This is a preliminary release of an article accepted by ACMnBactions on Database Systems.
The definitive version is currently in production at ACM amdhen released, will supersede this
version.

Improving Hash Join Performance through
Prefetching

SHIMIN CHEN

Intel Research Pittsburgh

ANASTASSIA AILAMAKI

Carnegie Mellon University

PHILLIP B. GIBBONS

Intel Research Pittsburgh

TODD C. MOWRY

Carnegie Mellon University and Intel Research Pittsburgh

Hash join algorithms suffer from extensive CPU cache stallfis paper shows that the standard hash join
algorithm for disk-oriented databases (i.e. GRACE) spemgs 80% of its user time stalled on CPU cache
misses, and explores the use of CPU camieéetchingto improve its cache performance. Applying prefetching to
hash joins is complicated by the data dependencies, nauttqale paths, and inherent randomness of hashing. We
present two techniquegroup prefetchingndsoftware-pipelined prefetchinghat overcome these complications.
These schemes achieve 1.29-4.04X speedups for the joia phdsl.37-3.49X speedups for the partition phase
over GRACE and simple prefetching approaches. Moreovenpewsed with previous cache-aware approaches
(i.e. cache partitioning), the schemes are at least 36%rfastlarge relations and do not require exclusive use
of the CPU cache to be effective. Finally, comparing the &dpreal times when disk 1/Os are in the picture,
our cache prefetching schemes achieve 1.12-1.84X speéatupe join phase and 1.06-1.60X speedups for the
partition phase over the GRACE hash join algorithm.

Categories and Subject Descriptors: H.Défabase Managemerjt Systems—Query processingD.1.m [Pro-
gramming Techniqueg: Miscellaneous

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Hash join, CPU cache padnce, CPU cache prefetching, Group prefetch-
ing, Software-pipelined prefetching

1. INTRODUCTION

Hash join[Kitsuregawa et al. 1983; Shapiro 1986; Nakayama et al. 128®er and Gray
1990] has been studied extensively over the past two decaddst is commonly used
in today’s commercial database systems to implement @ggigfficiently. In its simplest

An earlier version [Chen et al. 2004] of this paper appeaneithé 20th International Conference on Data Engi-
neering (ICDE 2004) This paper mainly expands on the following aspects: (itied.3 and Section 8.4 are
newly added that report both user-mode performance andediaiimes with disk 1/Os on an Itanium 2 machine,
while only user-mode simulation results were shown in tfevjous version; (ii) Section 4.3 and Section 5.2 are
newly added to use critical path analyses to prove Condit{@) and (2); (i) Simulation results in Section 8.2
are updated with up-to-date simulation parameters; (icliGe 8.1 is completely rewritten with results obtained
on the Itanium 2 machine; (v) Section 9 is newly added to dis@ractical implementation issues for DBMSs.
Permission to make digital/hard copy of all or part of thisten@l without fee for personal or classroom use
provided that the copies are not made or distributed for poofiommercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead motice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on seryersto redistribute to lists requires prior specific
permission and/or a fee.

(© 2007 ACM 0362-5915/2007/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. 32, No. 3, Séee#007, Pages 1-32.



2 . Shimin Chen et al.

100 dcache stalls

dtlb stalls
other stalls
busy

80+

60 -

a0t

20+

Normalized Execution Time

partition join

Fig. 1. User-mode execution time breakdown for hash join.

form, the algorithm first builds a hash table on the smalbeiil(l) relation, and then probes
this hash table using tuples of the largprabé relation to find matches. However, the
random access patterns inherent in the hashing operati@litide spatial or temporal
locality. When the main memory available to a hash join is s$omll to hold the build
relation and the hash table, the simplistic algorithm gsféxcessive random disk accesses.
To avoid this problem, th&RACEhash join algorithm [Kitsuregawa et al. 1983] begins by
partitioning the two joining relations such that each byulttition and its hash table can
fit within memory; pairs of build and probe partitions arerljeined separately as in the
simple algorithm. Thid/O partitioning technique limits the random accesses to objects
that fit within main memory and results in nice predictab{@d/for every source relation
and intermediate partition. Because it is straightforw@argredict the next disk address
for individual relation and partition, 1/0 prefetching cée exploited effectively to hide
I/0 latencies. As a result, the 1/0 costs no longer dominade example, our experiments
on an Itanium 2 machine show that a hash join of two several&d&ions is CPU-bound
with five or seven disks depending on whether output tuplexansumed in memory or
written to disk, and it becomes increasingly CPU-bound wilch additional disk, as will
be shown in Section 8.1.

1.1 Hash Joins Suffer from CPU Cache Stalls

So wheredo hash joins spend most of their time? Previous studies hawedstrated that
hash joins can suffer from excessive CPU cache stalls [8hatdal. 1994; Boncz et al.
1999; Manegold et al. 2000]. The lack of spatial or temparahlity means the GRACE
hash join algorithm cannot take advantage of the multiptelgeof CPU cache in modern
processors, and hence it repeatedly suffers the full Igtenmain memory during building
and probing. Figure 1 provides a breakdown of the simulased-level performance on our
simulation platform (which will be described in detail in&ien 7 and Section 8.2). The
“partition” experiment divides a 200MB build relation and#@0MB probe relation into
800 partitions, while the “join” experiment joins a 50MB kipartition with a 100MB
probe partition. Each bar is broken down into four categorimisy time, data cache stalls,
data TLB miss stalls, and other stalls. As we see in Figureoth thepartition andjoin
phases spend a significant fraction of their time—80% and,8&%pectively—stalled on
data cache misses!

Given the success of I/O partitioning in avoiding randdisk accesses, the obvious
guestion is whether a similar technique can be used to aasidammemoryaccesses.
Cache partitioningin which the joining relations are partitioned such thatrelbuild parti-
tion and its hash table can fit within the (largest) CPU cahhe been shown to be effective

ACM Transactions on Database Systems, Vol. 32, No. 3, Séuea007.



Improving Hash Join Performance through Prefetching . 3

in improving performance in memory-resident and main-msngdatabases [Shatdal et al.
1994; Boncz et al. 1999; Manegold et al. 2000]. However, egrrtitioning suffers from
two important practical limitations. First, for traditiahdisk-oriented databases, generat-
ing cache-sized partitions while scanning from disk reggia large number of concurrently
active partitions. Experiences with the IBM DB2 have shoWat tstorage managers can
handle only hundreds of active partitions per join [Lind2802]. Given a 2 MB CPU
cache and (optimistically) 1000 partitions, tikaximum relation size that can be handled
is only 2 GB Beyond that hard limit, any cache partitioning must be dasiag additional
passes through the data — as will be shown in Section 8, thigtsan up to 89% slowdown
compared to the techniques we propose. Second, cachéguanttassumesxclusive use
of the cache, but this assumption is unlikely to be valid ireamironment with multiple
ongoing activities. Once the cache is too busy with otheuests to effectively retain its
partition,the performance may degrade significarftip to 78% as shown in Section 8.2).
Hence, we explore an alternative technique that does nfgrgtdm these limitations.

1.2 Our Approach: Cache Prefetching

Rather than trying t@avoid CPU cache misses by building tiny (cache-sized) hash tables
we instead propose to exploit cache prefetchingittethe cache miss latency associated
with accessing normal (memory-sized) hash tables, by appihg these cache misses with
computation. Modern processors allow multiple cache rsigsbe in flight simultaneously
in the memory hierarchy (e.g., the Itanium 2 system bus obldgic has an 18-entry out
of order queue, which allows for a maximum of 19 memory retgi&s be outstanding
from a single Itanium 2 processor [Intel Corporation 2004ihd the trend has been toward
supporting more and more simultaneous misses. To enalil@asefto fully exploit this
parallelism, modern processors also provide expficgfetchinstructions for moving data
into the cache ahead of its use. Software-based prefetblaimtpeen successfully applied
in the past to array-based programs [Mowry et al. 1992] andtpebased programs [Luk
and Mowry 1996], but it has not been applied to hash joins.

Challenges in Applying Prefetching to Hash Join. A naive approach to prefetching for
hash join might simply try to hide the latency within the pessing of a single tuple. For
example, to improve hash table probing performance, onatingto prefetch hash bucket
headers, hash buckets, build tuples, etc. Unfortunatetyy an approach would have little
benefit because later memory references often depend ugeiops ones (via pointer
dereferences). Existing techniques for overcomingploigiter-chasing problerfLuk and
Mowry 1996] will not work because the randomness of hashirakes it impossible to
predict the memory locations to be prefetched.

The good news is that although there are many dependenittd@a the processing of
a single tuple, dependencies are less comawosssubsequent tuples due to the random
nature of hashing. Hence our approach is to exphtér-tuple parallelisnto overlap the
cache misses of one tuple with the computation and cachees@ssociated with other
tuples. A natural question is whether either the hardwath@compiler could accomplish
this inter-tuple cache prefetching automatically; if s would not need to modify the
hash join software. Unfortunately, the answer is no. Haréwsased prefetching tech-
niques [Baer and Chen 1991] rely upon recognizing reguldrmaadictable (e.g., strided)
patterns in the data address stream, but the inter-tuple tadde probes do not exhibit
such behavior. In many modern processors, the hardwareattlsmpts to overlap cache

ACM Transactions on Database Systems, Vol. 32, No. 3, Séuea007.



4 . Shimin Chen et al.

misses by speculating ahead in the instruction stream. kewalthough this approach is
useful for hiding the latency of primary data cache misses ltiit in the secondary cache,
the instruction window size (typically 64-128 entries) ftem a magnitude smaller than
the instructions wasted due to a cache miss to main memagy 200-300 cycle latency

multiplied by 4-6 instruction issue slots per cycle), andven smaller compared with the
amount of processing required for a single tuple. While aefgtching approaches (de-
scribed below) are inspired by compiler-based schedulegriiques, existing compiler
techniques for scheduling prefetches [Luk and Mowry 1996ww et al. 1992] cannot

handle the ambiguous data dependencies present in thedirasbdle (as will be discussed
in detail in Sections 4.4 and 5.3).

Overcoming these ChallengesTo effectively hide the cache miss latencies in hash join,
we propose and evaluate two new prefetching techniqgresip prefetchingandsoftware-
pipelined prefetchingFor group prefetching, we apply modified forms of compilants-
formations calledstrip miningandloop distribution(illustrated later in Section 4) to re-
structure the code such that hash probe accesses resuttinggfoups ofG consecutive
probe tuples can be pipelinédlhe potential drawback of group prefetching is that cache
miss stalls can still occur during the transition betweesugis. Hence our second prefetch-
ing scheme leverages a compiler scheduling techniquedcaditware pipeliningLam
1987] to avoid these intermittent stalls.

A key challenge that required us to extend existing comylibesed techniques in both
cases is that although we expect dependencies across taglesunlikely, they are still
possible, and we must take them into account to preserveatorss. If we did this con-
servatively (as the compiler would), it would severely limir potential performance gain.
Hence we optimistically schedule the code assuming thed Hre no inter-tuple dependen-
cies, but we perform some extra bookkeeping at runtime telckdether dependencies
actually occur. If so, we temporarily stall the consumertad tlependence until it can be
safely resolved. Additional challenges arose from the iplgltievels of indirection and
multiple code paths in hash table probing.

A surprising result in our study is that contrary to the cami@nal wisdom in the com-
piler optimization community that software pipelining patforms strip mining, group
prefetching appears to be more attractive than softwgrehlpied prefetching for hash
joins. A key reason for this difference is that the code in tlash join loop is far more
complex than the typical loop body of a numeric applicatiwhére software pipelining is
more commonly used [Lam 1987]).

