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Abstract
Hash join algorithms suffer from extensive CPU cache

stalls. This paper shows that the standard hash join algo-
rithm for disk-oriented databases (i.e. GRACE) spends over
73% of its user time stalled on CPU cache misses, and ex-
plores the use of prefetching to improve its cache perfor-
mance. Applying prefetching to hash joins is complicated
by the data dependencies, multiple code paths, and inher-
ent randomness of hashing. We present two techniques,
group prefetching and software-pipelined prefetching, that
overcome these complications. These schemes achieve 2.0–
2.9X speedups for the join phase and 1.4–2.6X speedups for
the partition phase over GRACE and simple prefetching ap-
proaches. Compared with previous cache-aware approaches
(i.e. cache partitioning), the schemes are at least 50% faster
on large relations and do not require exclusive use of the
CPU cache to be effective.

1. Introduction
Hash join [11, 15, 17, 24, 28, 30] has been studied exten-

sively over the past two decades, and it is commonly used in
today’s commercial database systems to implement equijoins
efficiently. In its simplest form, the algorithm first builds a
hash table on the smaller (build) relation, and then probes
this hash table using tuples of the larger (probe) relation to
find matches. However, the random access patterns inherent
in the hashing operation have little spatial or temporal local-
ity. When the main memory available to a hash join is too
small to hold the build relation and the hash table, the sim-
plistic algorithm suffers excessive random disk accesses. To
avoid this problem, the GRACE hash join algorithm [15] be-
gins by partitioning the two joining relations such that each
build partition and its hash table can fit within memory; pairs
of build and probe partitions are then joined separately as in
the simple algorithm. This I/O partitioning technique lim-
its the random accesses to objects that fit within main mem-
ory and results in nice sequential I/Os for source relations
and intermediate partitions. As a result, the I/O costs no
longer dominate. For example, our experiments on a quad-
processor Pentium III show that a hash join of two several
GB relations is already CPU-bound with only 4 disks, and it
becomes increasingly CPU bound with each additional disk
(details in Section 7).

1.1 Hash Joins Suffer from CPU Cache Stalls
So where do hash joins spend most of their time? Previ-

ous studies have demonstrated that hash joins can suffer from
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Figure 1. Execution time breakdown for hash join.

excessive CPU cache stalls [5, 20, 29]. The lack of spatial
or temporal locality means the GRACE hash join algorithm
cannot take advantage of the multiple levels of CPU cache
in modern processors, and hence it repeatedly suffers the full
latency to main memory during building and probing. Fig-
ure 1 provides a breakdown of the simulated user-level per-
formance on a state-of-the-art machine (details in Section 7).
The “partition” experiment divides a 1GB relation into 800
partitions, while the “join” experiment joins a 50MB build
partition with a 100MB probe partition. Each bar is bro-
ken down into four categories: busy time, data cache stalls,
TLB miss stalls, and other stalls. As we see in Figure 1,
both the partition and join phases spend a significant frac-
tion of their time—82% and 73%, respectively—stalled on
data cache misses!

Given the success of I/O partitioning in avoiding random
disk accesses, the obvious question is whether a similar tech-
nique can be used to avoid random memory accesses. Cache
partitioning, in which the joining relations are partitioned
such that each build partition and its hash table can fit within
the (largest) CPU cache, has been shown to be effective
in improving performance in memory-resident and main-
memory databases [5, 20, 29]. However, cache partitioning
suffers from two important practical limitations. First, for
traditional disk-oriented databases, generating cache-sized
partitions while scanning from disk requires a large number
of concurrently active partitions. Experiences with the IBM
DB2 have shown that storage managers can handle only hun-
dreds of active partitions per join [17]. Given a 1MB CPU
cache and (optimistically) 1000 partitions, the maximum re-
lation size that can be handled is only 1 GB. Beyond that
hard limit, any cache partitioning must be done using addi-
tional passes through the data — as will be shown in Sec-
tion 7, this results in at least a 50% slowdown compared to
the techniques we propose. Second, cache partitioning as-
sumes exclusive use of the cache, but this assumption is un-
likely to be valid in an environment with multiple ongoing



activities. Once the cache is too busy with other requests to
effectively retain its partition, the performance may degrade
significantly (up to 67% in the experiments in Section 7).
Hence, we would like to explore an alternative technique that
does not suffer from these limitations.

1.2 Our Approach: Cache Prefetching
Rather than trying to avoid CPU cache misses by build-

ing tiny (cache-sized) hash tables, we instead propose to
hide the cache miss latency associated with accessing normal
(memory-sized) hash tables, by overlapping these misses
with computation. Modern processors allow multiple cache
misses to be in flight simultaneously in the memory hierar-
chy (e.g., the Compaq ES40 [9] supports 32 in-flight loads,
32 in-flight stores, and 8 outstanding off-chip cache misses
per processor), and the trend has been toward supporting
more and more simultaneous misses. To enable software to
fully exploit this parallelism, modern processors also provide
explicit prefetch instructions for moving data into the cache
ahead of its use. Software-based prefetching has been suc-
cessfully applied in the past to array-based programs [23],
pointer-based programs [18], and database B � -Trees [7, 8],
but it has not been applied to hash joins.

