
based on the Itanium 2 processor [7]. However, the sim-
ulator only supports two levels of caches while Itanium 2
processor has three levels of caches. Therefore, we choose
the size of L2 cache to be in between the sizes of the L2
and L3 caches on an Itanium2 machine. The latency is also

Table 4: Simulation parameters
Processor pipeline parameters

Clock Rate 1.5 GHz
Issue Width 4 insts/cycle
Functional Units 2 Integer, 1 integer divide,

2 Memory, 1 Branch, 2 FP
Reorder Buffer Size 128 insts
Integer Multiply/Divide 4/50 cycles
All Other Integer 1 cycle
Branch Prediction Scheme gshare [14]

Memory parameters
Line Size 64 bytes
Primary Instruction Cache 16 KB, 4-way set-assoc.
Primary Data Cache 16 KB, 4-way set-assoc.
Miss Handlers 32 for data, 2 for inst.
DTLB 128 entries, fully-assoc.
DTLB Miss Handlers 1
Page Size 8 KB
Unified Secondary Cache 1 MB, 8-way set-assoc.
Primary-to-Secondary 10 cycles (plus any delays
Miss Latency caused by contention)
DTLB Miss Latency 30 cycles (plus any delays

caused by contention)
Primary-to-Memory 250 cycles (plus any delays
Miss Latency caused by contention)
Main Memory Bandwidth 1 access per 15 cycles

chosen to be in between the actual L2 and L3 latencies. The
Itanium 2 processor supports only software-simulated inte-
ger divide. We measured on a real machine that an integer
divide takes about 50 cycles. The simulator does not drop a
prefetch when miss handlers are all busy and/or if it incurs
a DTLB miss. This models the behavior of lfetch.fault
instruction of Itanium 2 processor. Important simulator pa-
rameters are shown in Table 4.

6.2 Varying the Number of CPUs
Figure 10 compares the performance of the algorithms
while varying the number of CPUs. The legend labels
and the corresponding algorithms are as follows: cache
pref (group prefetching), cache part (cache partitioning),
enhanced cp (cache partitioning enhanced with advanced
prefetching support), inspector (inspector join). The exper-
iments join a 500MB build relation and a 2GB probe rela-
tion. The tuple size is 100B. 50% of the probe tuples have
no matches and every build tuple matches 2 probe tuples.

Figure 10(a) shows the partition phase performance, and
Figure 10(b) shows the aggregate performance on all CPUs
used in the partition phase. We see that the partition phase
curves are very similar. Compared to the other schemes,
the inspector join incurs a slight overhead. (The ratio be-
tween the partition phase execution times of the best algo-
rithm and the inspector join is 0.88-0.94.) This is mainly
because of the computational cost of converting horizontal
filters into vertical filters and testing a set of filters. The
most costly operation is extracting the bit positions of 1’s
from a bit vector in both conversion and filter testing. This
overhead will become less significant as processors are get-
ting faster. As shown in Figure 10(a), all the curves become
flat after the 4-CPU case. Therefore, all the following ex-
periments use up to 4 CPUs in the partition phase.

Figure 10(c) shows the total aggregate times of all CPUs
for the join phase. The cache pref and cache part curves
are the same as in Figure 1(b). Our inspector join is the

 1 2 4 8 16 32
0

2

4

6

8

10

num cpus used

ex
ec

ut
io

n
tim

e
(G

 c
yc

le
s)

cache pref
cache part
enhanced cp
inspector

 1 2 4 8 16 32
0

10

20

30

40

50

60

70

80

90

num cpus used

ag
gr

eg
at

e
ex

ec
ut

io
n

tim
e

(G
 c

yc
le

s)

cache pref
cache part
enhanced cp
inspector

 1 2 4 8 16 32
0

10

20

30

40

50

60

num cpus used

ag
gr

eg
at

e
ex

ec
ut

io
n

tim
e(

G
 c

yc
le

s)

cache pref
cache part
enhanced cp
inspector

 1 2 4 8 16 32
0

10

20

30

40

50

60

num cpus used in join phase

ag
gr

eg
at

e
ex

ec
ut

io
n

tim
e(

G
 c

yc
le

s)

cache pref
cache part
enhanced cp
inspector

(a) Partition phase (b) Partition phase (c) Join phase aggregate (d) Total aggregate performance
performance aggregate performance performance (up to 4 CPUs in partition phase)