1.3 Contributions of This Paper

This paper makes the following contributions. First, to &mowledge, this is the first
study to explore how prefetching can be used to accelerdte the join and partition
phases of hash join by exploiting inter-tuple paralleliSecond, we propose two prefetch-
ing techniquesgroup prefetchingndsoftware-pipelined prefetchingnd show how they
can be applied to significantly improve hash join perfornrean©verall, for user-mode
performance, the techniques achieve 1.29-4.04X speedupkd join phase and 1.37—
3.49X speedups for the partition phase over GRACE and sipygfetching approaches.
Moreover, they are at least 36% faster than cache partitgpon large relations and do

In our experimental set-up in Section®= 25 is optimal for hash table probing.

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



Improving Hash Join Performance through Prefetching . 5

not require exclusive use of the cache to be effective. Eantlore, we make extensive
comparisons between group prefetching and software-ipgeiprefetching, demonstrat-
ing that group prefetching is up to 30% faster than softwapelined prefetching. Finally,
we present experiments measuring elapsed real times vakhifds and demonstrate the
effectiveness of our cache prefetching schemes for digatad hash joins: our schemes
achieve 1.12-1.84X speedups for the join phase and 1.@BXXkpeedups for the partition
phase over the GRACE hash join algorithm.

The rest of the paper is organized as follows. Section 2 disgsithe related work in
more detail. Section 3 analyzes the dependencies in th@lase, the more complicated
of the two phases, while Sections 4 and 5 propose group phefigtand software-pipelined
prefetching to improve the join phase performance. Sed@idiscusses prefetching for the
partition phase. Section 7 describes experimental setughsreethodologies. Experimen-
tal results appear in Section 8. Section 9 discusses pahtigues in implementing the
prefetching techniques in DBMSs. Finally, Section 10 cadek the paper.

2. RELATED WORK

Since the GRACE hash join algorithm was first introducedgiiegawa et al. 1983], many
refinements of this algorithm have been proposed for theatdkeniding I/0 by keeping as
many intermediate partitions in memory as possible [Sluel®86; Nakayama et al. 1988;
Zeller and Gray 1990; Graefe 1993]. All of these hash joiretgms, however, share two
common building blocks: (ipartitioning and (ii) joining with in-memory hash tables. To
cleanly separate these two phases, we use GRACE as oumaalgjorithm throughout
this paper. We point out, however, that our techniques shbeldirectly applicable to the
other hash join algorithms.

Several papers have developed techniques to improve thee gaarformance of hash
joins [Shatdal et al. 1994; Boncz et al. 1999; Manegold 2@00]. Shatdag¢t al. showed
that cache partitioning achieved 6-10% improvement farij@ memory-resident relations
with 100B tuples [Shatdal et al. 1994]. Boncz, Manegold aedsken proposed using mul-
tiple passes in cache partitioning to avoid cache and TLBsthing [Boncz et al. 1999;
Manegold et al. 2000]. They showed large performance imgrnts on real machines
for joining vertically-partitioned relations in the Monetain memory database, under ex-
clusive use of the CPU caches. They considered neitheratiskted databases, more tra-
ditional physical layouts, multiple activities trashirggtcache, nor the use of prefetching.
They also proposed a variety of code optimizations (e.gft-Based hash computation) to
reduce CPU time; these optimizations may be beneficial fotemhniques as well.

As mentioned earlier, software prefetching has been usecessfully in other scenar-
ios [Mowry et al. 1992; Luk and Mowry 1996; Chen et al. 2001 g8t al. 2002]. While
software pipelining has been used to schedule prefetchasag-based programs [Mowry
et al. 1992], we have extended that approach to deal with wamglex data structures,
multiple code paths, and the read-write conflicts presehash join.

Previous work showed that TLB misses may degrade perforsfBancz et al. 1999;
Manegold et al. 2000], particularly when they are handledsoftware. However, the
majority of modern processors (e.g. x86 [Intel Corporat&f®6] and Itanium 2 [Intel
Corporation 2004]) handle TLB misses in hardware. MoreoVeB prefetching [Sauls-
bury et al. 2000] can be supported by treating TLB missesathbyg prefetches as normal
TLB misses. For example, faulting prefetch instructiondtamium 2 (fetch.fault[Intel

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



6 . Shimin Chen et al.

| - A Hash Cell in the Header
= T ]
g S B Hash Cell Array
\ \

= [ [

Hash
Bucket

| - Empty Bucket
T ]

Fig. 2. Anin-memory hash table structure.

Corporation 2004]) can incur TLB misses and automaticald TLB entries. Hence, us-
ing our prefetching techniques, we can overlap TLB misséis @mputation, minimizing
TLB stall time. (Section 9 discusses TLB misses and othestjwa issues in more detail).
After the conference version of this paper [Chen et al. 20028 published, several re-
cent studies have adopted our schemes of exploiting infge-parallelism to improve hash
join performance. Goleét al.[Gold et al. 2005] implemented hash join probe operations
on the Intel IXP2400 network processor and demonstratedusing multiple hardware
threads and cores to exploit inter-tuple parallelism cériea® up to 5X speedups over a
single thread, and 2.5X speedups over a baseline impleti@ntan Pentium 4. Zhoet
al. [Zhou et al. 2005] proposed and evaluated a scheme to usertemware threads to
perform faulting prefetches for improving database perfance. Their hash join imple-
mentation was based on our schemes to exploit inter-tupbdlpism. Cheret al.[Chen
et al. 2005] proposed an inspector join algorithm to achtbeebenefits of cache partition-
ing with almost zero re-partitioning overhead. They exigdiour prefetching schemes in
the partition phase and used the schemes to avoid conflisemiis the join phase.

3. DEPENDENCIES IN THE JOIN PHASE

In this section, we analyze the dependencies in a hash t&ditenvthe join phase. Our
purpose is to show why a naive prefetching algorithm woaltl fWe study a concrete
implementation of the in-memory hash table, as shown infeigu The hash table consists
of an array of hash buckets, each composed of a header argll{lgpsin array of hash
cells pointed to by the header. A hash cell represents a byjlé hashed to the bucket.
It contains the tuple pointer and a fixed-length (e.g., 4 bhesh code computed from
the join key, which serves as a filter for the actual key congpais. When a hash bucket
contains only a single entry, the single hash cell is stoliegctly in the bucket header.
When two or more tuples are hashed to the bucket, a hash mgfliarallocated. When the
array is full and a new tuple is to be hashed to the same bugkedy array doubling the
capacity is allocated and existing cells are copied to theareay.

A naive prefetching algorithm would try to hide cache mashciesvithin a single hash
table visit by prefetching for potential cache misses,udaig hash bucket headers, hash
cell arrays, and/or build tuples. However, this approachldail because there are a lot of
dependencies in a hash table visit. For example, the merddress of the bucket headeris
determined by the hashing computation. The address of #tedell array is stored in the
bucket header. The memory reference for a build tuple is weget on the corresponding
hash cell (in a probe). These dependencies essentially docnitical path; a previous
computation or memory reference generates the memory ssldifethe next reference,
and must finish before the next one can start. Therefore eadds would be generated

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



Improving Hash Join Performance through Prefetching . 7

too late for prefetching to hide miss latencies. In additipredicting memory addresses
for hash table visits is almost impossible because of théaamess of hashing. Note that
these arguments hold for all hash-based structtiféserefore, applying prefetching to the
join phase algorithm is not a straightforward task.

4. GROUP PREFETCHING

Although dependenciesithin a hash table visit prevent effective prefetching, the join
phase algorithm processes a large number of tuples, anachdepeies are less common
acrosssubsequent tuples due to the randomness of hashing. Treretow approach is to
exploitinter-tuple parallelismto overlap cache miss latencies of one tuple with compu-
tations and miss latencies of other tuples. To ensure doess, we must systematically
intermix multiple hash table visits, reorder their memoejerences, and issue prefetches
early enough. In this section, we propose group prefetcturaghieve these goals.

4.1 Group Prefetching for a Simplified Probing Algorithm

We use a simplified probing algorithm to describe the ideaofig prefetching. As shown
in Figure 3(a), the algorithm assumes that all hash buclkats hash cell arrays and every
probe tuple matches exactly one build tuple. It performsadoemper loop iteration.

As shown in Figure 3(b), the group prefetching algorithm bames multiple iterations
of the original loop into a single loop body, and rearranges probe operations into
staged. Each stage performs one computation or memory referentheoaoritical path
for all the tuples in the group and then issues prefetchuctitns for the memory ref-
erences of the next stage. For example, the first stage cesithg hash bucket number
for every tuple and issues prefetch instructions for thentmsket headers, which will be
visited in the second stage. In this way, the cache miss thtieahash bucket header of
a probe will be overlapped with hashing computations antheaxisses for other probes.
Prefetching is used similarly in the other stages exceplatestage. Note that the depen-
dent memory operations of the same probe are still perforonedafter another as before.
However, the memory operations of different probes are nesvlapped.

4.2 Understanding Group Prefetching

To better understand group prefetching, we generalize teeiqus algorithms of Fig-
ure 3(a) and (b) in Figure 3(c) and (d). Suppose we need teepsdtindependent ele-
ments. For each elementve need to makiedependent memory references, n¢, - -- ,rrf.
As shown in Figure 3(c), a straightforward algorithm prazsan element per loop iter-
ation. The loop body is naturally divided into+ 1 stages by th& memory references.
Code 0O(if exists) computes the first memory addre:ﬁs Code luses the contents rrng1

to compute the second memory addra’és Generallycode luses the contents m to
compute the memory addrets#*l, wherel =1,--- ' k— 1. Finally,code kperforms some
processing using the contentsn'ﬁ. If every memory referenceﬂ incurs a cache miss, the
algorithm will suffer fromkN expensive, fully exposed cache misses.

2The structure in Figure 2 improves upon chained bucket hashihich uses a linked list of hash cells in a
bucket. Here, we avoid the pointer chasing problem of linketd [Luk and Mowry 1999; Chen et al. 2001].
3Technically, what we do are modified forms of compiler tramsfations calledstrip-miningandloop distribu-
tion [Kennedy and McKinley 1990].

ACM Transactions on Database Systems, Vol. 32, No. 3, Séuea007.



Shimin Chen et al.

foreach tuple in probe partition

for i=0 to N1 do

{ {
conput e hash bucket nunber; code 0;
visit the hash bucket header; visit (mﬂ); code 1;
visit the hash cell array; visit (n'f); code 2;
visit the matching build tuple to . ...

} conpare keys and produce output tuple; ) visit (n'\k); code k;

(a) A simplified probing algorithm

foreach group of tuples in probe partition

foreach tuple in the group {
conpute hash bucket nunber;
prefetch the target bucket header;

foreach tuple in the group {
visit the hash bucket header;
prefetch the hash cell array;

foreach tuple in the group {
visit the hash cell array;
prefetch the matching build tuple;

foreach tuple in the group {
visit the matching build tuple to

(c) Processing an elenaattiteration

for j=0 to N1 step G do

for i to j+G1 do {
code 0;
prefetch (m);

for i=sj toj+G1 do {
visit (mb); code 1;

y prefetch (md);

for i toj+G1 do {
visit (mf); code 2;

y prefetch (nd);

for i toj+G1 do {

conpare keys and produce output tuple; visit (rrf); code k;

}
} }
(b) Group prefetching for simplified probing (d) General gpoprefetching algorithm

Fig. 3. Group prefetching.

Since the elements are independent of each other, we camaigegrefetching to over-
lap cache miss latencies across multiple elements, as stimofigure 3(d). The group
prefetching algorithm combines the processingsoélements into a single loop body. It
processesode Ifor all the elements in the group before moving orctale 14- 1. As soon
as an address is computed, the algorithm issues a prefattiefcorresponding memory
location in order to overlap the reference across the peicg®f other elements.

