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Hash join algorithms suffer from extensive CPU cache stalls. This paper shows that the standard hash join
algorithm for disk-oriented databases (i.e. GRACE) spendsover 80% of its user time stalled on CPU cache
misses, and explores the use of CPU cacheprefetchingto improve its cache performance. Applying prefetching to
hash joins is complicated by the data dependencies, multiple code paths, and inherent randomness of hashing. We
present two techniques,group prefetchingandsoftware-pipelined prefetching, that overcome these complications.
These schemes achieve 1.29–4.04X speedups for the join phase and 1.37–3.49X speedups for the partition phase
over GRACE and simple prefetching approaches. Moreover, compared with previous cache-aware approaches
(i.e. cache partitioning), the schemes are at least 36% faster on large relations and do not require exclusive use
of the CPU cache to be effective. Finally, comparing the elapsed real times when disk I/Os are in the picture,
our cache prefetching schemes achieve 1.12-1.84X speedupsfor the join phase and 1.06-1.60X speedups for the
partition phase over the GRACE hash join algorithm.
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1. INTRODUCTION

Hash join[Kitsuregawa et al. 1983; Shapiro 1986; Nakayama et al. 1988; Zeller and Gray
1990] has been studied extensively over the past two decades, and it is commonly used
in today’s commercial database systems to implement equijoins efficiently. In its simplest
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Fig. 1. User-mode execution time breakdown for hash join.

form, the algorithm first builds a hash table on the smaller (build) relation, and then probes
this hash table using tuples of the larger (probe) relation to find matches. However, the
random access patterns inherent in the hashing operation have little spatial or temporal
locality. When the main memory available to a hash join is toosmall to hold the build
relation and the hash table, the simplistic algorithm suffers excessive random disk accesses.
To avoid this problem, theGRACEhash join algorithm [Kitsuregawa et al. 1983] begins by
partitioning the two joining relations such that each buildpartition and its hash table can
fit within memory; pairs of build and probe partitions are then joined separately as in the
simple algorithm. ThisI/O partitioning technique limits the random accesses to objects
that fit within main memory and results in nice predictable I/Os for every source relation
and intermediate partition. Because it is straightforwardto predict the next disk address
for individual relation and partition, I/O prefetching canbe exploited effectively to hide
I/O latencies. As a result, the I/O costs no longer dominate.For example, our experiments
on an Itanium 2 machine show that a hash join of two several GB relations is CPU-bound
with five or seven disks depending on whether output tuples are consumed in memory or
written to disk, and it becomes increasingly CPU-bound witheach additional disk, as will
be shown in Section 8.1.

1.1 Hash Joins Suffer from CPU Cache Stalls

So wheredohash joins spend most of their time? Previous studies have demonstrated that
hash joins can suffer from excessive CPU cache stalls [Shatdal et al. 1994; Boncz et al.
1999; Manegold et al. 2000]. The lack of spatial or temporal locality means the GRACE
hash join algorithm cannot take advantage of the multiple levels of CPU cache in modern
processors, and hence it repeatedly suffers the full latency to main memory during building
and probing. Figure 1 provides a breakdown of the simulated user-level performance on our
simulation platform (which will be described in detail in Section 7 and Section 8.2). The
“partition” experiment divides a 200MB build relation and a400MB probe relation into
800 partitions, while the “join” experiment joins a 50MB build partition with a 100MB
probe partition. Each bar is broken down into four categories: busy time, data cache stalls,
data TLB miss stalls, and other stalls. As we see in Figure 1, both thepartition and join
phases spend a significant fraction of their time—80% and 81%, respectively—stalled on
data cache misses!

Given the success of I/O partitioning in avoiding randomdisk accesses, the obvious
question is whether a similar technique can be used to avoid randommemoryaccesses.
Cache partitioning, in which the joining relations are partitioned such that each build parti-
tion and its hash table can fit within the (largest) CPU cache,has been shown to be effective
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in improving performance in memory-resident and main-memory databases [Shatdal et al.
1994; Boncz et al. 1999; Manegold et al. 2000]. However, cache partitioning suffers from
two important practical limitations. First, for traditional disk-oriented databases, generat-
ing cache-sized partitions while scanning from disk requires a large number of concurrently
active partitions. Experiences with the IBM DB2 have shown that storage managers can
handle only hundreds of active partitions per join [Lindsay2002]. Given a 2 MB CPU
cache and (optimistically) 1000 partitions, themaximum relation size that can be handled
is only 2 GB. Beyond that hard limit, any cache partitioning must be doneusing additional
passes through the data — as will be shown in Section 8, this results in up to 89% slowdown
compared to the techniques we propose. Second, cache partitioning assumesexclusive use
of the cache, but this assumption is unlikely to be valid in anenvironment with multiple
ongoing activities. Once the cache is too busy with other requests to effectively retain its
partition,the performance may degrade significantly(up to 78% as shown in Section 8.2).
Hence, we explore an alternative technique that does not suffer from these limitations.

1.2 Our Approach: Cache Prefetching

Rather than trying toavoidCPU cache misses by building tiny (cache-sized) hash tables,
we instead propose to exploit cache prefetching tohide the cache miss latency associated
with accessing normal (memory-sized) hash tables, by overlapping these cache misses with
computation. Modern processors allow multiple cache misses to be in flight simultaneously
in the memory hierarchy (e.g., the Itanium 2 system bus control logic has an 18-entry out
of order queue, which allows for a maximum of 19 memory requests to be outstanding
from a single Itanium 2 processor [Intel Corporation 2004]), and the trend has been toward
supporting more and more simultaneous misses. To enable software to fully exploit this
parallelism, modern processors also provide explicitprefetchinstructions for moving data
into the cache ahead of its use. Software-based prefetchinghas been successfully applied
in the past to array-based programs [Mowry et al. 1992] and pointer-based programs [Luk
and Mowry 1996], but it has not been applied to hash joins.

Challenges in Applying Prefetching to Hash Join. A naı̈ve approach to prefetching for
hash join might simply try to hide the latency within the processing of a single tuple. For
example, to improve hash table probing performance, one might try to prefetch hash bucket
headers, hash buckets, build tuples, etc. Unfortunately, such an approach would have little
benefit because later memory references often depend upon previous ones (via pointer
dereferences). Existing techniques for overcoming thispointer-chasing problem[Luk and
Mowry 1996] will not work because the randomness of hashing makes it impossible to
predict the memory locations to be prefetched.

The good news is that although there are many dependencieswithin the processing of
a single tuple, dependencies are less commonacrosssubsequent tuples due to the random
nature of hashing. Hence our approach is to exploitinter-tuple parallelismto overlap the
cache misses of one tuple with the computation and cache misses associated with other
tuples. A natural question is whether either the hardware orthe compiler could accomplish
this inter-tuple cache prefetching automatically; if so, we would not need to modify the
hash join software. Unfortunately, the answer is no. Hardware-based prefetching tech-
niques [Baer and Chen 1991] rely upon recognizing regular and predictable (e.g., strided)
patterns in the data address stream, but the inter-tuple hash table probes do not exhibit
such behavior. In many modern processors, the hardware alsoattempts to overlap cache
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misses by speculating ahead in the instruction stream. However, although this approach is
useful for hiding the latency of primary data cache misses that hit in the secondary cache,
the instruction window size (typically 64-128 entries) is often a magnitude smaller than
the instructions wasted due to a cache miss to main memory (e.g. 200-300 cycle latency
multiplied by 4-6 instruction issue slots per cycle), and iseven smaller compared with the
amount of processing required for a single tuple. While our prefetching approaches (de-
scribed below) are inspired by compiler-based scheduling techniques, existing compiler
techniques for scheduling prefetches [Luk and Mowry 1996; Mowry et al. 1992] cannot
handle the ambiguous data dependencies present in the hash join code (as will be discussed
in detail in Sections 4.4 and 5.3).

Overcoming these Challenges.To effectively hide the cache miss latencies in hash join,
we propose and evaluate two new prefetching techniques:group prefetchingandsoftware-
pipelined prefetching. For group prefetching, we apply modified forms of compiler trans-
formations calledstrip miningand loop distribution(illustrated later in Section 4) to re-
structure the code such that hash probe accesses resulting from groups ofG consecutive
probe tuples can be pipelined.1 The potential drawback of group prefetching is that cache
miss stalls can still occur during the transition between groups. Hence our second prefetch-
ing scheme leverages a compiler scheduling technique called software pipelining[Lam
1987] to avoid these intermittent stalls.

A key challenge that required us to extend existing compiler-based techniques in both
cases is that although we expect dependencies across tuplesto be unlikely, they are still
possible, and we must take them into account to preserve correctness. If we did this con-
servatively (as the compiler would), it would severely limit our potential performance gain.
Hence we optimistically schedule the code assuming that there are no inter-tuple dependen-
cies, but we perform some extra bookkeeping at runtime to check whether dependencies
actually occur. If so, we temporarily stall the consumer of the dependence until it can be
safely resolved. Additional challenges arose from the multiple levels of indirection and
multiple code paths in hash table probing.

A surprising result in our study is that contrary to the conventional wisdom in the com-
piler optimization community that software pipelining outperforms strip mining, group
prefetching appears to be more attractive than software-pipelined prefetching for hash
joins. A key reason for this difference is that the code in thehash join loop is far more
complex than the typical loop body of a numeric application (where software pipelining is
more commonly used [Lam 1987]).