Figure 10: Varying the number of CPUs used

|0

|10

|20

|30

 E
xe

cu
tio

n
Ti

m
e

(G
 c

yc
le

s) dcache stalls
 tlb stalls
 other stalls
 busy

21.3

cache

33.1

cache

30.4

cp

20.4

 inspector
pref part enhanced

|0

|2

|4

|6

 E
xe

cu
tio

n
Ti

m
e

(G
 c

yc
le

s) 6.0

cache

6.6

cache

5.6

cp

3.6

 inspector
pref part enhanced

|0

|2

|4

|6

 E
xe

cu
tio

n
Ti

m
e

(G
 c

yc
le

s) 5.8

cache

6.1

cache

5.0

cp

3.0

 inspector
pref part enhanced

(a) num CPUs used in join phase = 1 (b) num CPUs used in join phase = 8 (c) num CPUs used in join phase = 32

Figure 11: Join phase CPU time breakdowns for CPU 0

best. Because of the memory bandwidth sharing, the cache
prefetching curve degrades significantly when there are 8
or more CPUs. Since our algorithm combines locality opti-
mizations and cache prefetching, it is less sensitive to band-
width contention. Compared to the cache prefetching al-
gorithms, our inspector join algorithm achieves 1.7-2.1X
speedups when 8 or more CPUs are used.

As shown in Figure 10(c), the two cache partition al-
gorithms are worse than the cache prefetching algorithm
and our inspector join when there are less than 4 CPUs.
This is mainly because of the large re-partition overhead,
which consists of more than 36% of their join phase ex-
ecution times. The enhanced algorithm is always better
than the original algorithm, which verifies the effective-
ness of the applied prefetching techniques. As the number
of CPUs increase, the enhanced algorithm becomes signifi-
cantly better than the cache prefetching algorithms because
it utilizes cache-sized sub-partitions to reduce the number
of cache misses. However, it still degrades quickly beyond
4 CPUs. This is mainly because the re-partition step is quite
sensitive to memory bandwidth sharing. Compared to the
enhanced cache partitioning algorithm, our inspector join
achieves 1.6-2.0X speedups with 1-32 CPUs.

Figure 10(d) shows the aggregate performance of both
phases using up to 4 CPUs in the partition phase. When
there are 8 or more CPUs, inspector join achieves 1.3-1.7X
speedups over the cache prefetching algorithm and the en-
hanced cache partitioning algorithm.8

8The above figures omit the GRACE hash join curves for clarity. Com-

Figure 11 shows the CPU time breakdowns for the join
phase of the algorithms. The breakdowns are for the tasks
running on CPU 0 in the system. The Y axis shows the exe-
cution time. Every bar is broken down into four categories:
CPU busy time, stalls due to data cache misses (includ-
ing the effect of L2 misses), stalls due to DTLB misses,
and other resource stalls. Comparing Figure 11(a) and (b),
we can see that the fractions of data cache stalls for the
three left bars increase dramatically. This clearly shows the
impact of memory bandwidth sharing on the performance.
In contrast, our cache-stationary algorithm achieves quite
good cache performance. At 32 CPUs, cache stalls domi-
nate all bars, as shown in Figure 11(c). Even in this case,
our algorithm is better than the other algorithms.

6.3 Varying Other Parameters
Figure 12 shows the benefits of our inspector join algorithm
varying the number of probe tuples matching a build tu-
ple (which is the ratio between probe and build relation
sizes), the percentage of probe tuples that have matches,
and the tuple size. All the experiments use 8 CPUs in the
join phase. The three figures share a common set of experi-
ments, which correspond to the 8-CPU points in Figure 10.

Figure 10(a) varies the number of matches per build tu-
ple from 1 to 8 (while keeping the build relation size fixed).

pared to the GRACE hash join algorithm, our inspector join achieves 1.5-
4.1X speedups for the join phase and 1.7-2.9X speedups for the entire
hash join with 1-32 CPUs. The speedups at 32 CPUs are 1.5X and 1.7X,
respectively.

1 2 4 8
0

10

20

30

40

50

60

70

80

num matches per build tuple

ag
gr

eg
at

e
ex

ec
ut

io
n

tim
e(

G
 c

yc
le

s)

cache pref
cache part
enhanced cp
inspector

5 10 25 50 75 100
0

10

20

30

40

percent of probe tuples having matches

ag
gr

eg
at

e
ex

ec
ut

io
n

tim
e(

G
 c

yc
le

s)

cache pref
cache part
enhanced cp
inspector

20 60 100 140
0

10

20

30

40

50

60

70

80

90

tuple size (bytes)

ag
gr

eg
at

e
ex

ec
ut

io
n

tim
e(

G
 c

yc
le

s)

cache pref
cache part
enhanced cp
inspector

(a) Varying the number of matches (b) Varying the percentage of probe (c) Varying the tuple size
per build tuple tuples having matches

Figure 12: Aggregate total performance varying three parameters when 8 CPUs are used in the join phase