Now we determine the condition for fully hiding all cache miatencies. Suppose the
execution time otode lis C;, the full latency of fetching a cache line from main memory
is T1, and the additional latency of fetching the next cache lmparallel iSTpex, Which
is the inverse of memory bandwidth. (Table | shows the teahoigy used throughout the
paper.) Assume every{ incurs a cache miss and there are no cache conflicts. Note¢hat
use these assumptions only to simplify the derivation ofcireditions. Our experimental
evaluations include all the possible effects of localitg @onflicts in hash joins. Then, the
sufficient condition for fully hiding all cache miss lateasiis as follows:

{(G—l)'COZTl (1)
(G—1) max{C,Thext} > T1, | =1,2,--- Kk

The proof of this condition is given in the next subsectioar &n intuitive explanation,
let us focus on the first element in a group, elementhe prefetch fornjl is overlapped
with the processing of the remainil@g— 1 elements at code stage 0. The first inequality

ACM Transactions on Database Systems, Vol. 32, No. 3, Sdpea007.



Improving Hash Join Performance through Prefetching . 9

Table |. Terminology used throughout the paper.
[ Name | Definition |

k # of dependent memory references for an element
G group size in group prefetching
D prefetch distance in software-pipelined prefetchipg

T1 full latency of a cache miss
Thext | latency of an additional pipelined cache miss
G execution time for codg | =0,1,... .k

ensures that the processing of the remairting 1 elements takes longer time than a single
memory reference so that the prefetched memory referenteomplete before the visit
operation fom1jl in code stage 1. Similarly, the prefetch fltm%+1 is overlapped with the
processing of the remaining— 1 elements at code stabeThe second inequality ensures
that the memory reference latency is fully hidden. Note Taat corresponds to the mem-
ory bandwidth consumption of the visit operations of theagnngG — 1 elements. In the
proof, we also show that memory access latencies for otlkeenextts are fully hidden by
simple combinations of the inequalities.

We can always choose @ large enough to satisfy the second inequality sifigg:
is always greater than 0. However, wheode Ois empty,mj1 can not be fully hidden.
Fortunately, in the previous simplified probing algoritreode Ocomputes the hash bucket
number and is not empty. Therefore, we can chodséahide all the cache miss penalties.

In the above, cache conflict misses are ignored for simplafitanalysis. However, we
will show in Section 8 that conflict miss is a problem wh@ris too large. Therefore,
among all possibl&'s that satisfy the above inequalities, we should choosesihallest
to minimize the number of concurrent prefetches and confliss penalty.

4.3 Critical Path Analysis for Group Prefetching

In the following, we use critical path analysis to study thieqessing of a group, i.e. an
iteration of the outer loop in Figure 3(d). For simplicity ahalysis, we assume that every
n{ incurs a cache miss and there are no cache conflicts amongetmem references in
a group. Figure 4 shows the graph for critical path analy&igertex represents an event.
An edge from vertex A to B indicates that event B depends onte&end the weight of
the edge is the minimal delay. (For simplicity, zero weigéts not shown in the graph.)
The run time of a loop iteration corresponds to the lengtthefdritical path in the graph,
i.e. the longest weighted path from the start to the end.

The graph is constructed as follows. We use three kinds dices:

—P vertex the execution of a prefetch instruction
—C vertex: the start ofcode 0
—VC vertex: the start of a visit andode I(l =1,2,--- |K)

Vertex subscripts indicate the elements being processad? Wertices, their superscripts
correspond to the memory addresses in the program; for C &wkttices, the superscripts
are the code stage. In Figure 4, a row of vertices corresporatsinner loop that executes
a code stage for all the elements in a group. We use three &iretiges:

—Instruction flow edges They go from left to right in every row and from top to bottom
across rows. For example, there is an instruction flow edgm fwertexc? (code O for

element j) to vertesP," (prefetch form{) with weightCo; edgeP;" to C?,; means that

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



10 . Shimin Chen et al.

Start

% C°
0 0 0 —>
Tnext Tnext Tnexty M»

next .

Tl latency
Cz Cz Cz
0 0 —> bandW|dth
Tnext Tnexty -
Tnext —< _ |Tnext
o o o oo o o o o
+ Ty, T1,” T1,”

kPC k/}C PC
e : S : °en @ :
) - End
Q . Tnext » " ~ Tnext Tnexty
-~ — —

=2

Fig. 4. Critical path analysis for an iteration of the ouop body in Figure 3(d).

prefetch formt is executed before code 0 for element j+1; and the second oo (the
second row) starts after the first inner loop finishes. Werassihat code takes a fixed
amount of timeC; to execute, which is shown as weights of outgoing edges frandC
VC vertices. The instruction overhead of the visit and tHeWing prefetch instruction
is also included in it. So the other instruction flow edgesehzero weights.

—Latency edges an edge from a P vertex to the corresponding VC vertex repitsshe
prefetched memory reference with full latenByas its weight.

—Bandwidth edges an edge between VC vertices represents memory bandwidih- U
ally an additional (independent) cache miss can not be éwiylapped with the previous
one. It takedext more time to finish, which is the inverse of memory bandwidth.

Now we consider the critical path of the graph. If we ignoredamoment all latency
edges, the graph becomes clear and simple: All paths go &finolrightin a row and from
top to bottom from the start to the end; alternative pathsairecal between instruction
flow edges and bandwidth edges. Since the critical path ibtigest path, we can ignore
an edge if there is a longer path connecting the same vertitgestively, we can choose a
largeG so that latency edges are shorter than the paths along raitbeycan be ignored.
In this situation, the critical path of the graph is the losiggathalong the rows

We would like to derive the condition to fully hide all cachésslatencies. If all cache
miss latencies are hidden, all latency edges will not be ercthical path, and vice versa.
Therefore, it is equivalent to derive the condition to eledhat all latency edges are shorter
than paths along rows. We have the following theorem.

THEOREM 1. The following condition is sufficient for fully hiding all che miss laten-
cies in the general group prefetching algorithm:

(G-1)-Co>T
(G—1)-max{C,Thext} > T, 1 =1,2,--- k

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



Improving Hash Join Performance through Prefetching . 11

A code0: code2: code3:
¢ A st st
cond codel: 120 Ng 2y N8
PR cond B C F D G
B C F / ¢ \ code4:
¢ ¢ st=1 st=2 st=3 st
D G 2o0r 3y \ot her
(cond: condition)
E/ (st: tuple state) E enpty
(a) An example (b) Code stages in group prefetching

Fig. 5. Dealing with multiple code paths.

PROOF The first inequality ensures that the first latency edge from0, i.e. the edge
from vertexPJ-l to vertexVCJ-l in the graph, is shorter than the path along row 0. The second
inequality ensures that the first latency edge from taw the graph, i.e. the edge from
vertex P}*l to vertexVC'j“, is shorter than the corresponding path along fpwhere
I =1,2,--- ,k—1. Note that the inequality whdn= k is used only in the proof below.

For the other latency edges, we can prove they are shorterttigapaths along rows
with a simple combination of the two inequalities. For thth latency edge from row O,

i.e. the edge from verta‘?(jlﬂfl to vertexVCj1+Xfl, the length of the path along the row is
as follows:

len = (G—x)-Co+ (Xx—1)-max{Cq, Thext}
= [(6=%:(G-1)-Co+ (x=1)- (G—1)-max{Cy, Tnext}]/ (G- 1)
> [(G—x)-T+(x—1)-T]/(G-1)=T

For thex-th latency edge from row, i.e. the edge from vertelR!i)l(fl to vertexVC'jiifl,
wherel =1,2,--- k—1, the length of the path along the row is as follows:

len = (G—x)-max{C, Tnext} + (X— 1) - maxXCi+1, Tnext}
= [(G_X)'(G_l)'ma){CI;TneXt}‘F(X_l)'(G_1)'ma){cl+1;Tnext}]/(G—1)
> (G—x)- T+ (x—1)-T]/(G-1)=T

Therefore, when the two inequalities are satisfied, allneyeedges are shorter than the
corresponding paths along rows and all cache miss lateagfsilly hidden. O

4.4 Dealing with Complexities

Previous research showed how to prefetch for two dependemtary references for array-
based codes [Mowry 1994]. Our group prefetching algoritbhaes the problem of prefetch-
ing for an arbitrary fixed numbé¢of dependent memory references.

We have implemented group prefetching for both hash tahbildihg and probing. In
contrast to the simplified probing algorithm, the actualkpng algorithm contains multiple
code paths: There could be zero or multiple matches, hasketsicould be empty, and
there may not be a hash cell array in a bucket. To cope withcihisgplexity, we keep
state information for th& tuples of a group. We divide each possible code path into code
pieces on the boundaries of dependent memory referencemn Vi combine the code
pieces at the same position of different code paths into glesistage using conditional
tests on the tuple states. Figure 5 illustrates the ideai®ptiocess. Edges in Figure 5(a)
denote the control flow and data dependencies. Figure 5¢)sstihe code stages for group

ACM Transactions on Database Systems, Vol. 32, No. 3, Séuea007.



12 . Shimin Chen et al.

Hash Table|X

Hash Cell Array
\ |

Build tuples in a group
may be hashed to

the same hash bucket
— ]

Fig. 6. A read-write conflict.

prefetching. The common starting point of all code patha ide 0 code 1performs the
conditional test (e.g. checking whether the hash buckehisty contains a single entry in
the bucket header, or contains a hash cell array), thendsdbe outcome in the state of
the tuple. Then subsequent code stages test the tuple sthéxacute the code pieces for
the corresponding code paths. Moreoverde Itests the tuple state to determine the code
path ofcode I+1and issue the corresponding prefetch instructions. Tla tetmber of
stagesK+ 1) is the largest number of code pieces (determined by théoruof dependent
memory accesses) along any original code path.

When multiple independent cache lines are visited at a g&age to visit multiple build
tuples), our algorithm issues multiple independent pobfes in the previous stage.

The group prefetching algorithm must also cope with readleveonflicts. Though quite
unlikely, it is possible that two build tuples in a group maytmshed into the same bucket,
as illustrated in Figure 6. However, in our algorithm, haablé visits are interleaved and
no longer atomic. Therefore, a race condition could arise;gdecond tuple might see an
inconsistent hash bucket being changed by the first one. tRatehis complexity occurs
because of the read-write nature of hash table building.ope avith this problem, we set
a busy flag in a hash bucket header before inserting a tupdetulble is to be inserted into
a busy bucket, we delay its processing until the end of thegprefetching loop body.
At this natural group boundary, the previous access to tlsy hash bucket must have
finished. Interestingly, the previous access has also watpéehe cache for the bucket, so
we insert the delayed tuple without prefetching. Note thatdlgorithm can deal with any
number of delayed tuples (to tolerate skews in the key Bigtion).

5. SOFTWARE-PIPELINED PREFETCHING

In this section, we describe our technique of exploitingwafe pipelining to schedule
prefetches for hash joins. We then compare our two prefetcbthemes.

Figure 7 illustrates the difference between group prefegtand software-pipelined
prefetching intuitively. Group prefetching hides cachessniatencies within a group of
elements and there is no overlapping memory operation legtvgeoups. In contrast,
software-pipelined prefetching combines different cotdges of different elements into
an iteration and hides latencies across iterations. lt&e@pning without gaps and there-
fore may potentially achieve better performance.

5.1 Understanding Software-Pipelined Prefetching

Figure 8(a) shows the software-pipelined prefetchingtiersimplified probing algorithm.
The subsequent stages for a particular tuple are proc&s#edations away. D is called
theprefetch distancMowry 1994].) Figure 7(b) depicts the intuitive picture emD = 1.