Challenges in Applying Prefetching to Hash Join. A
naive approach to prefetching for hash join might simply try
to hide the latency within the processing of a single tuple.
For example, to improve hash table probing performance,
one might try to prefetch hash bucket headers, hash buck-
ets, build tuples, etc. Unfortunately, such an approach would
have little benefit because later memory references often de-
pend upon previous ones (via pointer dereferences). Existing
techniques for overcoming this pointer-chasing problem [18]
will not work because the randomness of hashing makes it
impossible to predict the memory locations to be prefetched.

The good news is that although there are many dependen-
cies within the processing of a single tuple, dependencies are
less common across subsequent tuples due to the random na-
ture of hashing. Hence our approach is to exploit inter-tuple
parallelism to overlap the cache misses of one tuple with the
computation and cache misses associated with other tuples.

A natural question is whether either the hardware or the
compiler could accomplish this inter-tuple cache prefetching
automatically; if so, we would not need to modify the hash
join software. Unfortunately, the answer is no. Hardware-
based prefetching techniques [2] rely upon recognizing regu-
lar and predictable (e.g., strided) patterns in the data address
stream, but the inter-tuple hash table probes do not exhibit
such behavior. In many modern processors, the hardware
also attempts to overlap cache misses by speculating ahead
in the instruction stream; while this approach is useful for
hiding the latency of primary data cache misses that hit in
the secondary cache, the amount of lookahead buffering (in
the reorder buffers) is far too small to fully hide the latency of
cache misses to main memory [10] (e.g., 128 vs. 600 entries
for the Compaq ES40 [9]), and is even small compared with
the amount of processing required for a single tuple. While
our prefetching approaches (described below) are inspired

by compiler-based scheduling techniques, existing compiler
techniques for scheduling prefetches [18, 23] cannot handle
the ambigous data dependencies present in the hash join code
(as discussed in detail in Sections 4.3 and 5.2).

Overcoming these Challenges. To effectively hide the
cache miss latencies in hash join, we propose and evalu-
ate two new prefetching techniques: group prefetching and
software-pipelined prefetching. For group prefetching, we
apply modified forms of compiler transformations called
strip mining and loop distribution (illustrated later in Sec-
tion 4) to restructure the code such that hash probe accesses
resulting from groups of � consecutive probe tuples can
be pipelined.1 The potential drawback of group prefetch-
ing is that cache miss stalls can still occur during the transi-
tion between groups. Hence our second prefetching scheme
leverages a compiler scheduling technique called software
pipelining [16] to avoid these intermittent stalls.

A key challenge that required us to extend existing
compiler-based techniques in both cases is that although we
expect dependencies across tuples to be unlikely, they are
still possible, and we must take them into account to preserve
correctness. If we did this conservatively (as the compiler
would), it would severely limit our potential performance
gain. Hence we optimistically schedule the code assuming
that there are no inter-tuple dependencies, but we perform
some extra bookkeeping at runtime to check whether depen-
dencies actually occur: if so, we temporarily stall the con-
sumer of the dependence until it can be safely resolved. Ad-
ditional challenges arose from the multiple levels of indirec-
tion and multiple code paths in hash table probing.

A surprising result in our study is that contrary to the
conventional wisdom in the compiler optimization commu-
nity that software pipelining outperforms strip mining, group
prefetching appears to be more attractive than software-
pipelined prefetching for hash joins. A key reason for this
difference is that the code in the hash join loop is far more
complex than the typical loop body of a numeric application
(where software pipelining is more commonly used [16]).

1.3 Contributions of This Paper
This paper makes the following contributions. First,

to our knowledge, this is the first study to explore how
prefetching can be used to accelerate both the join and par-
tition phases of hash join by exploiting inter-tuple paral-
lelism. Second, we propose two prefetching techniques,
group prefetching and software-pipelined prefetching, and
show how they can be applied to significantly improve hash
join performance. Overall, the techniques achieve 2.0–2.9X
speedups for the join phase and 1.4–2.6X speedups for the
partition phase over GRACE and simple prefetching ap-
proaches. Moreover, they are at least 50% faster than cache
partitioning on large relations and do not require exclusive
use of the cache to be effective. Finally, we make exten-
sive comparisons between group prefetching and software-
pipelined prefetching, demonstrating that group prefetching

1In our experimental set-up in Section 7, ���	��
 is optimal.



is 1%–15% faster than software-pipelined prefetching.
The paper is organized as follows. Section 2 discusses

the related work in greater detail. Section 3 analyzes the de-
pendencies in the join phase, the more complicated of the
two phases, while Sections 4 and 5 use group prefetching
and software-pipelined prefetching to improve the join phase
performance. Section 6 discusses prefetching for the par-
tition phase. Experimental results appear in Section 7 and
conclusions in Section 8.