2 4 6 8 10

100

110

120

130

140

period to flush cache (ms)

se
lf

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e cache pref

cache part
enhanced cp
inspector

Figure 13: Robustness against cache interference (self-
normalized join phase performance, num CPUs used=1)

Figure 10(b) varies the percentage of probe tuples having
matches (while keeping the probe relation size fixed). Fig-
ure 10(c) varies the tuple size from 20B to 140B (while
keeping the build relation size fixed). Note that the number
of tuples decreases as the size of the tuple increases. There-
fore, all the curves have the downward shape. Note that in
the 20B experiments, a cache line of 64B contains multiple
probe tuples. Since the cache-stationary join visits probe
tuples non-sequentially, it may incur multiple cache misses
for every cache line in the probe partition. However, our
inspector join with cache-stationary join phase is still the
best even for the 20B experiments.

In all the experiments, we can see that our inspector
join algorithm is the best. For all the experiments except
the 5% points in Figure 10(b)9, our inspector join achieves
1.1-1.4X speedups compared to the cache prefetching al-
gorithm and the enhanced cache partitioning algorithm.

6.4 Robustness of the Algorithms

Figure 13 shows the performance degradation of all the al-
gorithms when the cache is periodically flushed, which is
the worst case interference. We vary the period to flush the
cache from 2 ms to 10 ms, and report the execution times
self normalized to the no flush case. That is, “100” corre-
sponds to the join phase execution time when there is no
cache flush.

9When there are only 5% probe tuples having matches, the aggregate
join phase execution time only consists of 10-24% of the total aggregate
execution time. Therefore, the difference is small between all the algo-
rithms optimizing the join phase performance.

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

num duplicate tuples per build key
ag

gr
eg

at
e

ex
ec

ut
io

n
tim

e(
G

 c
yc

le
s)

cache pref
cache part
enhanced cp
inspector

0 1 2 3 4 5
0

2

4

6

8

10

12

percentage of tuples out of order

ag
gr

eg
at

e
ex

ec
ut

io
n

tim
e(

G
 c

yc
le

s)

cache pref
enhanced cp
inspector
sort merge

(a) Duplicate build keys (b) Nearly sorted relations

Figure 14: Exploiting the inspection mechanism

The cache prefetching algorithm sees at most 3% per-
formance degradation because of cache flushes. It is very
robust because it does not assume that any large data struc-
tures stay in the cache. In contrast, the original cache par-
titioning algorithm assumes the exclusive use of the cache,
and suffers from a 6-35% performance degradation for the
cache flushes. Like the original cache partitioning, our in-
spector join algorithm and the enhanced cache partitioning
algorithm both try to keep a build sub-partition and its hash
table in the cache. To improve robustness, both of the al-
gorithms perform prefetching for build tuples.10 As shown
in Figure 13, this technique effectively reduces the perfor-
mance degradation to 2-15%, which is a 2X improvement
compared to the original cache partitioning.

6.5 Choosing the Best Join Phase Algorithm
By default, our inspector join algorithm uses the cache-
stationary join phase. However, our inspection approach
can detect situations where cache-stationary join phase is
not the best algorithm and choose a different one. Fig-
ure 14(a) varies the number of duplicate build tuples per
build join attribute value. The duplicate-free points corre-
spond to the 8-CPU points in Figure 10(c). We see that the
default cache-stationary join phase of the inspector algo-
rithm is still the best until 3 duplicates per key. However,
when there are 4 duplicates per key, enhanced cache parti-
tioning gets better. The prefetching algorithm needs to visit

10As we do not prefetch for the hash table, we expect to pay higher cost
than pure prefetching schemes when the cache is flushed. Prefetching for
the hash table is much more complicated than prefetching only for build
tuples, and may incur more run-time overhead for normal execution.

multiple build tuples for every probe tuple in the duplicate
key cases. Since the visits are all cache misses, the perfor-
mance of the prefetching algorithm suffers significantly. As
discussed in Section 3.4, our inspection approach detects
duplicate keys by counting the number of sub-partitions
matching every probe tuple. When a probe tuple on aver-
age matches 4 or more sub-partitions, it chooses enhanced
cache partitioning as the join phase algorithm. Thus the
actual inspector join performance tracks the best of the in-
spector and enhanced cp curves in the figure.

Figure 14(b) shows the performance when the source
relations are nearly sorted. We vary the percentage of tu-
ples out of order from 0% (fully sorted) to 5%. For the
fully sorted case, we sort the input relations for the 8-CPU
points in Figure 10(c). Then we randomly choose 1%–5%
of tuples and randomly change their locations to generate
the other cases.