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



Improving Hash Join Performance through Prefetching . 13

%05 codeo 0
] 10 P Lo
111 ‘ codel 1 \
%—L—\—l——— e | 10
25 ] code2 21
R (s 1310
stage . ,,,3,,3,0,,, _ codes 3‘2‘1? an iteration
menory \(‘JOO ‘2‘10
operation 14 | | : ,3,[,,‘,L,0,,,.
| | 11 32 1 |
1 2517 e
142 37
3311 L5
33 3‘ o o0 o0
o 0 o0 3
(a) Group prefetchingG = 4) (b) Software-pipelined prefetchin® (= 1)
Fig. 7. Intuitive pictures of the prefetching schemes.
prol ogue;

prol ogue;

for j=0 to N-3D-1 d .
{or : 0 0 for j=0 to N-kD-1 do

tuple j+3D:
conput e hash bucket nunber;
prefetch the target bucket header;

i =j +kD;
code 0 for elenent i;
prefetch (mb);

tuple j+2D: i +(k-1)D;
visit the hash bucket header; visit (”11)1' code 1 for el ement i:
prefetch the hash cell array; prefetch (”12)?
tupl_e _j +D: i =j +(k-2) D,
visit the hash cell array; visit (mf); code 2 for element i;
prefetch the matching build tuple; prefetch (md);
tuple j:
visit the matching build tuple to i
conpare keys and produce output tuple; o )
m y produce output tup visit (m); code k for elenent i;
} .
epi | ogue; epi | ogue;

(a) Software-pipelined prefetching for simplified probing (b) General software-pipelined prefetching

Fig. 8. Software-pipelined prefetching.

Suppose the left-most line in the dotted rectangle cormedpto tuplej. Then, an iteration
combines the processing of stage 0 for tupte 3D, stage 1 for tuplg + 2D, stage 2 for
tuple j + D, and stage 3 for tuple

Figure 8(b) shows the generalized algorithm for softwapelned prefetching. In the
steady state, the pipeline hlag- 1 stages. The loop body processes a different element
for every stage. The subsequent stages for a particularegleane processdd iterations
away. Intuitively, if we make the distances between codgestdor the same element
sufficiently large, we will be able to hide cache miss latesciUnder the same assumption
as in Section 4.2, the sufficient condition for hiding all sagniss latencies in the steady
state is as follows. (We will derive this condition in the hexbsection.)

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



14 . Shimin Chen et al.

o o o o o o o o o NJ© © o

1
Tne /L Tnext Tnext next

RRRRR Tnext=- — -
o oo

Thex /L Tnext Tnext next

Tnext=- — -

D iterations

o O O

Thext. Tnext Tnext next

RRRRR Thext<  — -

D iterations

«Tl
o O O

‘ instruction flow Iatency bandW|dth ‘
e

Fig. 9. Critical path analysis for software-pipelined mtehing (steady state).

k—1
D - (maxX{Co+ Cy, Thext} + ZlmaX{CI,Tnext}) >T (2)
I_

We can always choosel sufficiently large to satisfy this condition. In our expednts
in Section 8, we will show that conflict miss is a problem wiiis too large. Therefore,
similar to group prefetching, we should choose the smalbetst minimize the number of
concurrent prefetches.

5.2 Critical Path Analysis for Software-Pipelined Prefetching

We perform critical path analysis using Figure 9. The graplanstructed in the same
way as Figure 4, though a row here corresponds to a singleitertion in the general
software-pipelined prefetching algorithm. Instructiooviledges are still from left to right
in a row and from top to bottom across rows. Focusing on ttentat edges, we can see
the processing of the subsequent stages of an element. Dsequent stages of the same
element are processed in two separate rows thdD déerations away.

If the paths along the rows are longer, the latency edges edgrored because they
are not on the critical path and the cache miss latenciesutlyehidden. The sufficient
condition for hiding all cache miss latencies is given infiblowing theorem.

THEOREM 2. The following condition is sufficient for fully hiding all che miss laten-
cies in the general software-pipelined prefetching altoni:

k—1
D (max{Co+ C, Thext} + ZmaX{Q sThext}) > T
|_

PrROOF The left-hand side of the inequaﬁty is the total path IéngtD rows in Fig-
ure 9. Clearly, when this length is greater than or equal éovieight of a latency edge,
latency edges can be ignored in critical path analysis drchahe miss latencies are fully
hidden. O

5.3 Dealing with Complexities

We have implemented software-pipelined prefetching byifgody our group prefetching
algorithm. The code stages are kept almost unchanged. Ty #pgeneral model in

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



Improving Hash Join Performance through Prefetching . 15

Figure 8(b), we use a circular array for state informatide; indexj in the general model

is implemented as the array index. We choose the array sibe topower of 2 and use
bit mask operation for modular index computation to redueerleead. Moreover, since
code Oandcode kof the same element is procesddd iterations away, we ensure the
array size is at leastD + 1.

The read-write conflict problem in hash table building isveal in a more sophisticated
way. Since there is no place (like the end of a group in grogapching) to conveniently
process all the conflicts, we have to deal with the conflicteépipeline stages themselves.
We build a waiting queue for each busy hash bucket. The hadtebneader contains the
array index of the tuple updating the bucket. The state mé&iion of a tuple contains a
pointer to the next tuple waiting for the same bucket. Wheupdetis to be inserted into
a busy bucket, it is appended to the waiting queue. When wehfimashing a tuple, we
check its waiting queue. If the queue is not empty, we recloedatrray index of the first
waiting tuple in the bucket header, and perform the previmge stages for it. When this
tuple gets to the last stage, it will handle the next tupldawaiting queue if it exists.

5.4 Group vs. Software-pipelined Prefetching

Both prefetching schemes try to increase the interval bextwae prefetch and the corre-
sponding visit, in order to hide cache miss latency. Acangdo the sufficient conditions,
software-pipelined prefetching can always hide all migsriaies, while group prefetching
achieves this only wheeode 0Ois not empty (as is the case of the join phase). Wtaate 0
is empty, the first cache miss cannot be hidden. However,avitinge group of elements,
the amortized performance impact can be small.

In practice, group prefetching is easier to implement. Taeiral group boundary pro-
vides a place to do any necessary “clean-up” processing, fergread-write conflicts).
Moreover, the join phase can pause at group boundaries amdasgputs to the parent
operator to support pipelined query processing. Althougbfaware pipeline may also be
paused, the restart costs will diminish its performanceaathge. Furthermore, software-
pipelined prefetching has larger bookkeeping overheadulmsit uses modular index op-
erations and because it maintains larger amount of stadeniation (such as the waiting
gueue for handling read-write conflicts).

6. PREFETCHING FOR THE PARTITION PHASE

Having studied how to prefetch for the join phase of the hashglgorithm, in this section,
we discuss prefetching for the partition phase. In the fantiphase, an input relation is
divided into multiple output partitions by hashing on thimjkeys. Typically, the algorithm
keeps in main memory an input page for the input relation andwtput page for every
intermediate partition. The algorithm processes everyippge, and examines every input
tuple in an input page. It computes the partition number ftbentuple join key. Then it
extracts (projects) the columns of the input tuple relevatiie database query performing
the hash join operation and copies them to the target outgdtérnpage. When an output
buffer page is full, the algorithm writes it out to the cofpesding partition.

Like the join phase, the 1/O partitioning phase employs leghlt computes the par-
tition number of a tuple by hashing on the tuple’s join key.c&ese of the randomness
of hashing, the resulting memory addresses are difficultréalipt. Moreover, the pro-
cessing of a tuple also needs to make several dependent mesfierences, whereas the
processing of subsequent tuples are mostly independemd dine randomness of hashing.

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



16 . Shimin Chen et al.

Therefore, we employ group prefetching and software-igel prefetching for the 1/O
partitioning phase.

There may be read-write conflicts in visiting the output budf Imagine that two tuples
that are close in the input relation happen to be hashed teaime output buffer. When
processing the second tuple, the algorithm may find that thpub buffer has no space
and needs to be written out. However, it is possible thatiatrttoment the data from the
first tuple has not yet been copied into the output buffer beeave have reorganized the
processing. To solve this problem, in group prefetching,dekay the processing of the
second tuple until the end of the loop body, where we writetbetouffer and process the
delayed tuple. In software-pipelined prefetching, we us@ing queues similar to those
used in hash table building in the join phase.

7. EXPERIMENTAL SETUP
7.1 Measurement Methodology

We evaluate our prefetching schemes through both cycleratesimulations and real ma-
chine experiments on an Itanium 2 machine. We model a widgyeraf modern processors
with the simulation study. Moreover, simulation allows odlexibly instrument the pro-
cessor pipeline and the cache hierarchy to better unders@results. Furthermore, we
can model future machine configurations by varying the satioh parameters. We verify
the trends learned from the simulation study with user-mpeléormance results on the
Itanium 2 machine. Finally, we measure total elapsed tintle disk I/Os on the Itanium 2
machine to show the benefits of our schemes on disk-orierisil joins.

Itanium 2 Configuration for Real-Machine Experiments. Table Il lists the Itanium 2
machine configuration parameters. The machine has two 9Q0N#dium 2 McKinley
processors, each with three levels of caches and two let@lkBs. They share an 8 GB
main memory. However, we used only the lower 1GB memory inexjreriments (more
details in Section 8.1). Most of the cache hierarchy pararsedire described in the Ita-
nium 2 manual [Intel Corporation 2004]. We measure the DTLiBstatency, main mem-
ory latency 1), and main memory bandwidiliix) through experiments [Chen 2005].
Note that the measured TLB miss latency confirms the periatgdlin the Itanium 2 man-
ual for a TLB miss that finds its page table entry in the L3 cdahtel Corporation 2004].

Itanium 2 supports both faulting and non-faulting prefethNon-faulting prefetches
are dropped if the prefetches cause exceptions, such as T&gesn In contrast, a fault-
ing prefetch behaves similar to a load instruction withoestthation register; upon a TLB
miss, it will load the page entry into the TLB table and congnSince hash table visits are
likely to cause TLB misses, we choose faulting prefetchesuinexperiments. Prefetch-
ing can be implemented with the two compilers available anrifachine: gcc and icc.
gcc supports inserting prefetch instructions as inlineagsdy code, while icc supports a
special function-call-like interface for prefetches. Iac8on 8.3, we compare the hash
join performance using different compilers and optimiaatievels. The decision is to use
“icc -O3” for all the Itanium 2 experiments.

The machine is running Linux 2.4.18 kernel with 16 KB virtyslges. We measure
user-mode performance by using the perfmon library [PerfiAmject ] to access the Ita-
nium 2 performance counters. We measure the total elapses tivith disk 1/0Os using
the getti meof day system call. We perform 30 runs and report the averages. Heor t
user-mode cache performance measurements, the standétiates are within 1% of the

ACM Transactions on Database Systems, Vol. 32, No. 3, Sdpea007.