1.3 Contributions of This Paper

This paper makes the following contributions. First, to ourknowledge, this is the first
study to explore how prefetching can be used to accelerate both the join and partition
phases of hash join by exploiting inter-tuple parallelism.Second, we propose two prefetch-
ing techniques,group prefetchingandsoftware-pipelined prefetching, and show how they
can be applied to significantly improve hash join performance. Overall, for user-mode
performance, the techniques achieve 1.29–4.04X speedups for the join phase and 1.37–
3.49X speedups for the partition phase over GRACE and simpleprefetching approaches.
Moreover, they are at least 36% faster than cache partitioning on large relations and do

1In our experimental set-up in Section 8,G = 25 is optimal for hash table probing.
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not require exclusive use of the cache to be effective. Furthermore, we make extensive
comparisons between group prefetching and software-pipelined prefetching, demonstrat-
ing that group prefetching is up to 30% faster than software-pipelined prefetching. Finally,
we present experiments measuring elapsed real times with disk I/Os and demonstrate the
effectiveness of our cache prefetching schemes for disk-oriented hash joins: our schemes
achieve 1.12-1.84X speedups for the join phase and 1.06-1.60X speedups for the partition
phase over the GRACE hash join algorithm.

The rest of the paper is organized as follows. Section 2 discusses the related work in
more detail. Section 3 analyzes the dependencies in the joinphase, the more complicated
of the two phases, while Sections 4 and 5 propose group prefetching and software-pipelined
prefetching to improve the join phase performance. Section6 discusses prefetching for the
partition phase. Section 7 describes experimental setups and methodologies. Experimen-
tal results appear in Section 8. Section 9 discusses practical issues in implementing the
prefetching techniques in DBMSs. Finally, Section 10 concludes the paper.

2. RELATED WORK

Since the GRACE hash join algorithm was first introduced [Kitsuregawa et al. 1983], many
refinements of this algorithm have been proposed for the sakeof avoiding I/O by keeping as
many intermediate partitions in memory as possible [Shapiro 1986; Nakayama et al. 1988;
Zeller and Gray 1990; Graefe 1993]. All of these hash join algorithms, however, share two
common building blocks: (i)partitioningand (ii) joining with in-memory hash tables. To
cleanly separate these two phases, we use GRACE as our baseline algorithm throughout
this paper. We point out, however, that our techniques should be directly applicable to the
other hash join algorithms.

Several papers have developed techniques to improve the cache performance of hash
joins [Shatdal et al. 1994; Boncz et al. 1999; Manegold et al.2000]. Shatdalet al. showed
that cache partitioning achieved 6-10% improvement for joining memory-resident relations
with 100B tuples [Shatdal et al. 1994]. Boncz, Manegold and Kersten proposed using mul-
tiple passes in cache partitioning to avoid cache and TLB thrashing [Boncz et al. 1999;
Manegold et al. 2000]. They showed large performance improvements on real machines
for joining vertically-partitioned relations in the Monetmain memory database, under ex-
clusive use of the CPU caches. They considered neither disk-oriented databases, more tra-
ditional physical layouts, multiple activities trashing the cache, nor the use of prefetching.
They also proposed a variety of code optimizations (e.g., shift-based hash computation) to
reduce CPU time; these optimizations may be beneficial for our techniques as well.

As mentioned earlier, software prefetching has been used successfully in other scenar-
ios [Mowry et al. 1992; Luk and Mowry 1996; Chen et al. 2001; Chen et al. 2002]. While
software pipelining has been used to schedule prefetches inarray-based programs [Mowry
et al. 1992], we have extended that approach to deal with morecomplex data structures,
multiple code paths, and the read-write conflicts present inhash join.

Previous work showed that TLB misses may degrade performance [Boncz et al. 1999;
Manegold et al. 2000], particularly when they are handled bysoftware. However, the
majority of modern processors (e.g. x86 [Intel Corporation2006] and Itanium 2 [Intel
Corporation 2004]) handle TLB misses in hardware. Moreover, TLB prefetching [Sauls-
bury et al. 2000] can be supported by treating TLB misses caused by prefetches as normal
TLB misses. For example, faulting prefetch instructions onItanium 2 (lfetch.fault[Intel
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A Hash Cell in the Header

Empty Bucket
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Hash Hash Cell Array

Fig. 2. An in-memory hash table structure.

Corporation 2004]) can incur TLB misses and automatically load TLB entries. Hence, us-
ing our prefetching techniques, we can overlap TLB misses with computation, minimizing
TLB stall time. (Section 9 discusses TLB misses and other practical issues in more detail).

After the conference version of this paper [Chen et al. 2004]was published, several re-
cent studies have adopted our schemes of exploiting inter-tuple parallelism to improve hash
join performance. Goldet al. [Gold et al. 2005] implemented hash join probe operations
on the Intel IXP2400 network processor and demonstrated that using multiple hardware
threads and cores to exploit inter-tuple parallelism can achieve up to 5X speedups over a
single thread, and 2.5X speedups over a baseline implementation on Pentium 4. Zhouet
al. [Zhou et al. 2005] proposed and evaluated a scheme to use helper hardware threads to
perform faulting prefetches for improving database performance. Their hash join imple-
mentation was based on our schemes to exploit inter-tuple parallelism. Chenet al. [Chen
et al. 2005] proposed an inspector join algorithm to achievethe benefits of cache partition-
ing with almost zero re-partitioning overhead. They exploited our prefetching schemes in
the partition phase and used the schemes to avoid conflict misses in the join phase.

3. DEPENDENCIES IN THE JOIN PHASE

In this section, we analyze the dependencies in a hash table visit in the join phase. Our
purpose is to show why a naı̈ve prefetching algorithm would fail. We study a concrete
implementation of the in-memory hash table, as shown in Figure 2. The hash table consists
of an array of hash buckets, each composed of a header and (possibly) an array of hash
cells pointed to by the header. A hash cell represents a buildtuple hashed to the bucket.
It contains the tuple pointer and a fixed-length (e.g., 4 byte) hash code computed from
the join key, which serves as a filter for the actual key comparisons. When a hash bucket
contains only a single entry, the single hash cell is stored directly in the bucket header.
When two or more tuples are hashed to the bucket, a hash cell array is allocated. When the
array is full and a new tuple is to be hashed to the same bucket,a new array doubling the
capacity is allocated and existing cells are copied to the new array.

A naı̈ve prefetching algorithm would try to hide cache miss latencieswithin a single hash
table visit by prefetching for potential cache misses, including hash bucket headers, hash
cell arrays, and/or build tuples. However, this approach would fail because there are a lot of
dependencies in a hash table visit. For example, the memory address of the bucket header is
determined by the hashing computation. The address of the hash cell array is stored in the
bucket header. The memory reference for a build tuple is dependent on the corresponding
hash cell (in a probe). These dependencies essentially forma critical path; a previous
computation or memory reference generates the memory address of the next reference,
and must finish before the next one can start. Therefore, addresses would be generated
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too late for prefetching to hide miss latencies. In addition, predicting memory addresses
for hash table visits is almost impossible because of the randomness of hashing. Note that
these arguments hold for all hash-based structures.2 Therefore, applying prefetching to the
join phase algorithm is not a straightforward task.

4. GROUP PREFETCHING

Although dependencieswithin a hash table visit prevent effective prefetching, the join
phase algorithm processes a large number of tuples, and dependencies are less common
acrosssubsequent tuples due to the randomness of hashing. Therefore, our approach is to
exploit inter-tuple parallelismto overlap cache miss latencies of one tuple with compu-
tations and miss latencies of other tuples. To ensure correctness, we must systematically
intermix multiple hash table visits, reorder their memory references, and issue prefetches
early enough. In this section, we propose group prefetchingto achieve these goals.

4.1 Group Prefetching for a Simplified Probing Algorithm

We use a simplified probing algorithm to describe the idea of group prefetching. As shown
in Figure 3(a), the algorithm assumes that all hash buckets have hash cell arrays and every
probe tuple matches exactly one build tuple. It performs a probe per loop iteration.

As shown in Figure 3(b), the group prefetching algorithm combines multiple iterations
of the original loop into a single loop body, and rearranges the probe operations into
stages3. Each stage performs one computation or memory reference onthe critical path
for all the tuples in the group and then issues prefetch instructions for the memory ref-
erences of the next stage. For example, the first stage computes the hash bucket number
for every tuple and issues prefetch instructions for the hash bucket headers, which will be
visited in the second stage. In this way, the cache miss to read the hash bucket header of
a probe will be overlapped with hashing computations and cache misses for other probes.
Prefetching is used similarly in the other stages except thelast stage. Note that the depen-
dent memory operations of the same probe are still performedone after another as before.
However, the memory operations of different probes are now overlapped.

4.2 Understanding Group Prefetching

To better understand group prefetching, we generalize the previous algorithms of Fig-
ure 3(a) and (b) in Figure 3(c) and (d). Suppose we need to processN independent ele-
ments. For each elementi, we need to makek dependent memory references,m1

i ,m
2
i , · · · ,m

k
i .

As shown in Figure 3(c), a straightforward algorithm processes an element per loop iter-
ation. The loop body is naturally divided intok+ 1 stages by thek memory references.
Code 0(if exists) computes the first memory addressm1

i . Code 1uses the contents inm1
i

to compute the second memory addressm2
i . Generallycode l uses the contents inml

i to
compute the memory addressml+1

i , wherel = 1, · · · ,k−1. Finally,code kperforms some
processing using the contents inmk

i . If every memory referenceml
i incurs a cache miss, the

algorithm will suffer fromkN expensive, fully exposed cache misses.