2. Related Work

Since the GRACE hash join algorithm was first intro-
duced [15], many refinements of this algorithm have been
proposed for the sake of avoiding I/O by keeping as many in-
termediate partitions in memory as possible [11, 17, 24, 28,
30]. All of these hash join algorithms, however, share two
common building blocks: (1) partitioning and (2) joining
with in-memory hash tables. To cleanly separate these two
phases, we use GRACE as our baseline algorithm throughout
this paper. We point out, however, that our techniques should
be directly applicable to the other hash join algorithms.

CPU cache performance has been identified as a major
performance bottleneck for database systems [1, 3, 13] and
many recent studies have focused on improving the cache
performance of core database algorithms [4, 5, 7, 8, 25,
26, 29]. Several papers have developed techniques to im-
prove the cache performance of hash joins [5, 20, 29]. Shat-
dal et al. showed that cache partitioning achieved 6-10% im-
provement for joining memory-resident relations with 100B
tuples [29]. Boncz, Manegold and Kersten proposed using
multiple passes in cache partitioning to avoid cache and TLB
thrashing [5, 20]. They showed large performance improve-
ments on real machines for joining vertically-partitioned re-
lations in the Monet main memory database, under exclu-
sive use of the CPU caches. They considered neither disk-
oriented databases, more traditional physical layouts, multi-
ple activities trashing the cache, nor the use of prefetching.
They also proposed a variety of code optimizations (e.g., us-
ing shift-based hash functions) to reduce CPU time; these
optimizations may be beneficial for our techniques as well.

As mentioned earlier, software prefetching has been used
successfully in other scenarios [7, 8, 18, 23]. While software
pipelining has been used to schedule prefetches in array-
based programs [23], we have extended that approach to deal
with more complex data structures, multiple code paths, and
the read-write conflicts present in hash join.

Previous work demonstrated that TLB misses may de-
grade performance [5, 20], particularly when TLB misses
are handled by software. Because the vast majority of
modern processors (including those from Intel) handle TLB
misses in hardware, we model hardware-based TLB miss
handling in our simulations. In addition, our simulator sup-
ports TLB prefetching [27] by treating TLB misses caused
by prefetches as normal TLB misses. Hence, using our
prefetching techniques, the TLB misses are overlapped with
computation, minimizing TLB stall time.

Empty Bucket
Headers
Bucket
Hash Hash Cell Array

A Hash Cell in the Header

Figure 2. An in-memory hash table structure

3. Dependencies in the Join Phase
In this section, we analyze the dependencies in a hash ta-

ble visit in the join phase to show why a naive prefetching
algorithm would fail. We study a concrete implementation
of the in-memory hash table, as shown in Figure 2. It con-
sists of an array of hash buckets, each composed of a header
and (possibly) an array of hash cells pointed to by the header.
A hash cell represents a build tuple hashed to the bucket. It
contains the tuple pointer and a fixed-length (e.g., 4 byte)
hash code computed from the join key, which serves as a fil-
ter for the actual key comparisons.2 A single hash cell is put
into the bucket header. When more tuples are hashed to the
bucket, a hash cell array is allocated, the size of which can
be dynamically increased.

A naive prefetching algorithm would try to hide cache
miss latencies within a single hash table visit by prefetching
for potential cache misses, including hash bucket headers,
hash cell arrays, and/or build tuples. However, this approach
would fail because there are a lot of dependencies in a hash
table visit. For example, the memory address of the bucket
header is determined by the hashing computation. The ad-
dress of the hash cell array is stored in the bucket header.
The memory reference for a build tuple is dependent on the
corresponding hash cell (in a probe). These dependencies
essentially form a critical path; a previous computation or
memory reference generates the memory address of the next
reference, and must finish before the next one can start. Ad-
dresses would be generated too late for prefetching to hide
miss latencies. Moreover, the randomness of hashing makes
it almost impossible to predict memory addresses for hash ta-
ble visits. These arguments are true for all hash-based struc-
tures.3 Therefore, applying prefetching to the join phase al-
gorithm is not a straightforward task.