Improving Hash Join Performance through Prefetching . 17

Table Il. Itanium 2 machine configuration.
CPU dual-processor 900MHz Itanium 2 (McKinley, B3)
L1 Data Cache 16 KB, 64B lines, 4-way set-assoc., load lat. 1 cycle

L1 Instruction Cache| 16 KB, 64B lines, 4-way set-assoc., load lat. 1 cycle
L2 Unified Cache 256 KB, 128B lines, 8-way set-assoc., load lat. 5 cycles
L3 Unified Cache 1.5 MB, 128B lines, 6-way set-assoc., load lat. 12 cycles

DTLB 1: 32 entries, fully-assoc.; ITLB 1: 32 entries, fullissoc.
TLB DTLB 2: 128 entries, fully-assoc.; ITLB 2:128 entries, fulissoc.
DTLB 2 Miss Latency: 32 cycles

) 8GB (only the lower 1GB used), Latenc¥ij: 189 cycles,
Main Memory Bandwidth (1Thexy): 1 access per 24 cycles

8 SCSI SeagLat_e Cheetah 15K ST336754LW disks, 15000 rpm,

Disks average seek time: 3.6 ms, average rotational latency: 2 ms
Operating System Linux 2.4.18 (Red Hat Linux Advanced Workstation releaskAlv)
Page Size 16KB
Compiler Intel C++ Itanium Compiler Version 8.1, icc -O3

user-mode performance: kernel perfmon version 1.0, pfression 2.0
Measurement total elapsed time with I/Oget t i meof day()

Table lll. Parameters for simulation study.
Pipeline Parameters
Clock Rate 1.5GHz Integer Multiply 4 cycles
Issue Width 4 instructions/cycle Integer Divide 50 cycles
Reorder Buffer Size 128 instructions All Other Integer 1 cycle
Branch Prediction gshare [McFarling 1993]
Functional Units 2 Integer, 1 Integer Divide, 2 Memory, 1 Branch, 2 FP
Memory Parameters

L1 Instruction Cache 16 KB, 4-way set-assoc. Line Size 64 bytes
L1 Data Cache 16 KB, 4-way set-assoc. Page Size 16 KB
Miss Handlers 32 for data, 2 for instruction| L1 Cache Access Latency 1 cycle
DTLB 128 entries, fully-assoc. L2 Cache Access Latency 5 cycles
L2 Unified Cache 256 KB, 8-way set assoc. | L3 Cache Access Latency 12 cycles
L3 Unified Cache 2 MB, 8-way set assoc. DTLB Miss Latency 30 cycles
L1-to-Memory Latency| 250 cycles (plus any delays due to contentioh)-£ 250)
Memory Bandwidth 1 access per 15 cycle$pext= 15)

averages in all cases. For the total elapsed real time ma&asuis, the standard deviations
are within 5% of the averages in all cases.

Machine Model for Simulation Study. Table Ill shows the parameters for the simula-
tion study. The simulator models a generic out-of-orderestgzalar processor, which is
the model in most modern processors (other than Itaniumu2)y as Intel Pentium 4 [In-
tel Corporation 2004], IBM Power 5 [Kalla et al. 2004], andnSultraSPARC |V [Sun
Microsystems ]. It performs a cycle-by-cycle simulationpdeling the rich details of
the processor including the pipeline, register renamimgnoh prediction, and branching
penalties, etc. The simulator supports the MIPS instract&t and executes gcc-generated
executables. The simulator simulates only user-mode ¢xes it delivers system calls
such ag ead andwr i t e directly to the underlying operating system.

Because CPU cache performance is the major factor in hasbger-mode performance
and the memory hierarchy of Itanium 2 is representative ofl@no server processors,
we model the memory hierarchy of the Itanium 2 machine in theigator. Most of the
memory parameters (e.g., cache sizes, associativitiebecaccess latencies) follow the
Itanium 2 configuration as described in Table Il. Moreoves, simulator supports faulting

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



18 . Shimin Chen et al.

prefetches. However, unlike Itanium 2, the simulator onlpgorts a uniform cache line
size across all levels of caches. We choose 64 bytes as the biae size, and adjust the
memory latencyTz) and the memory bandwidti{ex) accordingly.

7.2 Implementation Details

We have implemented our own hash join engine. For real madi@® experiments, we

implemented a buffer manager that stripes pages acrosgpftaudisks and performs 1/0
prefetching with background worker threads. For CPU caokrfopmance studies, we
store relations and intermediate partitions as disk filesifaplicity. We employ the slotted
page structure and support fixed length and variable lengbuwtes in tuples. Schemas
and statistics are kept in separate description files fopkaity, the latter of which are

used to compute hash table sizes and numbers of partitions.

GRACE Hash Join. Our baseline algorithm is the GRACE hash join algorithm §kiite-
gawa et al. 1983]. The in-memory hash table structure isrite=st previously in Figure 2

in Section 3. A simple XOR and shift based hash function isiuseconvert join keys of
any length to 4-byte hash codes. Typically the same hashs@réeaused in both the parti-
tion and the join phase. Partition numbers in the partitibage are the hash codes modulo
the total number of partitions. Hash bucket numbers in tire phase are the hash codes
modulo the hash table siZe Our algorithms choose the hash table size to be a relative
prime to the number of partitions and to be larger than the brmof build tuples to be
hashed. In this way, a hash bucket typically contains only @ntwo build tuple entries,
leading to minimal search cost within a hash bucket. Bectngsssame hash codes are used
in both phases, we avoid the memory access and computatieeiddeads of reading the
join keys and hashing them a second time, by storing hashsdadee page slot area in
the intermediate partitions and reusing them in the joirsgh&lote that changing the page
structure of intermediate partitions is relatively easgdugse the partitions are only used in
hash joins. This optimization is employed in all the schemesmplemented

Prefetching Schemes.We implemented three prefetching schemes for both thetioarti

phase and the join phase algorithm: simple prefetchingympefetching, and software-
pipelined prefetching. As suggested by the name, simpliefat@ng uses straightforward
prefetching techniques, such as prefetching an entiretippge after a disk read. We
implement simple prefetching as an enhanced baseline ier dodshow the additional

benefit achieved using our more sophisticated prefetclihgraes. On the Itanium 2 ma-
chine,“icc -O3” enhances a program by automatically (aggjxely) inserting prefetches.
In fact, we find that the icc generated baseline achievelstglipetter performance than the
simple prefetching approach. Therefore, we only show stnppéfetching curves for the
simulation study but omit the simple prefetching curves wpeesenting Itanium 2 results.

Cache Partitioning. Cache partitioning generates cache-sized build partitgm that
every build partition and its hash table can fit in cache, tyeaducing the cache misses
in the join phase. It has been shown to be effective in maimarg and memory-resident

4We make no assumptions on the join key distribution, ancefbez choose the more general modulo division
operation rather than setting the hash table size to be arpmi2and using the bit mask operation [Manegold
et al. 2000]. We believe that the latter technique requiergad key distribution (e.g. uniform) for maintaining
the quality of hash computation. In general, reducing thet Coof a code stage may shorten the critical path in
Figure 4 (Figure 9), which requires largér(D) and potentially makes our prefetching algorithms faster.

ACM Transactions on Database Systems, Vol. 32, No. 3, Séuea007.



Improving Hash Join Performance through Prefetching . 19

database environments [Shatdal et al. 1994; Boncz et aR]198e have implemented
the cache patrtitioning algorithm for disk-oriented datdanvironments. The algorithm
partitions twice: The I/O partition phase generates mensizgd partitions, which are
subsequently partitioned again in memory as a preproagssep for the join phase (using
the same hash codes).

Buffer Manager for Experiments with Disk 1/0s. We implemented the buffer pool
manager using the POSIX thread (pthread) library. Giventafdisks, the buffer pool
manager stripes all the relations across all of the disk&SBKB stripe units> and it imi-
tates raw disk partitions by allocating a large file on eadtk dind managing the mapping
betweerpagel Ds and file offsets. For each disk, the buffer manager maistairequest
gueue and runs a dedicated worker thread. To perform an l&@atipn with pageagel D,
the main thread computes the target diski l&nd the disk file offset from thpagel D. It
then appends a request into the ithe request queue. If the 1/O operation is synchronous,
the main thread blocks till it receives a completion notifiza from the worker thread
For prefetch requests (e.g. reading the next pages in the mefations for hash joins),
the main thread continues without waiting for the requestimplete. The worker thread,
however, performs a synchronous I/0 read and blocks on behtde main thread in the
background. Later when the main thread attempts to accegwéiietched page, it checks
whether the valid flag of the destination buffer has been ge¢hé worker thread. If not,
then the 1/O prefetch has not yet completed, and thereferenthin thread will block until

it receives the I/O completion notification from the workkrdad. For asynchronous 1/O
write operations, worker threads perform background wgitbon behalf of the main thread.
Moreover, worker threads cdlldat async periodically (every 128 write operations in our
experiments) to flush any pages that may be cached in the $ileraycache.

7.3 Experimental Design

In our experiments, we assume a fixed amount of memory (50 BIBlJacated for joining
a pair of build and probe partitions in the join phase, andghsdition phase generates
partitions that will tightly fit in this memory. That s, in the baseline and our prefetching
schemes, a build partition and its hash table fit tightly ie #vailable memory. In the
cache partitioning scheme, the partition sizes are alsgpobed to satisfy the algorithm
constraints and best utilize available memory.

Build relations and probe relations have the same schemasipl& consists of a 4-
byte join key and a fixed-length payload. We believe thatctiele and projection are
orthogonal issues to our study and we do not perform thesetpes in our experiments.
An output tuple contains all the fields of the matching buifdl robe tuples. The join
keys are randomly generated. A build tuple may match zeroarerprobe tuples and a
probe tuple may match zero or one build tuple. We join a 2GBdmeilation with a 4GB
probe relation in the Itanium 2 experiments, while we joinC®&IB build relation with a
400MB probe relation in the simulation study (which is lietdtby simulation time). In our

5This models the typical data layout in commercial databgistems. For example, the size of a stripe unit (a.k.a.
extent) in IBM DB2 is between 8KB and 8MB [IBM Corporation 20)0 By default, an extent in IBM DB2
contains 32 pages. Depending on the page size, the defterlit @an be 128KB, 256KB, 512KB, or 1MB large.
6The memory to cache size ratio is 50:2 for the simulationystadd it is 50:1.5 for the Itanium 2 machine. This
ratio corresponds to the ratio of the hash table size (inetutuild tuples) over the cache size, which is large
enough to reflect the typical hash join cache behavior.

ACM Transactions on Database Systems, Vol. 32, No. 3, Séuea007.



20 . Shimin Chen et al.

200 350 4001 : .
180 —o— main total time o —o— main total time 350! —©— main total time
@ 160 —*— main busy &30 —— main busy 7 U —<— main busy
o 1404 —— main io stall o 250 —— main io stall o 300 —+— main io stall
£ 120 —A— worker io stall | £ 2 —— worker io stall | £ 250 —A— worker io stall
5 100 5 1 5 200
5 80 E 3 150
g 60 o1 £ 100
o 40 ©l )
20 h 50
0 3 0 L
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
number of disks number of disks number of disks
(a) Partition phase performance (b) Join phase performance (c) Join phase performance
(outputs consumed in memory) (outputs written to disk)

Fig. 10. Hash join is CPU-bound with reasonable 1/0O bandwidt

experiments, we vary the tuple size, the number of probetuplatching a build tuple, and
the percentage of tuples that have matches, in order to dtetenefits of our solutions in
various situations.

8. PERFORMANCE EVALUATION

In this section, we present experimental results to quatité benefits of our cache prefetch-
ing techniques. We begin by showing that hash join is CPU bawith reasonable 1/0
bandwidth. Next, we study the user-mode CPU cache perfarenahhash joins through
both simulations and Itanium 2 experiments. Finally, wdust the impact of our cache
prefetching techniques on the elapsed real times of hash yaith disk 1/0s.

8.1 Is Hash Join I/O-Bound or CPU-Bound?

Our first set of experiments study whether hash joins arebld®ad or CPU-bound. We
measure the performance of GRACE hash joins on the Itaniuna¢hme using up to 8
SCSI disks. We use the multi-threaded buffer manager asibdeddn Section 7.2.

To be conservative, we would like to focus on the worst-casaario where no inter-
mediate partitions are cached in the main memory, theresyltieg in the maximum 1/0
demand for hash joins. Hence we measure the performance pgttition phase and the
join phase in separate runs, and we ensure that the file systendisk caches are cold
before every run by performing the following three operasio(i) we restricted the Linux
operating system to use only the lower 1GB of main memory kiyngea boot flag; (ii) we
allocated a 1GB memory buffer that was written and then raad;(iii) we read separate
128MB dummy files from each of the eight disks.