2The structure in Figure 2 improves upon chained bucket hashing, which uses a linked list of hash cells in a
bucket. Here, we avoid the pointer chasing problem of linkedlists [Luk and Mowry 1999; Chen et al. 2001].
3Technically, what we do are modified forms of compiler transformations calledstrip-miningandloop distribu-
tion [Kennedy and McKinley 1990].
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foreach tuple in probe partition
{

compute hash bucket number;
visit the hash bucket header;
visit the hash cell array;
visit the matching build tuple to

compare keys and produce output tuple;
}

for i=0 to N-1 do
{

code 0;
visit (m1

i ); code 1;
visit (m2

i ); code 2;
· · · · · ·
visit (mk

i ); code k;
}

(a) A simplified probing algorithm (c) Processing an elementper iteration

foreach group of tuples in probe partition
{

foreach tuple in the group {
compute hash bucket number;
prefetch the target bucket header;

}
foreach tuple in the group {

visit the hash bucket header;
prefetch the hash cell array;

}
foreach tuple in the group {

visit the hash cell array;
prefetch the matching build tuple;

}
foreach tuple in the group {

visit the matching build tuple to
compare keys and produce output tuple;

}
}

for j=0 to N-1 step G do
{

for i=j to j+G-1 do {
code 0;
prefetch (m1

i );
}

for i=j to j+G-1 do {
visit (m1

i ); code 1;
prefetch (m2

i );
}
for i=j to j+G-1 do {

visit (m2
i ); code 2;

prefetch (m3
i );

}
· · · · · ·
for i=j to j+G-1 do {

visit (mk
i ); code k;

}
}

(b) Group prefetching for simplified probing (d) General group prefetching algorithm

Fig. 3. Group prefetching.

Since the elements are independent of each other, we can use group prefetching to over-
lap cache miss latencies across multiple elements, as shownin Figure 3(d). The group
prefetching algorithm combines the processing ofG elements into a single loop body. It
processescode lfor all the elements in the group before moving on tocode l+1. As soon
as an address is computed, the algorithm issues a prefetch for the corresponding memory
location in order to overlap the reference across the processing of other elements.

Now we determine the condition for fully hiding all cache miss latencies. Suppose the
execution time ofcode l is Cl , the full latency of fetching a cache line from main memory
is T1, and the additional latency of fetching the next cache line in parallel isTnext, which
is the inverse of memory bandwidth. (Table I shows the terminology used throughout the
paper.) Assume everyml

i incurs a cache miss and there are no cache conflicts. Note thatwe
use these assumptions only to simplify the derivation of theconditions. Our experimental
evaluations include all the possible effects of locality and conflicts in hash joins. Then, the
sufficient condition for fully hiding all cache miss latencies is as follows:

{

(G−1) ·C0 ≥ T1

(G−1) ·max{Cl ,Tnext} ≥ T1, l = 1,2, · · · ,k
(1)

The proof of this condition is given in the next subsection. For an intuitive explanation,
let us focus on the first element in a group, elementj. The prefetch form1

j is overlapped
with the processing of the remainingG−1 elements at code stage 0. The first inequality

ACM Transactions on Database Systems, Vol. 32, No. 3, September 2007.
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Table I. Terminology used throughout the paper.
Name Definition

k # of dependent memory references for an element
G group size in group prefetching
D prefetch distance in software-pipelined prefetching
T1 full latency of a cache miss

Tnext latency of an additional pipelined cache miss
Cl execution time for codel , l = 0,1, . . . ,k

ensures that the processing of the remainingG−1 elements takes longer time than a single
memory reference so that the prefetched memory reference will complete before the visit
operation form1

j in code stage 1. Similarly, the prefetch forml+1
j is overlapped with the

processing of the remainingG−1 elements at code stagel . The second inequality ensures
that the memory reference latency is fully hidden. Note thatTnext corresponds to the mem-
ory bandwidth consumption of the visit operations of the remainingG−1 elements. In the
proof, we also show that memory access latencies for other elements are fully hidden by
simple combinations of the inequalities.

We can always choose aG large enough to satisfy the second inequality sinceTnext

is always greater than 0. However, whencode 0is empty,m1
j can not be fully hidden.

Fortunately, in the previous simplified probing algorithm,code 0computes the hash bucket
number and is not empty. Therefore, we can choose aG to hide all the cache miss penalties.

In the above, cache conflict misses are ignored for simplicity of analysis. However, we
will show in Section 8 that conflict miss is a problem whenG is too large. Therefore,
among all possibleG’s that satisfy the above inequalities, we should choose thesmallest
to minimize the number of concurrent prefetches and conflictmiss penalty.

4.3 Critical Path Analysis for Group Prefetching

In the following, we use critical path analysis to study the processing of a group, i.e. an
iteration of the outer loop in Figure 3(d). For simplicity ofanalysis, we assume that every
ml

i incurs a cache miss and there are no cache conflicts among the memory references in
a group. Figure 4 shows the graph for critical path analysis.A vertex represents an event.
An edge from vertex A to B indicates that event B depends on event A and the weight of
the edge is the minimal delay. (For simplicity, zero weightsare not shown in the graph.)
The run time of a loop iteration corresponds to the length of the critical path in the graph,
i.e. the longest weighted path from the start to the end.

The graph is constructed as follows. We use three kinds of vertices:

—P vertex: the execution of a prefetch instruction

—C vertex: the start ofcode 0

—VC vertex: the start of a visit andcode l(l = 1,2, · · · ,k)

Vertex subscripts indicate the elements being processed. For P vertices, their superscripts
correspond to the memory addresses in the program; for C and VC vertices, the superscripts
are the code stage. In Figure 4, a row of vertices correspondsto an inner loop that executes
a code stage for all the elements in a group. We use three kindsof edges:

—Instruction flow edges: They go from left to right in every row and from top to bottom
across rows. For example, there is an instruction flow edge from vertexC0

j (code 0 for

element j) to vertexP1
j (prefetch form1

j ) with weightC0; edgeP1
j to C0

j+1 means that

ACM Transactions on Database Systems, Vol. 32, No. 3, September 2007.
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j+G−1
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     j
VC
      j
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instruction
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Fig. 4. Critical path analysis for an iteration of the outer loop body in Figure 3(d).

prefetch form1
j is executed before code 0 for element j+1; and the second inner loop (the

second row) starts after the first inner loop finishes. We assume that codel takes a fixed
amount of timeCl to execute, which is shown as weights of outgoing edges from Cand
VC vertices. The instruction overhead of the visit and the following prefetch instruction
is also included in it. So the other instruction flow edges have zero weights.

—Latency edges: an edge from a P vertex to the corresponding VC vertex represents the
prefetched memory reference with full latencyT1 as its weight.

—Bandwidth edges: an edge between VC vertices represents memory bandwidth. Usu-
ally an additional (independent) cache miss can not be fullyoverlapped with the previous
one. It takesTnext more time to finish, which is the inverse of memory bandwidth.

Now we consider the critical path of the graph. If we ignore for a moment all latency
edges, the graph becomes clear and simple: All paths go from left to right in a row and from
top to bottom from the start to the end; alternative paths areall local between instruction
flow edges and bandwidth edges. Since the critical path is thelongest path, we can ignore
an edge if there is a longer path connecting the same vertices. Intuitively, we can choose a
largeG so that latency edges are shorter than the paths along rows and they can be ignored.
In this situation, the critical path of the graph is the longest pathalong the rows.

We would like to derive the condition to fully hide all cache miss latencies. If all cache
miss latencies are hidden, all latency edges will not be on the critical path, and vice versa.
Therefore, it is equivalent to derive the condition to ensure that all latency edges are shorter
than paths along rows. We have the following theorem.

THEOREM 1. The following condition is sufficient for fully hiding all cache miss laten-
cies in the general group prefetching algorithm:

{

(G−1) ·C0 ≥ T
(G−1) ·max{Cl ,Tnext} ≥ T, l = 1,2, · · · ,k
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Fig. 5. Dealing with multiple code paths.

PROOF. The first inequality ensures that the first latency edge fromrow 0, i.e. the edge
from vertexP1

j to vertexVC1
j in the graph, is shorter than the path along row 0. The second

inequality ensures that the first latency edge from rowl in the graph, i.e. the edge from
vertexPl+1

j to vertexVCl+1
j , is shorter than the corresponding path along rowl , where

l = 1,2, · · · ,k−1. Note that the inequality whenl = k is used only in the proof below.
For the other latency edges, we can prove they are shorter than the paths along rows

with a simple combination of the two inequalities. For thex-th latency edge from row 0,
i.e. the edge from vertexP1

j+x−1 to vertexVC1
j+x−1, the length of the path along the row is

as follows:

len = (G−x) ·C0+(x−1) ·max{C1,Tnext}
= [(G−x) · (G−1) ·C0+(x−1) · (G−1) ·max{C1,Tnext}]/(G−1)
≥ [(G−x) ·T +(x−1) ·T]/(G−1) = T

For thex-th latency edge from rowl , i.e. the edge from vertexPl+1
j+x−1 to vertexVCl+1

j+x−1,
wherel = 1,2, · · · ,k−1, the length of the path along the row is as follows:

len = (G−x) ·max{Cl ,Tnext}+(x−1) ·max{Cl+1,Tnext}
= [(G−x) · (G−1) ·max{Cl ,Tnext}+(x−1) · (G−1) ·max{Cl+1,Tnext}]/(G−1)
≥ [(G−x) ·T +(x−1) ·T]/(G−1) = T

Therefore, when the two inequalities are satisfied, all latency edges are shorter than the
corresponding paths along rows and all cache miss latenciesare fully hidden.