4. Group Prefetching
Although dependencies within a hash table visit prevent

effective prefetching, the join phase algorithm processes a
large number of tuples and dependencies are less common
across subsequent tuples due to the randomness of hash-
ing. Therefore, our approach is to exploit inter-tuple par-
allelism to overlap cache miss latencies of one tuple with
computations and miss latencies of other tuples. To ensure
correctness, we must systematically intermix multiple hash

2Hash codes are usually good distinguishers of the join keys.
3The structure in Figure 2 improves upon chained bucket hashing, which

uses a linked list of hash cells in a bucket. It avoids the pointer chasing
problem of linked lists [19, 7].



foreach tuple in probe partition�
compute hash bucket number;
visit the hash bucket header;
visit the hash cell array;
visit the matching build tuple to

compare keys and produce output tuple;
(a) A simplified probing algorithm

foreach group of tuples in probe partition�
foreach tuple in the group �

compute hash bucket number;
prefetch the target bucket header;

foreach tuple in the group �
visit the hash bucket header;
prefetch the hash cell array;

foreach tuple in the group �
visit the hash cell array;
prefetch the matching build tuple;

foreach tuple in the group �
visit the matching build tuple to

compare keys and produce output tuple;
(b) Group prefetching

Figure 3. The idea of group prefetching

table visits, reorder their memory references, and schedule
prefetch instructions sufficiently early. In this section, we
propose group prefetching to achieve these objectives.

4.1 Group Prefetching for a Simplified
Probing Algorithm

We use a simplified probing algorithm to describe the idea
of group prefetching. As shown in Figure 3(a), the algorithm
assumes that all hash buckets have hash cell arrays and every
probe tuple matches exactly one build tuple. It performs a
probe per loop iteration.

As shown in Figure 3(b), the group prefetching algorithm
combines multiple iterations of the original loop into a single
loop body, and rearranges the probe operations into stages4.
Each stage performs one computation or memory reference
on the critical path for all the tuples in the group and then
issues prefetch instructions for the memory references of
the next stage. For example, the first stage computes the
hash bucket number for every tuple and issues prefetch in-
structions for the hash bucket headers, which will be vis-
ited in the second stage. In this way, the cache miss to read
the hash bucket header of a probe will be overlapped with
hashing computations and cache misses for other probes.
Prefetching is used similarly in the other stages except the
last stage. Note that the dependent memory operations of
the same probe are still performed one after another as be-
fore. However, the memory operations of different probes
are now overlapped.

4Technically, what we do are modified forms of compiler transforma-
tions called strip-mining and loop distribution [14].

for i=0 to N-1 do�
code 0;
visit ( ���� ); code 1;
visit ( ���� ); code 2;�����������
visit ( ���� ); code k;

(a) Processing an element per iteration

for j=0 to N-1 step G do�
for i=j to j+G-1 do �

code 0;
prefetch ( � �� );

for i=j to j+G-1 do �
visit ( ���� ); code 1;
prefetch ( � �� );

for i=j to j+G-1 do �
visit ( ���� ); code 2;
prefetch ( ���� ); �����������

for i=j to j+G-1 do �
visit ( � �� ); code k;

(b) Group prefetching

Figure 4. General group prefetching algorithm

4.2 Understanding Group Prefetching
To better understand group prefetching, we generalize

the previous algorithms of Figure 3 in Figure 4. Suppose
we need to process � independent elements. For each el-
ement � , we need to make � dependent memory references, �!"$#  &%"'#)(*(*()#  �+" . As shown in Figure 4(a), a straightforward
algorithm processes an element per loop iteration. The loop
body is natually divided into ��,.- stages by the � memory
references. Code 0 (if it exists) computes the first memory
address  !" . Code 1 uses the contents in  !" to compute
the second memory address  %" . Generally code / uses the
contents in  10" to compute the memory address  0 � !" , where/324- #)(*()(5# �768- . Finally, code � performs some processing
using the contents in  +" . If every memory reference  0 " in-
curs a cache miss, the algorithm will suffer �9� expensive,
fully exposed cache misses.

Because the elements are independent of each other, we
can use group prefetching to overlap cache miss latencies
across multiple elements, as shown in Figure 4(b). The
group prefetching algorithm combines the processing of �
elements into a single loop body. It processes code / for all
the elements in the group before moving on to code /:,;- .
As soon as an address is computed, it issues a prefetch in-
struction for the memory location so that the reference will
be overlapped across the processing of other elements.

Now we determine the condition for fully hiding all cache
miss latencies. Suppose the execution time of code / is < 0 ,
the full latency of fetching a cache line from main memory
is = , and the additional latency of fetching the next cache
line in parallel is =?>$@BA)C , which is the inverse of the memory
bandwidth. (Table 1 shows the terminology used throughout



Table 1. Terminology used throughout this paper.
Name DefinitionD

# of dependent memory references for an element� group size in group prefetchingE
prefetch distance in software-pipelined prefetchingF
full latency of a cache missF

next latency of an additional pipelined cache missGIH
execution time for code J , JK�&LNM��OM�P�PQP�M D

the paper.) Assume every  0 " incurs a cache miss and there
are no cache conflicts 5. Then, a sufficient condition for fully
hiding all cache miss latencies is as follows 6:RTS �.68-NU ( <WV�XY= andS �.68-NU ()Z\[^]`_ < 0 # =?>$@�A*CbacXd= # /e2f- #bgh#*(*()(O# �

For an intuitive explanation, we focus on the first ele-
ment in a group, element i . The prefetch for  !j is over-
lapped with the processing of the remaining �k68- elements
at code stage l . The first inequality ensures that this mem-
ory reference will complete before the visit operation for  !j
in code stage 1. Similarly, the prefetch for  0 � !j is over-
lapped with the processing of the remaining �k68- elements
at code stage / . The second inequality ensures that its la-
tency is fully hidden. Here, = >$@�A*C corresponds to the visit
operations in the processing of the �46m- elements. For el-
ements in,o- #)p*p)p5# in,q�r6;- in a group, the / th memory
references will be overlapped with operations at code stages/ and /e,k- . We can prove the above condition is sufficient
for hiding these reference latencies by simple combinations
of the inequalities. [6]

We can always choose a � large enough to satisfy the sec-
ond inequality because = >$@BA)C is always greater than 0. How-
ever, if code 0 were empty,  !j could not be fully hidden.
Fortunately, in the simplified probing algorithm, code 0 com-
putes the hash bucket number and is not empty. Therefore,
we can choose a � to hide all the cache miss penalties.

In the above, cache conflict misses are ignored for sim-
plicity of analysis. However, we will show in Section 7 that
conflict misses are a problem when � is too large. There-
fore, among all possible � ’s that satisfy the inequalities, we
should choose the smallest in order to minimize the number
of concurrent prefetches and the conflict miss penalty.

4.3 Dealing with Complexities
Previous research showed how to prefetch for two depen-

dent memory references for array-based codes [22]. Our
group prefetching algorithm solves the problem of prefetch-
ing for an arbitrary fixed number � of dependent memory
references.

We have implemented group prefetching for both hash ta-
ble building and probing. In contrast to the simplified prob-
ing algorithm, the actual probing algorithm contains multiple
code paths: there could be zero or multiple matches, hash

5We use these assumptions only to simplify the derivation of the condi-
tions. Note that our experimental evaluations include all the possible effects
of locality and conflicts in hash joins.

6Please see the extended version of the paper [6] for the critical path
analysis that derives the condition.
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Figure 5. Dealing with multiple code paths.

buckets could be empty, and there may not be a hash cell ar-
ray in a bucket. To cope with this complexity, we keep state
information for the � tuples of a group. We divide each pos-
sible code path into code pieces on the boundaries of depen-
dent memory references. Then we combine the code pieces
at the same position of different code paths into a single stage
using conditional tests on the tuple states. Figure 5 shows the
idea of this process. Note that the common starting point of
all code paths is in code 0. The first code piece including
a branch sets the state of an element. Then subsequent code
stages test the state and execute the code pieces for the corre-
sponding code paths. The total number of group prefetching
stages ( �s,Y- ) is the largest number of code pieces along any
original code path.

When multiple independent cache lines are visited at a
stage (e.g., to visit multiple build tuples), our algorithm is-
sues multiple independent prefetches in the previous stage.

The group prefetching algorithm must also cope with
read-write conflicts. Though quite unlikely, it is possible
that two build tuples in a group may be hashed into the same
bucket. However, in our algorithm, hash table visits are in-
terleaved and no longer atomic. Therefore, a race condition
could arise; the second tuple might see an inconsistent hash
bucket being changed by the first one. Note that this com-
plexity occurs because of the read-write nature of hash table
building. To cope with this problem, we set a busy flag in
a hash bucket header before inserting a tuple. If a tuple is
to be inserted into a busy bucket, we delay its processing
until the end of the group prefetching loop body. At this nat-
ural group boundary, the previous access to the busy hash
bucket must have finished. Interestingly, the previous access
has also warmed up the cache for the bucket header and hash
cell array, so we insert the delayed tuple without prefetching.
The algorithm can deal with any number of delayed tuples
(to tolerate skews in the key distribution).

5. Software-pipelined Prefetching
In this section, we describe our technique of exploiting

software pipelining to schedule prefetches for hash joins. We
then compare our two prefetching schemes.

Figure 6 shows the difference between group prefetch-
ing and software-pipelined prefetching intuitively. Group
prefetching hides cache miss latencies within a group of el-
ements and there is no overlapping memory operation be-
tween groups. In contrast, software-pipelined prefetching



0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3
0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

code0

code1

code2

code30

1

stage

operation
memory

code

0

1

2

3
0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3
0

1

2

3

an iteration

(a) Group prefetching (b) Software-pipelined
( �q2ut ) prefetching ( vw2f- )

Figure 6. Intuitive pictures of the prefetching schemes

combines different code stages of different elements into an
iteration and hides latencies across iterations. It keeps run-
ning without gaps and therefore may potentially achieve bet-
ter performance.