Figure 10 shows the performance of the partition phase amgbth phase of joining a
2GB build relation with a 4GB probe relation varying the nuenbf disks used. Depending
on the queries, the join output may either be written to diskamsumed in main memory
by the parent operator; we perform experiments to evaluate bases. Tuples are 100
bytes. The algorithm generates 57 intermediate partitsanthat a build partition and its
hash table consume up to 50 MB of memory in the join phase. Terenderstand the
elapsed times, we show four curves in every figure. ifiaén totaltime is the elapsed real
time of an algorithm phase. It is broken down into thain busytime and themain io stall
time. Themain io stalltime is the time that the main thread spends either (i) waiim an

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



Improving Hash Join Performance through Prefetching . 21

I/0O completion notification from a worker thread, or (ii) wiag for an empty queue slot to
enqueue an I/O request. Thein busytime is computed by subtracting tiheain io stall
time from themain totaltime; it approximates the time to do hash join work in memory.
Theworker io stalltime is the largest I/O stall time of individual worker tho=a

As shown in Figure 10, thevorker io stalltime decreases dramatically as the number
of disks increases and the number of 1/O operations per diskedses. In contrast, the
main busytime stays roughly the same across all of the experiments i$because the
memory and computational operations in the hash join do epedd on the number of
disks. Combining the two trends, we see that hash joins alse l®-bound when the
number of disks is small (e.g< 4 disks). As more and more disks are added, hash joins
gradually become CPU-bound.

As shown in Figure 10(a) and Figure 10(b), the partition ehesd the join phase with
outputs consumed in memory are CPU-bound with five or motkesdiBhemain busytime
is significantly larger than the/orker io stalltime, and themain totaltime becomes flat.
As shown in Figure 10(c), the join phase with outputs writiedisk becomes CPU-bound
when seven disks are usédNote that it is reasonable to use five or seven disks on the
Itanium 2 machine because there are typically 10 disks pmrgssor on a balanced DB
server [TPC Benchmarks ]. Therefore, we conclude that ortéreum 2 machine, hash
joins are CPU-bound with reasonable I/O bandwidth. The gatpvéen themain busy
time and theworker io stalltime highlights the opportunity for reducing the total time
by improving the hash join CPU performance. Section 8.4 stitbw that our prefetching
schemes can reduce the elapsed total time of both partitidfjoen phases with disk 1/0s.

8.2 User-Mode CPU Cache Performance through Simulations

Join Phase Performance. We compare the join phase performance of the baseline al-
gorithm and the three prefetching schemes through sinomsiin Figure 11. The exper-
iments model the processing of a pair of partitions in the johase. In all experiments,
the build partition fits tightly in the 50MB memory. By defauluples are 100 bytes and
every build tuple matches two probe tuples. As shown in Fadur, while varying the tuple
size, the ratio of probe relation size to build relation semed the percentage of tuples that
have matches, group and software-pipelined prefetchihigae 3.02-4.04X speedups over
the GRACE hash join. On the other hand, simple prefetchirlg obtains a 1.06-1.24X
speedup over the baseline, because it does not improve tiralceart of the join phase
algorithm—hash table visiting. Compared with simple ptefieng, group and software-
pipelined prefetching achieve additional 2.65-3.40X sluges.

The curve trends of the sub-figures are expected. In Figu¢a)las the tuple size
increases from 20 to 140 bytes, the number of tuples in the Skeed partition decreases,
leading to the decreasing trend. In Figure 11(b) and (c),tote& number of matches
increases as the number of matches per build tuple or theeppge of tuples having
matches. This explains the upward trends. Moreover, thieggpartition size also increases
in Figure 11(b), contributing to the much steeper curves thase in Figure 11(c).

Join Phase Execution Time Breakdowns. We show the execution time breakdowns
in Figure 12. Each bar is broken down into four categories$ ¢éxalain what happened

7Although the curve markers seem to overlap, this claim igpeted by experimental results in Section 8.4,
which demonstrate that cache prefetching improves thepeénce in this case.

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



22 . Shimin Chen et al.

g g g —— G_RAICE .
o o © —— simple pre
5 3 5 3 5 3 — group pref
Q Q Q | —& siw pipelined pref
g2 g2 g2
E g g %
i) i) i)
S lé\kh,_ﬁ_aaz : k/k/‘ g "
Q [} [}
X A X X N A
[} o A4 [}
o] 0 0]
20 60 100 140 1 2 3 4 40 60 80 100
tuple size (bytes) num matches per build tuple percent of tuples having matches
(a) Varying tuple size (b) Varying number of matches (c) Vagyjoin selectivity

Fig. 11. Join phase user-mode performance through simokfjoining a pair of build and probe partitions).

100 - dcache stalls

dtlb stalls
other stalls
busy

80+

60

40t

20

Normalized Execution Time

GRACE  simple group s/w pipelined
prefetch prefetch prefetch

Fig. 12. Execution time breakdown for join phase perforneaffigure 11(a), 100B tuples).

during all potentiayraduation slotgin the simulator). The number of graduation slots is
the issue width (4 in our simulated architecture) multipl®y the number of cycles. We
focus on graduation slots rather than issue slots to avaiatong speculative operations
that are squashed. The bottom sectibnsf) of each bar is the number of slots where
instructions actually graduate. The other three sectioasttee number of slots where
there is no graduating instruction, broken down into datdhesstalls, data TLB stalls, and
other stalls. Specifically, the top sectiaftéche stallsis the number of such slots that are
immediately caused by the oldest stalled instruction suffea data cache miss, the second
section (ltlb) is the number of slots that are caused by the oldest stalrdliction waiting
for a data TLB miss, and the third sectiastijer stalld is all other slots where instructions
do not graduate. Note that the effects of L2 and L3 cache siamseincluded in thdcache
stallssection. Moreover, thdcache stallsection is only a first-order approximation of the
performance loss due to data cache misses: These delayexalserbate subsequent data
dependence stalls, thereby increasing the numbettar stalls The cache performance
breakdowns are generated based on our simulation resulsibe the simulator has fine-
grained instrumentations to categorize every idle gradoalot into a stall type. Note
that it is often difficult to generate such accurate cachépeiance breakdowns on a real
machine for two reasons: (i) the processor does not providaildd information about
graduation slots; (ii) estimating the breakdowns usingribmber of cache misses and
other event counts does not take into account the overlgmsfact of these events.

Figure 12 corresponds to the 100-byte points in Figure 11{a¢ GRACE bar is shown
as the “join” bar previously in Figure 1. We see that groupf@iching and software-

ACM Transactions on Database Systems, Vol. 32, No. 3, Séuea007.



Improving Hash Join Performance through Prefetching . 23

11
810
2 9 B GRACE
© 8 I group prefetching
Q7 [ 7 siw pipelined prefetching
o 6
E =
5 4
s 3
1
o
0

250 1000
cache miss latency (cycles)

Fig. 13. Join phase user-mode performance varying memtegdg. (The 250-cycle results are the same as the
20B results in Figure 11(a).)

.8
37 —o— GRACE
S imple prefetchin
26 —< simple prefetching
Q 5l —+— group prefetching
° —A— s/w pipelined prefetching
E4
c3
2 & 4 4> 4
52
(8]
L1
[}

85 50 100 200 400 800

number of partitions

Fig. 14. Partition phase user-mode performance throughlations.

pipelined prefetching indeed successfully hide most ofthia cache miss latencies. The
simulator outputs confirm that the remaining data cacheaniase mostly L1 cache misses
but L2 hits or L1 and L2 misses but L3 hits. The (transformatibookkeeping, and
prefetching) overheads of the techniques lead to largeiqmsr of busy times. The busy
portion of the software-pipelined prefetching bar is lartean that of the group prefetch-
ing bar because of its more complicated implementationeréstingly, other stalls also
increase. A possible reason is that some secondary causedl®show up when the data
cache stalls are reduced.

Join Performance Varying Memory Latency. Figure 13 shows the join phase perfor-
mance when the memory latengy is set to 250 cycles (default value) and 1000 cycles
in the simulator. We see that the execution time of GRACE l@aishincreases dramati-
cally as the memory latency increases. In contrast, theutixectimes of both group and
software-pipelined prefetching increase only slightlyig achieving 8.3-9.6X speedups
over GRACE hash join. We conclude that the prefetching dlgams are effective even
when the processor/memory speed gap increases dramafegll by a factor of four).

Partition Phase Performance. Figure 14 shows the partition phase performance parti-
tioning a 200MB build relation and a 400MB probe relatiorotingh simulations. We vary
the number of partitions from 25 to 800, and fix the tuple sg&@0 bytes. (Unlike all the
other experiments, the generated partitions may be muchesrttaan 50 MB.) As shown

in the figure, we see that as the number of partitions incegabe simple approach of

ACM Transactions on Database Systems, Vol. 32, No. 3, Sdpea007.



24 . Shimin Chen et al.

=

o

S
1

dcache stalls
dtlb stalls
other stalls
busy

N ) ©
o =] =}
T T 1

Normalized Execution Time
N
o
f

GRACE  simple group s/w pipelined
prefetch prefetch prefetch

Fig. 15. Execution time breakdown for Figure 14 with 800 piarts.

—©— GRACE

160 —— simple prefetching
—+— group prefetching

140 —A— s/w pipelined prefetching
—— cache partitioning

normalized execution time (%)

2 4 6 8 10
period to flush cache (ms)

Fig. 16. Impact of cache flushing on the different techniques

prefetching all input and output pages and assume they stdneiCPU cache is less and
less effective, while our two prefetching schemes maintaénsame level of performance.
Compared to GRACE, our prefetching schemes achieve 1. BBXXpeedups.

Figure 15 shows the execution time breakdown for Figure 14rel800 partitions are
generated. Group prefetching and software-pipelinedgehing successfully hide most of
the data cache miss latencies. Similar to Figure 12, the poion of the group prefetch-
ing bar is larger than that of the GRACE bar, and the busy pouf the software-pipelined
prefetching bar is even larger, showing the instructiorrbgad of the prefetching schemes.

Comparison with Cache Partitioning: Robustness. Cache partitioning assumes exclu-
sive use of the cache, which is unlikely to be valid in a dyraemvironment with multiple
concurrent activities. Although a smaller “effective” t&csize can be used, cache con-
flicts may still be a big problem and cause poor performancd=igure 16, we show the
performance degradation of all the schemes when the cagleeicically flushed, model-
ing the worst case interference. We vary the period to fluslctithe from 2 ms to 10 ms,
and report the execution time normalized to the performaviven running an algorithm
without cache flushes. As shown in Figure 16, cache pariitgpsuffers from 11-78%
performance degradation. Although the figure shows the twsarse cache interference, it
certainly reflects the robustness problem of cache pattit In contrast, our prefetching
schemes do not assume hash tables and build partitionsrrémthie cache. As shown in
the figure, they are very robust against even frequent cachleds.

Comparison with Cache Partitioning: Re-Partitioning Cost. The number of 1/O parti-
tions is upper bounded by the available memory of the pantiihase and by the require-

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



Improving Hash Join Performance through Prefetching . 25

14 .6 4
3 3 3
5 12 S5 S
> > &3
© 10 o [5)
Oy o Lo /*/
8
£ 6 £2 £ 2/S
s 52 5 1
= 4 = =
3 3 14 3
£ 2 - L
[} [} [}
0 0 0
2 60 100 140 1 2 3 4 40 60 80 100

tuple size (bytes)

number of matches per build tuple

tuples having matches (%)

(a) Varying tuple size (b) Varying number of matches (c) Vagyjoin selectivity

—+— group prefetching —— s/w pipelined prefetching —< cache partitioning

Fig. 17. Re-Partitioning cost of cache partitioning. (Ddfgparameters: 200 MB build relation, 400 MB probe
relation, 100 B tuples, every build tuple matches two pralmes.)

ments of the storage manager. Experiences with the IBM DB2 kaown that storage
managers can handle up to hundreds of active partitions & join [Lindsay 2002].
Given a 2 MB CPU cache and (optimistically) 1000 partiticthg, maximum relation size
that can be handled through a single partition pass to geneazhe-sized partitions is
2 GB. Beyond this limit, it is necessary to employ an addgiguartition pass to produce
cache-sized partitions. We study this re-partitioningt waigh several sets of experiments
as shown in Figures 17(a)-(c). Note that the re-partitigrstep is usually performed im-
mediately before the join phase in main memory, and theeefigr can regard it as a pre-
processing step in the join phase. Moreover, we employ simptfetching in the join
phase to enhance the cache partitioning scheme wherev@bleos

Figure 17(a) shows the join phase execution times of joigr&P0 MB build relation
with a 400 MB probe relation through simulations. Every tuilple matches two probe
tuples. We increase the tuple size from 20 bytes to 140 bwikigh results in decreas-
ing numbers of tuples in the relations and therefore the deavd trends of the curves.
Figure 17(b) varies the number of matches per build tuplenfio match to 4 matches
for the 100-byte experiments in Figure 17(a). Figure 17gjes the percentage of build
and probe tuples having matches from 100% to 40%. The “1008&itp correspond to
the 100-byte points in Figure 17(a). As shown in the figures,re-partitioning overhead
makes cache partitioning 36—77% slower than the prefetidghemes. Therefore, we con-
clude that the re-partitioning step significantly slows dawache partitioning compared to
group prefetching and software-pipelined prefetching.