4.4 Dealing with Complexities

Previous research showed how to prefetch for two dependent memory references for array-
based codes [Mowry 1994]. Our group prefetching algorithm solves the problem of prefetch-
ing for an arbitrary fixed numberk of dependent memory references.

We have implemented group prefetching for both hash table building and probing. In
contrast to the simplified probing algorithm, the actual probing algorithm contains multiple
code paths: There could be zero or multiple matches, hash buckets could be empty, and
there may not be a hash cell array in a bucket. To cope with thiscomplexity, we keep
state information for theG tuples of a group. We divide each possible code path into code
pieces on the boundaries of dependent memory references. Then we combine the code
pieces at the same position of different code paths into a single stage using conditional
tests on the tuple states. Figure 5 illustrates the idea of this process. Edges in Figure 5(a)
denote the control flow and data dependencies. Figure 5(b) shows the code stages for group
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Fig. 6. A read-write conflict.

prefetching. The common starting point of all code paths is in code 0. code 1performs the
conditional test (e.g. checking whether the hash bucket is empty, contains a single entry in
the bucket header, or contains a hash cell array), then records the outcome in the state of
the tuple. Then subsequent code stages test the tuple state and execute the code pieces for
the corresponding code paths. Moreover,code ltests the tuple state to determine the code
path ofcode l+1and issue the corresponding prefetch instructions. The total number of
stages (k+1) is the largest number of code pieces (determined by the number of dependent
memory accesses) along any original code path.

When multiple independent cache lines are visited at a stage(e.g., to visit multiple build
tuples), our algorithm issues multiple independent prefetches in the previous stage.

The group prefetching algorithm must also cope with read-write conflicts. Though quite
unlikely, it is possible that two build tuples in a group may be hashed into the same bucket,
as illustrated in Figure 6. However, in our algorithm, hash table visits are interleaved and
no longer atomic. Therefore, a race condition could arise; the second tuple might see an
inconsistent hash bucket being changed by the first one. Notethat this complexity occurs
because of the read-write nature of hash table building. To cope with this problem, we set
a busy flag in a hash bucket header before inserting a tuple. Ifa tuple is to be inserted into
a busy bucket, we delay its processing until the end of the group prefetching loop body.
At this natural group boundary, the previous access to the busy hash bucket must have
finished. Interestingly, the previous access has also warmed up the cache for the bucket, so
we insert the delayed tuple without prefetching. Note that the algorithm can deal with any
number of delayed tuples (to tolerate skews in the key distribution).

5. SOFTWARE-PIPELINED PREFETCHING

In this section, we describe our technique of exploiting software pipelining to schedule
prefetches for hash joins. We then compare our two prefetching schemes.

Figure 7 illustrates the difference between group prefetching and software-pipelined
prefetching intuitively. Group prefetching hides cache miss latencies within a group of
elements and there is no overlapping memory operation between groups. In contrast,
software-pipelined prefetching combines different code stages of different elements into
an iteration and hides latencies across iterations. It keeps running without gaps and there-
fore may potentially achieve better performance.

5.1 Understanding Software-Pipelined Prefetching

Figure 8(a) shows the software-pipelined prefetching for the simplified probing algorithm.
The subsequent stages for a particular tuple are processedD iterations away. (D is called
theprefetch distance[Mowry 1994].) Figure 7(b) depicts the intuitive picture whenD = 1.
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Fig. 7. Intuitive pictures of the prefetching schemes.

prologue;
for j=0 to N-3D-1 do
{

tuple j+3D:
compute hash bucket number;
prefetch the target bucket header;

tuple j+2D:
visit the hash bucket header;
prefetch the hash cell array;

tuple j+D:
visit the hash cell array;
prefetch the matching build tuple;

tuple j:
visit the matching build tuple to

compare keys and produce output tuple;

}
epilogue;

prologue;
for j=0 to N-kD-1 do
{

i=j+kD;
code 0 for element i;
prefetch (m1

i );

i=j+(k-1)D;
visit (m1

i ); code 1 for element i;
prefetch (m2

i );

i=j+(k-2)D;
visit (m2

i ); code 2 for element i;
prefetch (m3

i );

· · · · · ·

i=j;
visit (mk

i ); code k for element i;
}
epilogue;

(a) Software-pipelined prefetching for simplified probing (b) General software-pipelined prefetching

Fig. 8. Software-pipelined prefetching.

Suppose the left-most line in the dotted rectangle corresponds to tuplej. Then, an iteration
combines the processing of stage 0 for tuplej + 3D, stage 1 for tuplej + 2D, stage 2 for
tuple j +D, and stage 3 for tuplej.

Figure 8(b) shows the generalized algorithm for software-pipelined prefetching. In the
steady state, the pipeline hask+ 1 stages. The loop body processes a different element
for every stage. The subsequent stages for a particular element are processedD iterations
away. Intuitively, if we make the distances between code stages for the same element
sufficiently large, we will be able to hide cache miss latencies. Under the same assumption
as in Section 4.2, the sufficient condition for hiding all cache miss latencies in the steady
state is as follows. (We will derive this condition in the next subsection.)
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Fig. 9. Critical path analysis for software-pipelined prefetching (steady state).

D · (max{C0+Ck,Tnext}+
k−1

∑
l=1

max{Cl ,Tnext}) ≥ T (2)

We can always choose aD sufficiently large to satisfy this condition. In our experiments
in Section 8, we will show that conflict miss is a problem whenD is too large. Therefore,
similar to group prefetching, we should choose the smallestD to minimize the number of
concurrent prefetches.

5.2 Critical Path Analysis for Software-Pipelined Prefetching

We perform critical path analysis using Figure 9. The graph is constructed in the same
way as Figure 4, though a row here corresponds to a single loopiteration in the general
software-pipelined prefetching algorithm. Instruction flow edges are still from left to right
in a row and from top to bottom across rows. Focusing on the latency edges, we can see
the processing of the subsequent stages of an element. Two subsequent stages of the same
element are processed in two separate rows that areD iterations away.

If the paths along the rows are longer, the latency edges can be ignored because they
are not on the critical path and the cache miss latencies are fully hidden. The sufficient
condition for hiding all cache miss latencies is given in thefollowing theorem.

THEOREM 2. The following condition is sufficient for fully hiding all cache miss laten-
cies in the general software-pipelined prefetching algorithm:

D · (max{C0+Ck,Tnext}+
k−1

∑
l=1

max{Cl ,Tnext}) ≥ T

PROOF. The left-hand side of the inequality is the total path length of D rows in Fig-
ure 9. Clearly, when this length is greater than or equal to the weight of a latency edge,
latency edges can be ignored in critical path analysis and all cache miss latencies are fully
hidden.

5.3 Dealing with Complexities

We have implemented software-pipelined prefetching by modifying our group prefetching
algorithm. The code stages are kept almost unchanged. To apply the general model in
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Figure 8(b), we use a circular array for state information; the indexj in the general model
is implemented as the array index. We choose the array size tobe a power of 2 and use
bit mask operation for modular index computation to reduce overhead. Moreover, since
code 0andcode kof the same element is processedkD iterations away, we ensure the
array size is at leastkD+1.

The read-write conflict problem in hash table building is solved in a more sophisticated
way. Since there is no place (like the end of a group in group prefetching) to conveniently
process all the conflicts, we have to deal with the conflicts inthe pipeline stages themselves.
We build a waiting queue for each busy hash bucket. The hash bucket header contains the
array index of the tuple updating the bucket. The state information of a tuple contains a
pointer to the next tuple waiting for the same bucket. When a tuple is to be inserted into
a busy bucket, it is appended to the waiting queue. When we finish hashing a tuple, we
check its waiting queue. If the queue is not empty, we record the array index of the first
waiting tuple in the bucket header, and perform the previouscode stages for it. When this
tuple gets to the last stage, it will handle the next tuple in the waiting queue if it exists.

5.4 Group vs. Software-pipelined Prefetching

Both prefetching schemes try to increase the interval between a prefetch and the corre-
sponding visit, in order to hide cache miss latency. According to the sufficient conditions,
software-pipelined prefetching can always hide all miss latencies, while group prefetching
achieves this only whencode 0is not empty (as is the case of the join phase). Whencode 0
is empty, the first cache miss cannot be hidden. However, witha large group of elements,
the amortized performance impact can be small.

In practice, group prefetching is easier to implement. The natural group boundary pro-
vides a place to do any necessary “clean-up” processing (e.g., for read-write conflicts).
Moreover, the join phase can pause at group boundaries and send outputs to the parent
operator to support pipelined query processing. Although asoftware pipeline may also be
paused, the restart costs will diminish its performance advantage. Furthermore, software-
pipelined prefetching has larger bookkeeping overhead because it uses modular index op-
erations and because it maintains larger amount of state information (such as the waiting
queue for handling read-write conflicts).

6. PREFETCHING FOR THE PARTITION PHASE

Having studied how to prefetch for the join phase of the hash join algorithm, in this section,
we discuss prefetching for the partition phase. In the partition phase, an input relation is
divided into multiple output partitions by hashing on the join keys. Typically, the algorithm
keeps in main memory an input page for the input relation and an output page for every
intermediate partition. The algorithm processes every input page, and examines every input
tuple in an input page. It computes the partition number fromthe tuple join key. Then it
extracts (projects) the columns of the input tuple relevantto the database query performing
the hash join operation and copies them to the target output buffer page. When an output
buffer page is full, the algorithm writes it out to the corresponding partition.