As shown in Figure 14(b), the sort-merge algorithm per-
forms the best as expected for the fully sorted case. How-
ever, to our surprise, the inspector join performs equally
well. The reason is that for the fully sorted case, the build
tuples in a build sub-partition are sorted, and the corre-
sponding probe tuples located sequentially in the probe
partition. Therefore, the cache-stationary join phase es-
sentially visits both the build and the probe partitions se-
quentially. Since the hash table is kept in cache, its cache
behavior is the same as the sort merge join, which only
merges two in-order inputs. When more and more tuples
are out of order, the sort merge join becomes worse than
the inspector algorithm because of the increasing cost of
sorting out-of-order tuples, while the inspector algorithm
pays only a slight overhead to visit some probe tuples non-
sequentially.

7 Conclusions
In this paper, we have proposed and evaluated inspector
joins, which exploit the fact that during the I/O partitioning
phase of a hash-based join, we have an almost free oppor-
tunity to inspect the actual properties of the data that will
be revisited later during the join phase. We use this “in-
spection” information in two ways. First, we use this in-
formation to accelerate a new type of cache-optimized join
phase algorithm. The cache-stationary join phase algorithm
is especially useful when the join is run in parallel on a
multiprocessor, since it consumes less of the precious main
memory bandwidth than existing state-of-the-art schemes.
Second, information obtained through inspection can be
used to choose a join phase algorithm that is best suited
to the data. For example, inspector joins can choose en-
hanced cache partitioning as the join phase algorithm when
a probe tuple on average matches 4 or more sub-partitions.

Our experimental results demonstrate that inspector
joins offer speedups of 1.1–1.4X over the best existing
cache-friendly hash join algorithm when run on 8, 16, or 32
processors, with the advantage growing with the number of
processors. We also observe that inspector joins are robust
with respect to various properties of the data (e.g., tuple
size, fraction of tuples with matches, etc.). Thus, inspector
joins are well-suited for modern multi-processor database
servers.

References
[1] J. A. Blakeley, P. Larson, and F. W. Tompa. Efficiently Up-

dating Materialized Views. In Proceedings of the 1986 SIG-
MOD Conference, pages 61–71, May 1986.

[2] B. H. Bloom. Space/Time Trade-offs in Hash Coding with
Allowable Errors. Communications of ACM, 13(7):422–
426, 1970.

[3] P. A. Boncz, S. Manegold, and M. Kersten. Database Archi-
tecture Optimized for the New Bottleneck: Memory Access.
In Proceedings of the 25th VLDB, pages 54–65, Sept. 1999.

[4] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry.
Improving Hash Join Performance through Prefetching. In
Proceedings of the 20th ICDE, pages 116–127, March 2004.

[5] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Computing Surveys, 25(2):73–170, 1993.

[6] Intel Corp. IA-32 Intel Architecture Software Developer’s
Manual, Volumn 2B:Instruction Set Reference N-Z. Order
Number: 253667.

[7] Intel Corp. Intel Itanium 2 Processor Reference Manual For
Software Development and Optimization. Order Number:
251110-003.

[8] Intel Corp. Intel Itanium Architecture Software Developer’s
Manual. Order Number: 245317-004.

[9] N. Kabra and D. J. DeWitt. Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans. In
Proceedings of the 1998 SIGMOD Conference, pages 106–
117, June 1998.

[10] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Application
of Hash to Data Base Machine and its Architecture. New
Generation Computing, 1(1):63–74, 1983.

[11] B. Lindsay. Hash Joins in DB2 UDB: the Inside Story.
Carnegie Mellon DB Seminar, March 2002.

[12] S. Manegold, P. A. Boncz, and M. L. Kersten. What Hap-
pens During a Join? Dissecting CPU and Memory Opti-
mization Effects. In Proceedings of the 26th VLDB, pages
339–350, Sept. 2000.

[13] V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, and
H. Pirahesh. Robust Query Processing through Progressive
Optimization. In Proceedings of the 2004 SIGMOD Confer-
ence, pages 659–670, June 2004.

[14] S. McFarling. Combining Branch Predictors. Technical Re-
port WRL Technical Note TN-36, Digital Equipment Cor-
poration, June 1993.

[15] T. K. Sellis. Multiple-Query Optimization. ACM TODS,
13(1):23–52, 1988.

[16] L. D. Shapiro. Join Processing in Database Systems with
Large Main Memories. ACM TODS, 11(3):239–264, 1986.

[17] A. Shatdal, C. Kant, and J. F. Naughton. Cache Conscious
Algorithms for Relational Query Processing. In Proceed-
ings of the 20th VLDB, pages 510–521, Sept. 1994.

[18] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO
- DB2’s LEarning Optimizer. In Proceedings of the 27th
VLDB, pages 19–28, Sept. 2001.

[19] P. Valduriez. Join Indices. ACM TODS, 12(2):218–246,
1987.