8.3 User-Mode CPU Cache Performance on the Itanium 2 Machine

Choosing the Compiler and Optimization Level. In this subsection, we present our
experimental results for hash join user-mode performamcehe Itanium 2 machine. We
first determine the compiler and optimization level for ouperiments. Figure 18 shows
the execution times of joining a 50 MB build partition and é01@B probe partition in
memory for all the schemes compiled with different comgiland optimization flags.

8A group/software-pipelined prefetching bar shows theroptiresult after tuning for the configuration.

ACM Transactions on Database Systems, Vol. 32, No. 3, Sdpea007.



26 . Shimin Chen et al.

N

Bl gcc-02
B icc-02
[ icc-03

=
= )

o
3

execution time (G cycles)

cache group s/w pipelined

GRACE partitioning  prefetching  prefetching

Fig. 18. Choosing the compiler and optimization level fosthgin study on the Itanium 2 machine.

7 _3 14
3 3 3
2 6 3 312 )
> > >
(] 5 (] h (8] 1
Q1 0?2 e ./a/a/.x
o 4 o P o 0'&/
£ £ | E
= 3 = = 0.6
c S 5 Z/
22 2 2 0.4]
3 3 >
31 g 4 202
x xX X "
[} [} ()
0 0 0
20 60 100 140 2 3 4 40 60 80 100
tuple size (bytes) number of matches per build tuple tuples having matches (%)
(a) Varying tuple size (b) Varying number of matches (c) Vagyjoin selectivity

| —6— GRACE —&- cache partitioning —— group prefetching —— s/w pipelined prefetching |

Fig. 19. Join phase user-mode performance on Itanium Zirfia pair of build and probe partitions).

The tuples are 100 bytes, and every build tuple matches taloepuples. From Figure 18,
we can see that executables generated by icc are signifidaatér than those generated
by gcc. Moreover, the two optimization levels of icc achisirailar performance. Because
the best performance of all schemes is achieved with “icc’-@8 choose “icc -O3” to
compile our code in the experiments on the Itanium 2 machine.

Note that “icc -O3” automatically inserts software prefetnstructions into the gener-
ated executables for improving performance. Therefore cttmpiler-enhanced GRACE
join subsumes simple prefetching, and we do not report ségaimple prefetching results
on Itanium 2. Moreover, the cache partitioning scheme is atlthanced with compiler-
inserted prefetches, which makes a stronger competitastigpare against.

Join Phase Performance.Figure 19 shows the join phase performance of all the schemes
while varying the tuple size, the ratio of probe relatioresia build relation size, and the
percentage of tuples that have matches. These experimanésgond to the simulation
study in Figure 11. For cache partitioning, we relax the tation of 50 MB available
memory, and allocate more memory to hold the probe parta®mell as the build parti-
tion in memory. However, even with this favorable treatmfemtcache partitioning, our
prefetching schemes are still significantly better. As shiinvFigure 19, group prefetch-
ing and software-pipelined prefetching achieve 1.65-2.48d 1.29-1.69X speedups over
the GRACE hash join. Compared to cache partitioning, gragfepching and software-
pipelined prefetching achieve 1.52-1.89X and 1.18-1.4Féeslups.

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



Improving Hash Join Performance through Prefetching . 27

—— GRACE

—&— cache partitioning

—+— group prefetching

—A— s/w pipelined prefetching

number of instructions (X 1e9)

NO PN WD gD

o

60 100 140
tuple size (bytes)

Fig. 20. Number of retired 1A64 instructions for Figure 19(a

1.4 14
g2 T2
o o
3 1 & lw—e—e—e—M
e e
2 0.8 o 0.8
£ E
pad 0.6 < 0.6
=} o
504 5 0.4
]
502 502
0 0
1 5 10 15 20 25 32 1 4 8 12 16
group size for probing prefetch distance for probing
(a) Group prefetching (b) Software-pipelined prefetching

Fig. 21. Tuning parameters of group and software-pipelipetetching for hash table probing in the join phase
on the Itanium 2 machine.

Comparing Figure 19 and Figure 11 in the simulation studycese see a major differ-
ence: Software-pipelined prefetching is significantly sethan group prefetching; group
prefetching is 23-30% faster than software-pipelinedgiafing in Figure 19. We examine
the results by comparing the number of retired instructimfred| the schemes in Figure 20.
Clearly, both group prefetching and software-pipelineef@iching execute more instruc-
tions for code transformation and prefetching than GRACg&hHain. Software-pipelined
prefetching incurs more instruction overhead, executilg16% more instructions than
group prefetching. Moreover, cache partitioning execd®ss3% more instructions than
GRACE hash join because of the additional partitioning step

Algorithm Parameter Tuning. Figures 21(a) and (b) show the relationship between the
cache performance and the parameters of our prefetchirayitigns. We perform the
same experiment as in Figure 19(a) when tuples are 100 bytese, we focus on the
performance variance for only the hash table probing loopthe curves for the hash
table building loop have similar shapes. The optimal vafeegprobing areG = 14 and

D = 1. These values are used in all the experiments shown inéiir From the figure,
we see that both curves have large flat segments; a lot of géeachoices achieve near-
optimal performance. In other words, our prefetching alpons are quite robust against
parameter choices. Therefore, the algorithm parameteysbagre-set for a range of
machine configurations.

ACM Transactions on Database Systems, Vol. 32, No. 3, Sdpea007.



28 . Shimin Chen et al.

__50 350
8 g 300
S 40 —— GRACE 3
o —+— group prefetching £ 250
o 3 L .
< 30 V&A’:A’: —A— s/w pipelined prefetching | = 200
()
E [}
= 20 % 150
8 S
£ ° 100
o 10 <
19} S 50
3 @ —e— GRACE
0 0
50 100 150 200 250 50 100 150 200 250
number of partitions number of partitions
(a) Varying number of partitions (b) L3 cache misses

Fig. 22. Partition phase user-mode performance on theultai machine.

Partition Phase Performance. Figure 22(a) shows the user mode execution times of par-
titioning a 2 GB build relation and a 4 GB probe relation inf 800, 150, 200, and 250
partitions? The tuple size is 100 bytes. We see that the GRACE hash joradeg signif-
icantly as the number of partitions increases. While the lmemof memory references and
instructions for processing a tuple does not change, Figfe) shows that the number of
L3 cache misses increases dramatically for GRACE join. Thisecause larger number
of output buffers leads to larger chances for a memory refsg¢o miss the CPU cache.
While the GRACE join is enhanced by “icc -O3”, automaticatigerted prefetches do not
solve the problem. In contrast, our prefetching algoritrexploit the inter-tuple paral-
lelism to overlap cache misses across the processing ofpleuitiples. The performance
of our schemes almost stays the same. Compared to the GRAGHjjoup prefetching
and software-pipelined prefetching achieve 1.37-1.62KhA3-1.46X speedups.

8.4 Execution Times on the Itanium 2 Machine with Disk I/Os

In this subsection, we study the impact of our cache prefiegctechniques on the elapsed
real times of hash join operations with disk I/0Os. We perfone same set of experiments
as in Section 8.1 (joining a 2GB build relation and a 4GB pnatation) while varying the
tuple size and the number of intermediate partitions. Wesesen disks in these experi-
ments!C Figures 23-25 compare our two cache prefetching schembsh@&GRACE hash
join. The experiments for the GRACE join with 100B tuplesrespond to the seven disk
points shown previously in Figure 10. Note that in FiguretB® numbers of partitions, 57
and 113, are chosen automatically by the hash join algorithitinat a build partition and
its hash table consume up to 50 MB of main memory in the joirsph&@Ve also measure
the performance of generating 250 partitions to better tstded the results.

As shown in Figure 23-25, our group prefetching scheme aekié.12-1.84X speedups
for the join phase and 1.06-1.60X speedups for the partjitease over the GRACE join
algorithm. Our software-pipelined prefetching achievel211.45X speedups for the join
phase and 1.06-1.51X speedups for the partition phase.

957 is selected to ensure that partitions fit in main memorye dihers are chosen arbitrarily for understanding
the effects of larger number of partitions.

10The eighth disk contains the root partition and swap partitiwe find that using seven disks instead of eight
reduces the variance of the measurements.

ACM Transactions on Database Systems, Vol. 32, No. 3, Sdpea007.



Improving Hash Join Performance through Prefetching . 29

90 p—— | 320
80 main tota
%70 Il main busy w 280
° [ main io stall ° 240
£ gg [ worker io stall ]| £ 200
§ 20 é 160
§ 30 é 120
320 5 80
10 40
0 group siw pipelined 0 group s/w pipelined
GRACE prefetching  prefetching GRACE prefetching  prefetching
(a) 100B tuples (group prefetching: 1.33X speedup, (b) 2G#es (group prefetching: 1.84X speedup,
s/w pipelined prefetching: 1.22X speedup) s/w pipelinegfgiching: 1.45X speedup)

Fig. 23. Join phase performance with I/Os when output tupteonsumed in main memory.

100 320
90 Il main total 280
@ 80 Il main busy @
% 70 ] main io stall < 240
£ 60 1 worker io stall E 200
_5 50 _5 160
35 40 5120
g 30 2 g0
o 20 )
10 40
0 —— 0 -
GRACE  droup s/w pipelined GRACE group s/w pipelined
prefetching  prefetching prefetching  prefetching
(a) 100B tuples (group prefetching: 1.12X speedup, (b) 2Qies (group prefetching: 1.79X speedup,
s/w pipelined prefetching: 1.12X speedup) s/w pipelinesfgiching: 1.44X speedup)

Fig. 24. Join phase performance with 1/0Os when output tuptesvritten to disk.

70 80 250
e o 200
o 50 o )
£ 40 £ £ 150
c < 40 c
k=] i< o
§ 30 ‘é ‘g 100
10
0 —— 0 —— 0 =
GRACE group s/w pipelined GRACE group s/w pipelined GRACE group s/w pipelined
prefetching  prefetching prefetching  prefetching prefetching  prefetching
(a) 100B tuples, 57 partitions (b) 100B tuples, 250 partitions (c) 20B tuples, 113 partitions

(group pref: 1.06X speedup, s/iw  (group pref: 1.16X speedup, s/w  (group pref: 1.60X speedup, s/w
pipelined pref: 1.06X speedup) pipelined pref: 1.14X speedup) pipelined pref: 1.51X speedup)

Fig. 25. Partition phase performance with I/Os.