Like the join phase, the I/O partitioning phase employs hashing: It computes the par-
tition number of a tuple by hashing on the tuple’s join key. Because of the randomness
of hashing, the resulting memory addresses are difficult to predict. Moreover, the pro-
cessing of a tuple also needs to make several dependent memory references, whereas the
processing of subsequent tuples are mostly independent dueto the randomness of hashing.
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Therefore, we employ group prefetching and software-pipelined prefetching for the I/O
partitioning phase.

There may be read-write conflicts in visiting the output buffers. Imagine that two tuples
that are close in the input relation happen to be hashed to thesame output buffer. When
processing the second tuple, the algorithm may find that the output buffer has no space
and needs to be written out. However, it is possible that at this moment the data from the
first tuple has not yet been copied into the output buffer because we have reorganized the
processing. To solve this problem, in group prefetching, wedelay the processing of the
second tuple until the end of the loop body, where we write outthe buffer and process the
delayed tuple. In software-pipelined prefetching, we use waiting queues similar to those
used in hash table building in the join phase.

7. EXPERIMENTAL SETUP

7.1 Measurement Methodology

We evaluate our prefetching schemes through both cycle-accurate simulations and real ma-
chine experiments on an Itanium 2 machine. We model a wider range of modern processors
with the simulation study. Moreover, simulation allows us to flexibly instrument the pro-
cessor pipeline and the cache hierarchy to better understand the results. Furthermore, we
can model future machine configurations by varying the simulation parameters. We verify
the trends learned from the simulation study with user-modeperformance results on the
Itanium 2 machine. Finally, we measure total elapsed time with disk I/Os on the Itanium 2
machine to show the benefits of our schemes on disk-oriented hash joins.

Itanium 2 Configuration for Real-Machine Experiments. Table II lists the Itanium 2
machine configuration parameters. The machine has two 900MHz Itanium 2 McKinley
processors, each with three levels of caches and two levels of TLBs. They share an 8 GB
main memory. However, we used only the lower 1GB memory in ourexperiments (more
details in Section 8.1). Most of the cache hierarchy parameters are described in the Ita-
nium 2 manual [Intel Corporation 2004]. We measure the DTLB miss latency, main mem-
ory latency (T1), and main memory bandwidth(Tnext) through experiments [Chen 2005].
Note that the measured TLB miss latency confirms the penalty listed in the Itanium 2 man-
ual for a TLB miss that finds its page table entry in the L3 cache[Intel Corporation 2004].

Itanium 2 supports both faulting and non-faulting prefetches. Non-faulting prefetches
are dropped if the prefetches cause exceptions, such as TLB misses. In contrast, a fault-
ing prefetch behaves similar to a load instruction without destination register; upon a TLB
miss, it will load the page entry into the TLB table and continue. Since hash table visits are
likely to cause TLB misses, we choose faulting prefetches inour experiments. Prefetch-
ing can be implemented with the two compilers available on the machine: gcc and icc.
gcc supports inserting prefetch instructions as inline assembly code, while icc supports a
special function-call-like interface for prefetches. In Section 8.3, we compare the hash
join performance using different compilers and optimization levels. The decision is to use
“icc -O3” for all the Itanium 2 experiments.

The machine is running Linux 2.4.18 kernel with 16 KB virtualpages. We measure
user-mode performance by using the perfmon library [Perfmon Project ] to access the Ita-
nium 2 performance counters. We measure the total elapsed times with disk I/Os using
the gettimeofday system call. We perform 30 runs and report the averages. For the
user-mode cache performance measurements, the standard deviations are within 1% of the
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Table II. Itanium 2 machine configuration.
CPU dual-processor 900MHz Itanium 2 (McKinley, B3)
L1 Data Cache 16 KB, 64B lines, 4-way set-assoc., load lat. 1 cycle
L1 Instruction Cache 16 KB, 64B lines, 4-way set-assoc., load lat. 1 cycle
L2 Unified Cache 256 KB, 128B lines, 8-way set-assoc., load lat. 5 cycles
L3 Unified Cache 1.5 MB, 128B lines, 6-way set-assoc., load lat. 12 cycles

TLB
DTLB 1: 32 entries, fully-assoc.; ITLB 1: 32 entries, fully-assoc.
DTLB 2: 128 entries, fully-assoc.; ITLB 2:128 entries, fully-assoc.
DTLB 2 Miss Latency: 32 cycles

Main Memory
8GB (only the lower 1GB used), Latency (T1): 189 cycles,
Bandwidth (1/Tnext): 1 access per 24 cycles

Disks
8 SCSI Seagate Cheetah 15K ST336754LW disks, 15000 rpm,
average seek time: 3.6 ms, average rotational latency: 2 ms

Operating System Linux 2.4.18 (Red Hat Linux Advanced Workstation release 2.1AW)
Page Size 16KB
Compiler Intel C++ Itanium Compiler Version 8.1, icc -O3

Measurement
user-mode performance: kernel perfmon version 1.0, pfmon version 2.0
total elapsed time with I/Os:gettimeofday()

Table III. Parameters for simulation study.
Pipeline Parameters

Clock Rate 1.5 GHz Integer Multiply 4 cycles
Issue Width 4 instructions/cycle Integer Divide 50 cycles
Reorder Buffer Size 128 instructions All Other Integer 1 cycle
Branch Prediction gshare [McFarling 1993]
Functional Units 2 Integer, 1 Integer Divide, 2 Memory, 1 Branch, 2 FP

Memory Parameters
L1 Instruction Cache 16 KB, 4-way set-assoc. Line Size 64 bytes
L1 Data Cache 16 KB, 4-way set-assoc. Page Size 16 KB
Miss Handlers 32 for data, 2 for instruction L1 Cache Access Latency 1 cycle
DTLB 128 entries, fully-assoc. L2 Cache Access Latency 5 cycles
L2 Unified Cache 256 KB, 8-way set assoc. L3 Cache Access Latency 12 cycles
L3 Unified Cache 2 MB, 8-way set assoc. DTLB Miss Latency 30 cycles
L1-to-Memory Latency 250 cycles (plus any delays due to contention) (T1 = 250)
Memory Bandwidth 1 access per 15 cycles (Tnext= 15)

averages in all cases. For the total elapsed real time measurements, the standard deviations
are within 5% of the averages in all cases.

Machine Model for Simulation Study. Table III shows the parameters for the simula-
tion study. The simulator models a generic out-of-order super-scalar processor, which is
the model in most modern processors (other than Itanium 2), such as Intel Pentium 4 [In-
tel Corporation 2004], IBM Power 5 [Kalla et al. 2004], and Sun UltraSPARC IV [Sun
Microsystems ]. It performs a cycle-by-cycle simulation, modeling the rich details of
the processor including the pipeline, register renaming, branch prediction, and branching
penalties, etc. The simulator supports the MIPS instruction set and executes gcc-generated
executables. The simulator simulates only user-mode executions; it delivers system calls
such asread andwrite directly to the underlying operating system.

Because CPU cache performance is the major factor in hash join user-mode performance
and the memory hierarchy of Itanium 2 is representative of modern server processors,
we model the memory hierarchy of the Itanium 2 machine in the simulator. Most of the
memory parameters (e.g., cache sizes, associativities, cache access latencies) follow the
Itanium 2 configuration as described in Table II. Moreover, the simulator supports faulting
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prefetches. However, unlike Itanium 2, the simulator only supports a uniform cache line
size across all levels of caches. We choose 64 bytes as the cache line size, and adjust the
memory latency (T1) and the memory bandwidth (Tnext) accordingly.

7.2 Implementation Details

We have implemented our own hash join engine. For real machine I/O experiments, we
implemented a buffer manager that stripes pages across multiple disks and performs I/O
prefetching with background worker threads. For CPU cache performance studies, we
store relations and intermediate partitions as disk files for simplicity. We employ the slotted
page structure and support fixed length and variable length attributes in tuples. Schemas
and statistics are kept in separate description files for simplicity, the latter of which are
used to compute hash table sizes and numbers of partitions.

GRACE Hash Join. Our baseline algorithm is the GRACE hash join algorithm [Kitsure-
gawa et al. 1983]. The in-memory hash table structure is described previously in Figure 2
in Section 3. A simple XOR and shift based hash function is used to convert join keys of
any length to 4-byte hash codes. Typically the same hash codes are used in both the parti-
tion and the join phase. Partition numbers in the partition phase are the hash codes modulo
the total number of partitions. Hash bucket numbers in the join phase are the hash codes
modulo the hash table size.4 Our algorithms choose the hash table size to be a relative
prime to the number of partitions and to be larger than the number of build tuples to be
hashed. In this way, a hash bucket typically contains only one or two build tuple entries,
leading to minimal search cost within a hash bucket. Becausethe same hash codes are used
in both phases, we avoid the memory access and computationaloverheads of reading the
join keys and hashing them a second time, by storing hash codes in the page slot area in
the intermediate partitions and reusing them in the join phase. Note that changing the page
structure of intermediate partitions is relatively easy because the partitions are only used in
hash joins. This optimization is employed in all the schemeswe implemented

Prefetching Schemes.We implemented three prefetching schemes for both the partition
phase and the join phase algorithm: simple prefetching, group prefetching, and software-
pipelined prefetching. As suggested by the name, simple prefetching uses straightforward
prefetching techniques, such as prefetching an entire input page after a disk read. We
implement simple prefetching as an enhanced baseline in order to show the additional
benefit achieved using our more sophisticated prefetching schemes. On the Itanium 2 ma-
chine,“icc -O3” enhances a program by automatically (aggressively) inserting prefetches.
In fact, we find that the icc generated baseline achieves slightly better performance than the
simple prefetching approach. Therefore, we only show simple prefetching curves for the
simulation study but omit the simple prefetching curves when presenting Itanium 2 results.