5.1 Understanding Software-pipelined Prefetching
Figure 7 shows the software-pipelined prefetching for the

simplified probing algorithm. The subsequent stages for a
particular tuple are processed v iterations away. ( v is called
the prefetch distance [22].) Figure 6(b) depicts the intuitive
picture when vw2f- . Suppose the left-most line in the dotted
rectangle corresponds to tuple i . Then, an iteration combines
the processing of stage 0 for tuple ic,dx$v , stage 1 for tuplei�, g v , stage 2 for tuple i�,Yv , and stage 3 for tuple i .

Figure 8 shows the generalized algorithm for software-
pipelined prefetching. In the steady state, the pipeline has�\,f- stages. The loop body processes a different element
for every stage. The subsequent stages for a particular ele-
ment are processed v iterations away. Intuitively, if we make
the intervals between code stages for the same element suf-
ficiently large, we will be able to hide cache miss latencies.
Under the same assumption as in Section 4.2, a sufficient
condition for hiding all cache miss latencies in the steady
state is as follows: 7

v ( S  1y{z _ <WV|,Y< + # =?>$@BA)CQa|,
+N}e!~
0���!
Z\[^]`_ < 0 # =?>$@BA)C�a^U|Xd=

We can always choose a v large enough to satisfy this con-
dition. Section 7 will show that conflict misses are a problem
when v is too large. Thus, we should choose the smallest v
in order to minimize the number of concurrent prefetches.

5.2 Dealing with Complexities
We have implemented software-pipelined prefetching by

modifying our group prefetching algorithm. The code stages
are kept almost unchanged. To apply the general model in
Figure 8, we use a circular array for state information. Since
code 0 and code k of the same element is processed �9v it-
erations away, we ensure the array size � is at least �hv�,�- .

7Please see the extended version of the paper [6] for the critical path
analysis that derives this condition.

prologue;
for j=0 to N-3D-1 do�

tuple j+3D:
compute hash bucket number;
prefetch the target bucket header;

tuple j+2D:
visit the hash bucket header;
prefetch the hash cell array;

tuple j+D:
visit the hash cell array;
prefetch the matching build tuple;

tuple j:
visit the matching build tuple to

compare keys and produce output tuple;
epilogue;

Figure 7. Software-pipelined prefetching for simplified probing

prologue;
for j=0 to N-kD-1 do�

i=j+kD;
code 0 for element i;
prefetch ( � �� );
i=j+(k-1)D;
visit ( ���� ); code 1 for element i;
prefetch ( � �� );
i=j+(k-2)D;
visit ( ���� ); code 2 for element i;
prefetch ( ���� );�������Q���
i=j;
visit ( � �� ); code k for element i;

epilogue;

Figure 8. General software-pipelined prefetching

The index i in the general model is implemented as the ar-
ray index i Z��9� � . To reduce overhead, we choose � to be
a power of 2 so that i Z��9� � can be computed using a bit
mask operation.

The read-write conflict problem in hash table building is
solved in a more sophisticated way. Because there is no
place (like the end of a group in group prefetching) to con-
veniently process all the conflicts, we deal with the conflicts
in the pipeline stages themselves. We build a waiting queue
for each busy hash bucket. The hash bucket header contains
the array index of the tuple � updating the bucket; only tu-
ple � can update the hash bucket header and the hash cell
array. The state information of a tuple contains a pointer to
the next tuple waiting for the same bucket. When a tuple is
to be inserted into a busy bucket, it is appended to the wait-
ing queue and a ”waiting” flag is set in its state information.
Tuples with the waiting flag set are ignored in subsequent
stages, until the last stage. In the meantime, tuple � pro-
ceeds through its code stages. At the end of the last stage
for tuple � , we check its waiting queue. If the queue is not
empty, we record the array index of the first waiting tuple in
the bucket header, and perform the ignored code stages for



it (without prefetching, because � has already prefetched the
needed lines into the cache). When this tuple subsequently
gets to the last stage, it will handle the next tuple in the wait-
ing queue if it exists, and so on.

5.3 Group vs. Software-pipelined Prefetching
Both prefetching schemes try to increase the interval be-

tween a prefetch and the corresponding visit, in order to
hide cache miss latency. According to the sufficient con-
ditions, software-pipelined prefetching can always hide all
miss latencies, while group prefetching achieves this only
when code 0 is not empty (as is the case of the join phase).
When code 0 is empty, the first cache miss cannot be hid-
den. However, with a large group of elements, the amortized
performance impact can be small.

In practice, group prefetching is easier to implement. The
natural group boundary provides a place to do any neces-
sary “clean-up” processing (e.g., for read-write conflicts).
Moreover, the join phase can pause at group boundaries
and send outputs to the parent operator to support pipelined
query processing. Although a software pipeline may also be
paused, the restart costs will diminish its performance advan-
tage. Furthermore, software-pipelined prefetching has larger
bookkeeping overhead because of its use of modular index
operations and its larger maintained state (such as the wait-
ing queue for read-write conflicts).