The figures show a group of four bars for each experiment. & bass correspond to the
four curves described previously in Section 8.1. We seegbakpected, theorker io stall
times stay roughly the same, while our cache prefetchinignigecies successfully reduce
the main busytimes, thus leading to the reduction of the elapsed realdiniéote that
our implementation of the buffer pool manager is straightird and without extensive
performance tuning. As a result, in some experimentsntlaén io stalltimes increase

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



30 . Shimin Chen et al.

rather than staying the same, partially offsetting the fienef reducedmain busytime.
Despite using this relatively simple buffer manager impeation, however, our cache
prefetching techniques still achieve non-trivial perfamge gains.

Comparing the overall speedups as the tuple sizes and thberarof partitions vary,
we see that the speedups are larger for the join operatiansitie 20B tuples or produce
larger number of partitions. This is because hash joins aer@PU-intensive in these
situations. Compared with 100B tuples, there are roughbytimes as many 20B tuples
to be processed per disk page by hash joins. Larger numbgrartifions require more
output buffer space in the 1/O partitioning phase, thusiiring more cache misses. Hence
as shown in Figures 23-25, the gap betweenrtiaén busytime and theworker io stall
time is larger, thus leading to a larger potential benefit@®U cache optimizations.

In summary, we observe that our cache prefetching techaiguecessfully reduce the
elapsed real times of hash joins on the Itanium 2 machinedisth1/Os.

9. DISCUSSION

Several practical issues may arise when implementing afefwhing techniques in a pro-
duction DBMS that targets multiple architectures and isritisted as binaries. First, the

syntax of prefetch instructions is often different acroshéectures and compilers. We can
define a set of macros for each pair of architecture and cempdmbinations to hide the

difference, then write code using the macros. This is theagagh in our implementation.

Second, some architectures (e.g. existing x86 procesgorspt support faulting pre-
fetches that can succeed regardless of TLB misses. Twoitpasican address this prob-
lem: (i) use (dummy) load instructions as faulting prefetshwhich is correct because all
the memory references that are prefetched will actuallyupat our algorithms; (ii) use
large virtual page sizes to reduce TLB misses, which is widepported (e.g. on x86 [Intel
Corporation 2006], SPARC [McDougall 2004], and POWER 5 [Ke2006]). POWER 5
supports 16GB virtual page size, which can be sufficient édding the in-memory data of
most hash joins. Different x86 and SPARC processors suhbB-256MB virtual page
sizes. Given 4MB pages and a 32 entry TLB, if the hash tabletstre fits in 128MB, we
can issue non-faulting prefetches for hash bucket headdrbash cell arrays, while using
dummy loads for prefetching actual tuples.

Third, several architectures require software to expjiaihanage the caches (e.g. the
Cell Broadband Engine [Kahle et al. 2005] and network preces[Gold et al. 2005]). As
shown in [Gold et al. 2005], our prefetching techniques cawbll adapted for preloading
data into the explicitly managed caches.

Fourth, pre-set parameters for the group size and the pretistance may be subopti-
mal on machines with very different configurations (e.g. menspeed). The solution is
to perform a calibration test during DBMS installation tdelenine the best parameters.

Finally, as a last resort, if the above does not work, a DBM&fa back to the original
hash join algorithm either at compile time for specific atebiures or at installation time
based on the calibration results.

10. CONCLUSION

While prefetching is a promising technique for improvingWC®ache performance, apply-
ing it to the hash join algorithm is not straightforward doethe dependencies within the
processing of a single tuple and the randomness of hashinlkislpaper, we have explored

ACM Transactions on Database Systems, Vol. 32, No. 3, Séuea007.



Improving Hash Join Performance through Prefetching . 31

the potential for exploitingnter-tupleparallelism to schedule prefetches effectively. Our
prefetching techniquesgroup prefetchingand software-pipelined prefetchirgsystem-
atically reorder the memory references of hash joins anddwle prefetches so that cache
miss latencies in the processing of a tuple can be overlapitbdcomputation and miss
latencies of other tuples. We developed generalized maoddistter understand the tech-
niques and successfully overcame the complexities ingolviéh the hash join algorithm.

We performed detailed experimental studies through sitimda and on an Itanium 2
machine focusing on both user-mode CPU cache performamtesahelapsed times with
disk 1/0s. Our experimental results demonstrated that f@slperformance can be im-
proved dramatically by using our group prefetching andvsafe-pipelined prefetching
techniques. Moreover, the techniques will still be effeeteven when the speed gap be-
tween processors and memory increases significantly fg.g.factor of four). We believe
that our techniques can improve other hash-based alg@itluch as hash-based group-by
and aggregation algorithms, and other algorithms that ireee-element parallelism.

ACKNOWLEDGMENTS

This research is supported by a grant from the NSF. We wishdak D. J. DeWitt for
insightful comments. The third author thanks P. BohannoiG&guly, H. F. Korth, and
P. P. S. Narayan for helpful discussions. We thank the anongmeviewers for their
comments and suggestions.

REFERENCES

BAER, J.-L.AND CHEN, T.-F. 1991. An effective on-chip preloading scheme to ceddiata access penalty. In
Proceedings of Supercomputing:Qilbuquerque, NM, USA, 176-186.

BoNcz, P. A., MANEGOLD, S.,AND KERSTEN M. L. 1999. Database Architecture Optimized for the New
Bottleneck: Memory Access. IRroceedings of the 25th International Conference on Vergé®ata Bases
Edinburgh, Scotland, UK, 54-65.

CHEN, S. 2005. Redesigning Database Systems in Light of CPU CRrdfetching. Ph.D. thesis, Carnegie
Mellon University.

CHEN, S., AILAMAKI , A., GIBBONS, P. B.,AND MOWRY, T. C. 2004. Improving Hash Join Performance
through Prefetching. IRroceedings of the 20th International Conference on Datgii#ering Boston, MA,
USA, 116-127.

CHEN, S., AILAMAKI , A., GIBBONS, P. B.,AND MOWRY, T. C. 2005. Inspector Joins. FProceedings of the
31st International Conference on Very Large Data Ba3esndheim, Norway, 817-828.

CHEN, S., GBBONS, P. B.,AND MOWRY, T. C. 2001. Improving Index Performance through Prefetghiln
Proceedings of the 2001 ACM SIGMOD International Confeeean Management of Dat&anta Barbara,
CA, USA, 235-246.

CHEN, S., GBBONS, P. B., MOWRY, T. C.,AND VALENTIN, G. 2002. Fractal Prefetching'BTrees: Optimiz-
ing Both Cache and Disk Performance.Rroceedings of the 2002 ACM SIGMOD International Confegenc
on Management of DatdMadison, WI, USA, 157-168.

GoLb, B. T., AILAMAKI , A., HUSTON, L., AND FALSAFI, B. 2005. Accelerating Database Operations Using
a Network Processor. IRroceedings of the First International Workshop on Data igement on New
Hardware (DaMoN 2005)Baltimore, MD, USA.

GRAEFE, G. 1993. Query Evaluation Techniques for Large Databas€84 Computing Surveys 28, 73-170.

HEPKIN, D. 2006. Guide to Multiple Page Size Support on AIX 5L Versi6.3.  http://www-
03.ibm.com/servers/aix/whitepapers/multigdage.pdf.

IBM CORPORATION 2004.1BM DB2 Universal Database Administration Guide VersioR. 8.
Intel Corporation 2004Intel Itanium 2 Processor Reference Manual For Softwaredimyment and Optimiza-
tion. Intel Corporation. Order Number: 251110-003.

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



32 . Shimin Chen et al.

Intel Corporation 2006.1A-32 Intel Architecture Software Developer's Manual (Yoh 3A and 3B): System
Programming Guidelntel Corporation.

KAHLE, J. A., Day, M. N., HOFSTEE H. P., DNHNS, C. R., MAEURER, T. R., AND SHIPPY, D. 2005.
Introduction to the Cell MultiprocessorIBM Journal of Research and Development 4% (July/Sept.),
589-604.

KALLA, R. N., SNHAROY, B., AND TENDLER, J. M. 2004. IBM Power5 Chip: A Dual-Core Multithreaded
ProcessorlEEE Micro 24,2 (Mar./Apr.), 40-47.

KENNEDY, K. AND MCKINLEY, K. S. 1990. Loop Distribution With Arbitrary Control Flowin Proceedings
of Supercomputing’@@New York, NY, USA, 407-416.

KITSUREGAWA, M., TANAKA, H.,AND MOTO-OKA, T. 1983. Application of Hash to Data Base Machine and
its Architecture.New Generation Computing 1, 63—74.

LAM, M. S. 1987. A Systolic Array Optimizing Compiler. Ph.D. #ig, Carnegie Mellon University.

LINDSAY, B. 2002. Hash Joins in DB2 UDB: the Inside StoGarnegie Mellon DB Seminar

Luk, C.-K.AND MOWRY, T. C. 1996. Compiler-Based Prefetching for Recursive [3tactures. IrProceed-
ings of the 7th International Conference on Architecturap@ort for Programming Languages and Operating
SystemsCambridge, MA, USA, 222-233.

Luk, C.-K.AND MOWRY, T. C. 1999. Automatic Compiler-Inserted Prefetching foirfer-Based Applica-
tions. IEEE Transactions on Computers 4B(Feb.), 134-141.

MANEGOLD, S., BoNCz, P. A.,AND KERSTEN M. L. 2000. What Happens During a Join? Dissecting CPU
and Memory Optimization Effects. IRroceedings of the 26th International Conference on Vergé®ata
BasesCairo, Egypt, 339-350.

McDoOUGALL, R. 2004. Supporting Multiple Page Sizes in the Solaris @f®y System.
http://www.sun.com/blueprints/0304/817-5917.pdf.

MCFARLING, S. 1993. Combining Branch Predictors. Tech. Rep. WRL TeahiNote TN-36, Digital Equip-
ment Corporation. June.

MoWwRY, T. C. 1994. Tolerating Latency Through Software-ConeolData Prefetching. Ph.D. thesis, Stanford
University.

MOwRY, T. C., LamM, M. S.,AND GUPTA, A. 1992. Design and Evaluation of a Compiler Algorithm for
Prefetching. InProceedings of the 5th International Conference on Architeal Support for Programming
Languages and Operating SysterBsston, MA, USA, 62-73.

NAKAYAMA , M., KITSUREGAWA, M., AND TAKAGI, M. 1988. Hash-Partitioned Join Method Using Dynamic
Destaging Strategy. IRroceedings of the 14th International Conference on Vemgédata BasesLos
Angeles, CA, USA, 468-478.

PERFMONPROJECT http://www.hpl.hp.com/research/linux/perfmon/indaxp4.

SAULSBURY, A., DAHLGREN, F.,AND STENSTROM, P. 2000. Recency-based TLB preloadingPhoceedings
of the 27th International Symposium on Computer Archirectdancouver, BC, Canada, 117-127.

SHAPIRO, L. D. 1986. Join Processing in Database Systems with Laigje Memories ACM Transactions on
Database Systems 13, 239-264.

SHATDAL, A., KANT, C.,AND NAUGHTON, J. F. 1994. Cache Conscious Algorithms for Relational Quer
Processing. IrProceedings of the 20th International Conference on Venmgédata BasesSantiago de
Chile, Chile, 510-521.

Sun MicrosystemdJltraSPARC IV Processor Architecture OvervieBun Microsystems. Technical Whitepaper,
Version 1.0, Feb. 2004.

TPC BENCHMARKS. http://www.tpc.org/.

ZELLER, H.AND GRAY, J. 1990. An Adaptive Hash Join Algorithm for Multiuser Ermriments. IrProceedings
of the 16th International Conference on Very Large Data BaBesbane, Queensland, Australia, 186-197.
ZHou, J., QESLEWICZ, J., Ross K. A., AND SHAH, M. 2005. Improving Database Performance on Simul-
taneous Multithreading Processors.Rroceedings of the 31st International Conference on Vergé®ata

BasesTrondheim, Norway, 49-60.

ACM Transactions on Database Systems, Vol. 32, No. 3, Sépea007.