Cache Partitioning. Cache partitioning generates cache-sized build partitions so that
every build partition and its hash table can fit in cache, greatly reducing the cache misses
in the join phase. It has been shown to be effective in main-memory and memory-resident

4We make no assumptions on the join key distribution, and therefore choose the more general modulo division
operation rather than setting the hash table size to be a power of 2 and using the bit mask operation [Manegold
et al. 2000]. We believe that the latter technique requires certain key distribution (e.g. uniform) for maintaining
the quality of hash computation. In general, reducing the costC of a code stage may shorten the critical path in
Figure 4 (Figure 9), which requires largerG (D) and potentially makes our prefetching algorithms faster.
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database environments [Shatdal et al. 1994; Boncz et al. 1999]. We have implemented
the cache partitioning algorithm for disk-oriented database environments. The algorithm
partitions twice: The I/O partition phase generates memory-sized partitions, which are
subsequently partitioned again in memory as a preprocessing step for the join phase (using
the same hash codes).

Buffer Manager for Experiments with Disk I/Os. We implemented the buffer pool
manager using the POSIX thread (pthread) library. Given a set of disks, the buffer pool
manager stripes all the relations across all of the disks in 256KB stripe units;5 and it imi-
tates raw disk partitions by allocating a large file on each disk and managing the mapping
betweenpageIDs and file offsets. For each disk, the buffer manager maintains a request
queue and runs a dedicated worker thread. To perform an I/O operation with pagepageID,
the main thread computes the target disk IDi and the disk file offset from thepageID. It
then appends a request into the thei-th request queue. If the I/O operation is synchronous,
the main thread blocks till it receives a completion notification from the worker threadi.
For prefetch requests (e.g. reading the next pages in the input relations for hash joins),
the main thread continues without waiting for the request tocomplete. The worker thread,
however, performs a synchronous I/O read and blocks on behalf of the main thread in the
background. Later when the main thread attempts to access the prefetched page, it checks
whether the valid flag of the destination buffer has been set by the worker thread. If not,
then the I/O prefetch has not yet completed, and therefore the main thread will block until
it receives the I/O completion notification from the worker thread. For asynchronous I/O
write operations, worker threads perform background writing on behalf of the main thread.
Moreover, worker threads callfdatasync periodically (every 128 write operations in our
experiments) to flush any pages that may be cached in the file system cache.

7.3 Experimental Design

In our experiments, we assume a fixed amount of memory (50 MB) is allocated for joining
a pair of build and probe partitions in the join phase, and thepartition phase generates
partitions that will tightly fit in this memory6. That is, in the baseline and our prefetching
schemes, a build partition and its hash table fit tightly in the available memory. In the
cache partitioning scheme, the partition sizes are also computed to satisfy the algorithm
constraints and best utilize available memory.

Build relations and probe relations have the same schemas: Atuple consists of a 4-
byte join key and a fixed-length payload. We believe that selection and projection are
orthogonal issues to our study and we do not perform these operations in our experiments.
An output tuple contains all the fields of the matching build and probe tuples. The join
keys are randomly generated. A build tuple may match zero or more probe tuples and a
probe tuple may match zero or one build tuple. We join a 2GB build relation with a 4GB
probe relation in the Itanium 2 experiments, while we join a 200MB build relation with a
400MB probe relation in the simulation study (which is limited by simulation time). In our

5This models the typical data layout in commercial database systems. For example, the size of a stripe unit (a.k.a.
extent) in IBM DB2 is between 8KB and 8MB [IBM Corporation 2004]. By default, an extent in IBM DB2
contains 32 pages. Depending on the page size, the default extent can be 128KB, 256KB, 512KB, or 1MB large.
6The memory to cache size ratio is 50:2 for the simulation study, and it is 50:1.5 for the Itanium 2 machine. This
ratio corresponds to the ratio of the hash table size (including build tuples) over the cache size, which is large
enough to reflect the typical hash join cache behavior.
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Fig. 10. Hash join is CPU-bound with reasonable I/O bandwidth.

experiments, we vary the tuple size, the number of probe tuples matching a build tuple, and
the percentage of tuples that have matches, in order to show the benefits of our solutions in
various situations.

8. PERFORMANCE EVALUATION

In this section, we present experimental results to quantify the benefits of our cache prefetch-
ing techniques. We begin by showing that hash join is CPU bound with reasonable I/O
bandwidth. Next, we study the user-mode CPU cache performance of hash joins through
both simulations and Itanium 2 experiments. Finally, we evaluate the impact of our cache
prefetching techniques on the elapsed real times of hash joins with disk I/Os.

8.1 Is Hash Join I/O-Bound or CPU-Bound?

Our first set of experiments study whether hash joins are I/O-bound or CPU-bound. We
measure the performance of GRACE hash joins on the Itanium 2 machine using up to 8
SCSI disks. We use the multi-threaded buffer manager as described in Section 7.2.

To be conservative, we would like to focus on the worst-case scenario where no inter-
mediate partitions are cached in the main memory, thereby resulting in the maximum I/O
demand for hash joins. Hence we measure the performance of the partition phase and the
join phase in separate runs, and we ensure that the file systemand disk caches are cold
before every run by performing the following three operations: (i) we restricted the Linux
operating system to use only the lower 1GB of main memory by setting a boot flag; (ii) we
allocated a 1GB memory buffer that was written and then read;and (iii) we read separate
128MB dummy files from each of the eight disks.

Figure 10 shows the performance of the partition phase and the join phase of joining a
2GB build relation with a 4GB probe relation varying the number of disks used. Depending
on the queries, the join output may either be written to disk or consumed in main memory
by the parent operator; we perform experiments to evaluate both cases. Tuples are 100
bytes. The algorithm generates 57 intermediate partitionsso that a build partition and its
hash table consume up to 50 MB of memory in the join phase. To better understand the
elapsed times, we show four curves in every figure. Themain totaltime is the elapsed real
time of an algorithm phase. It is broken down into themain busytime and themain io stall
time. Themain io stalltime is the time that the main thread spends either (i) waiting for an
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I/O completion notification from a worker thread, or (ii) waiting for an empty queue slot to
enqueue an I/O request. Themain busytime is computed by subtracting themain io stall
time from themain totaltime; it approximates the time to do hash join work in memory.
Theworker io stalltime is the largest I/O stall time of individual worker threads.

As shown in Figure 10, theworker io stall time decreases dramatically as the number
of disks increases and the number of I/O operations per disk decreases. In contrast, the
main busytime stays roughly the same across all of the experiments. This is because the
memory and computational operations in the hash join do not depend on the number of
disks. Combining the two trends, we see that hash joins are only I/O-bound when the
number of disks is small (e.g.≤ 4 disks). As more and more disks are added, hash joins
gradually become CPU-bound.

As shown in Figure 10(a) and Figure 10(b), the partition phase and the join phase with
outputs consumed in memory are CPU-bound with five or more disks: Themain busytime
is significantly larger than theworker io stalltime, and themain totaltime becomes flat.
As shown in Figure 10(c), the join phase with outputs writtento disk becomes CPU-bound
when seven disks are used.7 Note that it is reasonable to use five or seven disks on the
Itanium 2 machine because there are typically 10 disks per processor on a balanced DB
server [TPC Benchmarks ]. Therefore, we conclude that on theItanium 2 machine, hash
joins are CPU-bound with reasonable I/O bandwidth. The gap between themain busy
time and theworker io stall time highlights the opportunity for reducing the total time
by improving the hash join CPU performance. Section 8.4 willshow that our prefetching
schemes can reduce the elapsed total time of both partition and join phases with disk I/Os.

8.2 User-Mode CPU Cache Performance through Simulations

Join Phase Performance. We compare the join phase performance of the baseline al-
gorithm and the three prefetching schemes through simulations in Figure 11. The exper-
iments model the processing of a pair of partitions in the join phase. In all experiments,
the build partition fits tightly in the 50MB memory. By default, tuples are 100 bytes and
every build tuple matches two probe tuples. As shown in Figure 11, while varying the tuple
size, the ratio of probe relation size to build relation size, and the percentage of tuples that
have matches, group and software-pipelined prefetching achieve 3.02-4.04X speedups over
the GRACE hash join. On the other hand, simple prefetching only obtains a 1.06-1.24X
speedup over the baseline, because it does not improve the central part of the join phase
algorithm—hash table visiting. Compared with simple prefetching, group and software-
pipelined prefetching achieve additional 2.65-3.40X speedups.

The curve trends of the sub-figures are expected. In Figure 11(a), as the tuple size
increases from 20 to 140 bytes, the number of tuples in the fixed sized partition decreases,
leading to the decreasing trend. In Figure 11(b) and (c), thetotal number of matches
increases as the number of matches per build tuple or the percentage of tuples having
matches. This explains the upward trends. Moreover, the probe partition size also increases
in Figure 11(b), contributing to the much steeper curves than those in Figure 11(c).