6. Prefetching for the Partition Phase
Having studied how to prefetch for the join phase of the

hash join algorithm, in this section, we discuss prefetching
for the partition phase. In the partition phase, an input rela-
tion is divided into multiple output partitions by hashing on
the join keys. Typically an output buffer per partition and
an input buffer are allocated in main memory. Disk pages
from the input relation are streamed through the input buffer.
Every input tuple is examined. Its partition number is com-
puted from the join key. The relevant columns of the input
tuple are then extracted (projected) and copied to the target
output buffer. When an output buffer is full, it is written out.

Clearly, we should employ different prefetching tech-
niques depending on the number of partitions generated.
If the number of partitions is small enough so that all the
buffers and relevant data structures fit in cache, we only need
to prefetch for the input page to bring the input data into
cache faster after every disk page read. This constitutes our
simple prefetching scheme for the partition phase.

When the number of partitions is large, however, there
could be cache thrashing during the partition phase; every
output buffer visit may incur a cache miss. Similar to the
join phase, the processing of a tuple needs to make several
dependent memory references, whereas the processings of
subsequent tuples are mostly independent due to the random-
ness of hashing. Therefore, we employ group prefetching
and software-pipelined prefetching under this situation.

Note that there are read-write conficts in visiting the out-
put buffers. Imagine that two tuples are hashed to the same

partition. When processing the second tuple, the algorithm
may find that the output buffer has no space and needs to be
written out. However, it is possible that the data from the
first tuple has not been copied into the output buffer yet be-
cause of the reorganization of processing. To solve this prob-
lem, in group prefetching, we wait until the end of the loop
body to write out the buffer and process the second tuple. In
software-pipelined prefetching, we use waiting queues simi-
lar to those for hash table building in the join phase.

7. Experimental Results
In this section, we show that hash join is CPU bound

through real-machine experiments. We then evaluate the
CPU cache performance of our prefetching techniques by
simulation.

7.1 Experimental Setup
Implementation Details. We have implemented our own

hash join engine. For real machine experiments, we imple-
mented a buffer manager that stripes pages across multiple
disks and performs I/O prefetching with background worker
threads. For CPU performance simulation studies, we store
relations and intermediate partitions as disk files for simplic-
ity. We employ the slotted page structure and support fixed
length and variable length attributes in tuples. Schemas and
statistics are kept in separate description files for simplicity,
the latter of which are used by the hash join algorithms to
compute hash table sizes and numbers of partitions.

Our baseline algorithm is the GRACE hash join algo-
rithm [28]. The in-memory hash table structure follows Fig-
ure 2 in Section 3. A simple XOR and shift based hash func-
tion is used to convert join keys of any length to 4-byte hash
codes. Typically the same hash codes are used in both the
partition and the join phase. Partition numbers in the par-
tition phase are the hash codes modulo the total number of
partitions. Hash bucket numbers in the join phase are the
hash codes modulo the hash table size. Our algorithms en-
sure that the hash table size is a relative prime to the num-
ber of partitions. Because the same hash codes are used in
both phases, we avoid the memory access and computational
overheads of reading the join keys and hashing them a sec-
ond time, by storing hash codes in the page slot area in the
intermediate partitions and reusing them in the join phase.
Note that changing the page structure of intermediate parti-
tions is relatively easy because the partitions are only used in
hash joins.

We implemented three prefetching schemes for both
the partition phase and the join phase algorithm: sim-
ple prefetching, group prefetching, and software-pipelined
prefetching. As suggested by the name, simple prefetch-
ing uses straightforward prefetching techniques, such as
prefetching an entire input page after a disk read. We use
simple prefetching as an enhanced baseline in order to show
the additional benefit achieved using our more sophiscated
prefetching schemes. Prefetch instructions are inserted into
C++ source codes using gcc inline ASM macros.



Table 2. Simulation parameters
Processor pipeline parameters

Clock Rate 1 GHz
Issue Width 4 insts/cycle
Functional Units 2 Integer, 1 integer divide,

2 Memory, 1 Branch, 2 FP
Reorder Buffer Size 128 insts
Integer Multiply/Divide 15/56 cycles
All Other Integer 1 cycle
Branch Prediction Scheme gshare [21]

Memory parameters
Line Size 64 bytes
Primary Instruction Cache 64 KB, 2-way set-assoc.
Primary Data Cache 64 KB, 4-way set-assoc.
Miss Handlers 32 for data, 2 for inst.
DTLB 64 entries, fully-assoc.
DTLB Miss Handlers 1
Page Size 8 KB
Unified Secondary Cache 1 MB, 4-way set-assoc.
Primary-to-Secondary 15 cycles (plus any delays
Miss Latency caused by contention)
DTLB Miss Latency 20 cycles
Primary-to-Memory 150 cycles (plus any delays
Miss Latency caused by contention)
Main Memory Bandwidth 1 access per 10 cycles

Cache Partitioning. Cache partitioning generates cache-
sized build partitions so that every build partition and its
hash table can fit in cache, greately reducing the cache
misses in the join phase. It has been shown to be effec-
tive in main-memory and memory-resident database envi-
ronments [5, 29]. We have implemented two cache parti-
tioning algorithms for disk-oriented databases. In the first,
we increase the number of partitions and generate cache-
sized partitions directly in the I/O partition phase. In the
second, we partition twice: the I/O partition phase generates
memory-sized partitions, which are subsequently partitioned
again in memory as a preprocessing step for the join phase.
We call the first scheme “direct cache” and the second “two-
step cache”.