Join Phase Execution Time Breakdowns. We show the execution time breakdowns
in Figure 12. Each bar is broken down into four categories that explain what happened

7Although the curve markers seem to overlap, this claim is supported by experimental results in Section 8.4,
which demonstrate that cache prefetching improves the performance in this case.
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Fig. 11. Join phase user-mode performance through simulations (joining a pair of build and probe partitions).
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Fig. 12. Execution time breakdown for join phase performance (Figure 11(a), 100B tuples).

during all potentialgraduation slots(in the simulator). The number of graduation slots is
the issue width (4 in our simulated architecture) multiplied by the number of cycles. We
focus on graduation slots rather than issue slots to avoid counting speculative operations
that are squashed. The bottom section (busy) of each bar is the number of slots where
instructions actually graduate. The other three sections are the number of slots where
there is no graduating instruction, broken down into data cache stalls, data TLB stalls, and
other stalls. Specifically, the top section (dcache stalls) is the number of such slots that are
immediately caused by the oldest stalled instruction suffering a data cache miss, the second
section (dtlb) is the number of slots that are caused by the oldest stalled instruction waiting
for a data TLB miss, and the third section (other stalls) is all other slots where instructions
do not graduate. Note that the effects of L2 and L3 cache misses are included in thedcache
stallssection. Moreover, thedcache stallssection is only a first-order approximation of the
performance loss due to data cache misses: These delays alsoexacerbate subsequent data
dependence stalls, thereby increasing the number ofother stalls. The cache performance
breakdowns are generated based on our simulation results because the simulator has fine-
grained instrumentations to categorize every idle graduation slot into a stall type. Note
that it is often difficult to generate such accurate cache performance breakdowns on a real
machine for two reasons: (i) the processor does not provide detailed information about
graduation slots; (ii) estimating the breakdowns using thenumber of cache misses and
other event counts does not take into account the overlapping effect of these events.

Figure 12 corresponds to the 100-byte points in Figure 11(a). The GRACE bar is shown
as the “join” bar previously in Figure 1. We see that group prefetching and software-

ACM Transactions on Database Systems, Vol. 32, No. 3, September 2007.



Improving Hash Join Performance through Prefetching · 23

250 1000
0
1
2
3
4
5
6
7
8
9

10
11

cache miss latency (cycles)

ex
ec

ut
io

n 
tim

e 
(G

 c
yc

le
s)

GRACE
group prefetching
s/w pipelined prefetching

Fig. 13. Join phase user-mode performance varying memory latency. (The 250-cycle results are the same as the
20B results in Figure 11(a).)

25 50 100 200 400 800
0

1

2

3

4

5

6

7

8

number of partitions

ex
ec

ut
io

n 
tim

e 
(G

 c
yc

le
s)

GRACE
simple prefetching
group prefetching
s/w pipelined prefetching

Fig. 14. Partition phase user-mode performance through simulations.

pipelined prefetching indeed successfully hide most of thedata cache miss latencies. The
simulator outputs confirm that the remaining data cache misses are mostly L1 cache misses
but L2 hits or L1 and L2 misses but L3 hits. The (transformation, bookkeeping, and
prefetching) overheads of the techniques lead to larger portions of busy times. The busy
portion of the software-pipelined prefetching bar is larger than that of the group prefetch-
ing bar because of its more complicated implementation. Interestingly, other stalls also
increase. A possible reason is that some secondary causes ofstalls show up when the data
cache stalls are reduced.

Join Performance Varying Memory Latency. Figure 13 shows the join phase perfor-
mance when the memory latencyT1 is set to 250 cycles (default value) and 1000 cycles
in the simulator. We see that the execution time of GRACE hashjoin increases dramati-
cally as the memory latency increases. In contrast, the execution times of both group and
software-pipelined prefetching increase only slightly, thus achieving 8.3-9.6X speedups
over GRACE hash join. We conclude that the prefetching algorithms are effective even
when the processor/memory speed gap increases dramatically (e.g. by a factor of four).

Partition Phase Performance. Figure 14 shows the partition phase performance parti-
tioning a 200MB build relation and a 400MB probe relation through simulations. We vary
the number of partitions from 25 to 800, and fix the tuple size as 100 bytes. (Unlike all the
other experiments, the generated partitions may be much smaller than 50 MB.) As shown
in the figure, we see that as the number of partitions increases, the simple approach of
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Fig. 16. Impact of cache flushing on the different techniques.

prefetching all input and output pages and assume they stay in the CPU cache is less and
less effective, while our two prefetching schemes maintainthe same level of performance.
Compared to GRACE, our prefetching schemes achieve 1.96-2.71X speedups.

Figure 15 shows the execution time breakdown for Figure 14 where 800 partitions are
generated. Group prefetching and software-pipelined prefetching successfully hide most of
the data cache miss latencies. Similar to Figure 12, the busyportion of the group prefetch-
ing bar is larger than that of the GRACE bar, and the busy portion of the software-pipelined
prefetching bar is even larger, showing the instruction overhead of the prefetching schemes.

Comparison with Cache Partitioning: Robustness. Cache partitioning assumes exclu-
sive use of the cache, which is unlikely to be valid in a dynamic environment with multiple
concurrent activities. Although a smaller “effective” cache size can be used, cache con-
flicts may still be a big problem and cause poor performance. In Figure 16, we show the
performance degradation of all the schemes when the cache isperiodically flushed, model-
ing the worst case interference. We vary the period to flush the cache from 2 ms to 10 ms,
and report the execution time normalized to the performancewhen running an algorithm
without cache flushes. As shown in Figure 16, cache partitioning suffers from 11-78%
performance degradation. Although the figure shows the worst-case cache interference, it
certainly reflects the robustness problem of cache partitioning. In contrast, our prefetching
schemes do not assume hash tables and build partitions remain in the cache. As shown in
the figure, they are very robust against even frequent cache flushes.

Comparison with Cache Partitioning: Re-Partitioning Cost. The number of I/O parti-
tions is upper bounded by the available memory of the partition phase and by the require-
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Fig. 17. Re-Partitioning cost of cache partitioning. (Default parameters: 200 MB build relation, 400 MB probe
relation, 100 B tuples, every build tuple matches two probe tuples.)

ments of the storage manager. Experiences with the IBM DB2 have shown that storage
managers can handle up to hundreds of active partitions per hash join [Lindsay 2002].
Given a 2 MB CPU cache and (optimistically) 1000 partitions,the maximum relation size
that can be handled through a single partition pass to generate cache-sized partitions is
2 GB. Beyond this limit, it is necessary to employ an additional partition pass to produce
cache-sized partitions. We study this re-partitioning cost with several sets of experiments
as shown in Figures 17(a)-(c). Note that the re-partitioning step is usually performed im-
mediately before the join phase in main memory, and therefore we can regard it as a pre-
processing step in the join phase. Moreover, we employ simple prefetching in the join
phase to enhance the cache partitioning scheme wherever possible.

Figure 17(a) shows the join phase execution times of joininga 200 MB build relation
with a 400 MB probe relation through simulations. Every build tuple matches two probe
tuples. We increase the tuple size from 20 bytes to 140 bytes,which results in decreas-
ing numbers of tuples in the relations and therefore the downward trends of the curves.
Figure 17(b) varies the number of matches per build tuple from 1 match to 4 matches
for the 100-byte experiments in Figure 17(a). Figure 17(c) varies the percentage of build
and probe tuples having matches from 100% to 40%. The “100%” points correspond to
the 100-byte points in Figure 17(a). As shown in the figures, the re-partitioning overhead
makes cache partitioning 36–77% slower than the prefetching schemes. Therefore, we con-
clude that the re-partitioning step significantly slows down cache partitioning compared to
group prefetching and software-pipelined prefetching.

8.3 User-Mode CPU Cache Performance on the Itanium 2 Machine

Choosing the Compiler and Optimization Level. In this subsection, we present our
experimental results for hash join user-mode performance on the Itanium 2 machine. We
first determine the compiler and optimization level for our experiments. Figure 18 shows
the execution times of joining a 50 MB build partition and a 100 MB probe partition in
memory for all the schemes compiled with different compilers and optimization flags.8

8A group/software-pipelined prefetching bar shows the optimal result after tuning for the configuration.
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Fig. 18. Choosing the compiler and optimization level for hash join study on the Itanium 2 machine.
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Fig. 19. Join phase user-mode performance on Itanium 2 (joining a pair of build and probe partitions).

The tuples are 100 bytes, and every build tuple matches two probe tuples. From Figure 18,
we can see that executables generated by icc are significantly faster than those generated
by gcc. Moreover, the two optimization levels of icc achievesimilar performance. Because
the best performance of all schemes is achieved with “icc -O3”, we choose “icc -O3” to
compile our code in the experiments on the Itanium 2 machine.

Note that “icc -O3” automatically inserts software prefetch instructions into the gener-
ated executables for improving performance. Therefore, the compiler-enhanced GRACE
join subsumes simple prefetching, and we do not report separate simple prefetching results
on Itanium 2. Moreover, the cache partitioning scheme is also enhanced with compiler-
inserted prefetches, which makes a stronger competitor to compare against.

Join Phase Performance.Figure 19 shows the join phase performance of all the schemes
while varying the tuple size, the ratio of probe relation size to build relation size, and the
percentage of tuples that have matches. These experiments correspond to the simulation
study in Figure 11. For cache partitioning, we relax the limitation of 50 MB available
memory, and allocate more memory to hold the probe partitionas well as the build parti-
tion in memory. However, even with this favorable treatmentfor cache partitioning, our
prefetching schemes are still significantly better. As shown in Figure 19, group prefetch-
ing and software-pipelined prefetching achieve 1.65-2.18X and 1.29-1.69X speedups over
the GRACE hash join. Compared to cache partitioning, group prefetching and software-
pipelined prefetching achieve 1.52-1.89X and 1.18-1.47X speedups.
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Fig. 21. Tuning parameters of group and software-pipelinedprefetching for hash table probing in the join phase
on the Itanium 2 machine.

Comparing Figure 19 and Figure 11 in the simulation study, wecan see a major differ-
ence: Software-pipelined prefetching is significantly worse than group prefetching; group
prefetching is 23-30% faster than software-pipelined prefetching in Figure 19. We examine
the results by comparing the number of retired instructionsof all the schemes in Figure 20.
Clearly, both group prefetching and software-pipelined prefetching execute more instruc-
tions for code transformation and prefetching than GRACE hash join. Software-pipelined
prefetching incurs more instruction overhead, executing 12–15% more instructions than
group prefetching. Moreover, cache partitioning executes43–53% more instructions than
GRACE hash join because of the additional partitioning step.

Algorithm Parameter Tuning. Figures 21(a) and (b) show the relationship between the
cache performance and the parameters of our prefetching algorithms. We perform the
same experiment as in Figure 19(a) when tuples are 100 bytes.Here, we focus on the
performance variance for only the hash table probing loop but the curves for the hash
table building loop have similar shapes. The optimal valuesfor probing areG = 14 and
D = 1. These values are used in all the experiments shown in Figure 19. From the figure,
we see that both curves have large flat segments; a lot of parameter choices achieve near-
optimal performance. In other words, our prefetching algorithms are quite robust against
parameter choices. Therefore, the algorithm parameters may be pre-set for a range of
machine configurations.

ACM Transactions on Database Systems, Vol. 32, No. 3, September 2007.



28 · Shimin Chen et al.

50 100 150 200 250
0

10

20

30

40

50

number of partitions

ex
ec

ut
io

n 
tim

e 
(G

 c
yc

le
s)

GRACE
group prefetching
s/w pipelined prefetching

50 100 150 200 250
0

50

100

150

200

250

300

350

number of partitions

ca
ch

e 
m

is
se

s 
(M

 m
is

se
s)

GRACE

(a) Varying number of partitions (b) L3 cache misses

Fig. 22. Partition phase user-mode performance on the Itanium 2 machine.

Partition Phase Performance. Figure 22(a) shows the user mode execution times of par-
titioning a 2 GB build relation and a 4 GB probe relation into 57, 100, 150, 200, and 250
partitions.9 The tuple size is 100 bytes. We see that the GRACE hash join degrades signif-
icantly as the number of partitions increases. While the number of memory references and
instructions for processing a tuple does not change, Figure22(b) shows that the number of
L3 cache misses increases dramatically for GRACE join. Thisis because larger number
of output buffers leads to larger chances for a memory reference to miss the CPU cache.
While the GRACE join is enhanced by “icc -O3”, automaticallyinserted prefetches do not
solve the problem. In contrast, our prefetching algorithmsexploit the inter-tuple paral-
lelism to overlap cache misses across the processing of multiple tuples. The performance
of our schemes almost stays the same. Compared to the GRACE join, group prefetching
and software-pipelined prefetching achieve 1.37-1.62X and 1.43-1.46X speedups.

8.4 Execution Times on the Itanium 2 Machine with Disk I/Os

In this subsection, we study the impact of our cache prefetching techniques on the elapsed
real times of hash join operations with disk I/Os. We performthe same set of experiments
as in Section 8.1 (joining a 2GB build relation and a 4GB proberelation) while varying the
tuple size and the number of intermediate partitions. We useseven disks in these experi-
ments.10 Figures 23-25 compare our two cache prefetching schemes with the GRACE hash
join. The experiments for the GRACE join with 100B tuples correspond to the seven disk
points shown previously in Figure 10. Note that in Figure 25,the numbers of partitions, 57
and 113, are chosen automatically by the hash join algorithmso that a build partition and
its hash table consume up to 50 MB of main memory in the join phase. We also measure
the performance of generating 250 partitions to better understand the results.

As shown in Figure 23-25, our group prefetching scheme achieves 1.12-1.84X speedups
for the join phase and 1.06-1.60X speedups for the partitionphase over the GRACE join
algorithm. Our software-pipelined prefetching achieves 1.12-1.45X speedups for the join
phase and 1.06-1.51X speedups for the partition phase.

957 is selected to ensure that partitions fit in main memory. The others are chosen arbitrarily for understanding
the effects of larger number of partitions.
10The eighth disk contains the root partition and swap partition. We find that using seven disks instead of eight
reduces the variance of the measurements.
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Fig. 23. Join phase performance with I/Os when output tuplesare consumed in main memory.
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Fig. 24. Join phase performance with I/Os when output tuplesare written to disk.
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Fig. 25. Partition phase performance with I/Os.

The figures show a group of four bars for each experiment. These bars correspond to the
four curves described previously in Section 8.1. We see thatas expected, theworker io stall
times stay roughly the same, while our cache prefetching techniques successfully reduce
the main busytimes, thus leading to the reduction of the elapsed real times. Note that
our implementation of the buffer pool manager is straightforward and without extensive
performance tuning. As a result, in some experiments themain io stall times increase
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rather than staying the same, partially offsetting the benefits of reducedmain busytime.
Despite using this relatively simple buffer manager implementation, however, our cache
prefetching techniques still achieve non-trivial performance gains.

Comparing the overall speedups as the tuple sizes and the numbers of partitions vary,
we see that the speedups are larger for the join operations that use 20B tuples or produce
larger number of partitions. This is because hash joins are more CPU-intensive in these
situations. Compared with 100B tuples, there are roughly five times as many 20B tuples
to be processed per disk page by hash joins. Larger numbers ofpartitions require more
output buffer space in the I/O partitioning phase, thus incurring more cache misses. Hence
as shown in Figures 23-25, the gap between themain busytime and theworker io stall
time is larger, thus leading to a larger potential benefit forCPU cache optimizations.

In summary, we observe that our cache prefetching techniques successfully reduce the
elapsed real times of hash joins on the Itanium 2 machine withdisk I/Os.

9. DISCUSSION

Several practical issues may arise when implementing our prefetching techniques in a pro-
duction DBMS that targets multiple architectures and is distributed as binaries. First, the
syntax of prefetch instructions is often different across architectures and compilers. We can
define a set of macros for each pair of architecture and compiler combinations to hide the
difference, then write code using the macros. This is the approach in our implementation.

Second, some architectures (e.g. existing x86 processors)do not support faulting pre-
fetches that can succeed regardless of TLB misses. Two techniques can address this prob-
lem: (i) use (dummy) load instructions as faulting prefetches, which is correct because all
the memory references that are prefetched will actually occur in our algorithms; (ii) use
large virtual page sizes to reduce TLB misses, which is widely supported (e.g. on x86 [Intel
Corporation 2006], SPARC [McDougall 2004], and POWER 5 [Hepkin 2006]). POWER 5
supports 16GB virtual page size, which can be sufficient for holding the in-memory data of
most hash joins. Different x86 and SPARC processors support2MB-256MB virtual page
sizes. Given 4MB pages and a 32 entry TLB, if the hash table structure fits in 128MB, we
can issue non-faulting prefetches for hash bucket headers and hash cell arrays, while using
dummy loads for prefetching actual tuples.

Third, several architectures require software to explicitly manage the caches (e.g. the
Cell Broadband Engine [Kahle et al. 2005] and network processors [Gold et al. 2005]). As
shown in [Gold et al. 2005], our prefetching techniques can be well adapted for preloading
data into the explicitly managed caches.

Fourth, pre-set parameters for the group size and the prefetch distance may be subopti-
mal on machines with very different configurations (e.g. memory speed). The solution is
to perform a calibration test during DBMS installation to determine the best parameters.

Finally, as a last resort, if the above does not work, a DBMS can fall back to the original
hash join algorithm either at compile time for specific architectures or at installation time
based on the calibration results.

10. CONCLUSION

While prefetching is a promising technique for improving CPU cache performance, apply-
ing it to the hash join algorithm is not straightforward due to the dependencies within the
processing of a single tuple and the randomness of hashing. In this paper, we have explored
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the potential for exploitinginter-tupleparallelism to schedule prefetches effectively. Our
prefetching techniques—group prefetchingandsoftware-pipelined prefetching—system-
atically reorder the memory references of hash joins and schedule prefetches so that cache
miss latencies in the processing of a tuple can be overlappedwith computation and miss
latencies of other tuples. We developed generalized modelsto better understand the tech-
niques and successfully overcame the complexities involved with the hash join algorithm.

We performed detailed experimental studies through simulations and on an Itanium 2
machine focusing on both user-mode CPU cache performance and real elapsed times with
disk I/Os. Our experimental results demonstrated that hashjoin performance can be im-
proved dramatically by using our group prefetching and software-pipelined prefetching
techniques. Moreover, the techniques will still be effective even when the speed gap be-
tween processors and memory increases significantly (e.g.,by a factor of four). We believe
that our techniques can improve other hash-based algorithms such as hash-based group-by
and aggregation algorithms, and other algorithms that haveinter-element parallelism.
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