Experimental Design. In all our experiments (except
for Figure 14(a)), we assume the available memory size for
the join phase is 50MB 8 and the partition phase generates
partitions that tightly fit in 50MB. That is, in the baseline and
our prefetching schemes, a build partition and its hash table
fit tightly in the available memory. In the cache partitioning
schemes, the partition sizes are also computed to satisfy the
algorithm constraints and best utilize available memory.

Build relations and probe relations have the same
schemas: a tuple consists of a 4-byte join key and a fixed-
length payload. We believe that selection and projection are
orthogonal issues to our study and we do not perform these
operations in our experiments. An output tuple contains all
the fields of the matching build and probe tuples. The join
keys are randomly generated. A build tuple may match zero

8This is the memory allocated for joining a pair of build and probe par-
titions. It is limited by the simulation environment. However, we set the
memory to cache size ratio to be 50:1, which is reasonable for joins on a
modern computer system. Therefore, we expect the experiments to reflect
real-world hash join cache behaviors.
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Figure 9. Hash join is CPU-bound with reasonable I/O bandwidth

or more probe tuples and a probe tuple may match zero or
one build tuple. In our experiments, we vary the tuple size,
the number of probe tuples matching a build tuple, and the
percentage of tuples that have matches, in order to show the
benefits of our solutions in various situations.

Measurement Methodology. We first measure GRACE
hash join performance on a real machine with multiple disks
to show that hash join is CPU-bound with reasonable I/O
bandwidth. Therefore, it is important to study hash join
cache performance.

We then evaluate the CPU cache performance (of user
mode executions) of all the schemes through simulation in
order to get good prefetching support. We generate fully-
functional executables with gcc and run the programs with
detailed cycle-by-cycle simulations. The simulator models
a dynamically-scheduled, superscalar processor running at
a clock rate of 1 GHz. The memory hierarchy is based on
the Compaq ES40 [9]. Because the Alpha processor (in the
ES40) supports only software-simulated integer divide, we
use instead the integer divide latency from the Intel Pen-
tium4 [12]. The simulator does not drop prefetches when
miss handlers are all busy. Moreover, the simulator supports
TLB prefetching [27] by treating TLB misses caused by
prefetches as normal TLB misses. Therefore, our prefetching
schemes can overlap TLB miss latencies with computations
and cache misses. Important simulator parameters are shown
in Table 2.

7.2 Is Hash Join I/O-Bound or CPU-Bound?
Figure 9 shows the performance of GRACE hash join on

a machine running Linux 2.4.18 with four 550MHz Pentiu-
mIII processors and 512MB RAM. Our experiments use 6
Seagate Cheetah X15 36LP SCSI disks, each with a maxi-
mum transfer rate of 68 MBytes/sec. We imitate raw disk
partitions by allocating a large file on each disk and man-
aging the mapping from page IDs to file offsets ourselves.
To get good I/O performance, we stripe a relation across all
the disks in 256KB units. Our buffer manager has a dedi-
cated worker thread for each of the disks, which performs
I/O operations on behalf of the main hash join thread. The
buffer manager implements I/O prefetching and background
writing so that I/O operations can be overlapped with compu-
tations as much as possible. We measure total elapsed times
with gettimeofday() system calls and I/O stall times with pro-
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Figure 10. Join phase performance

cessor cycle counter and the PAPI package. All the reported
points are the average of 10 measurements with standard de-
viations less than 10% of the averages or less than 1 second.

The experiments join a 1.5GB build relation with a 3GB
probe relation by producing 31 intermediate partitions for
both relations. Tuples are 100 bytes long. Figure 9(a) shows
the partition phase performance for the build relation, and
Figure 9(b) shows the join phase performance of joining all
the build and probe partitions.

The figures vary the number of disks used and report
the total elapsed time for the operations, the maximum I/O
stall time of all the background worker threads, and the stall
time of the main thread waiting for workers. The worker
I/O stall time shows the time to finish all the I/Os in back-
ground, which decreases dramatically as the number of disks
increases. With four or more disks, hash join is clearly CPU-
bound: the total elapsed time becomes flat, and the main
thread spends less than 10% of the total time waiting for
worker threads. Since there are typically 10 disks per pro-
cessor on a balanced DB server, we expect that hash join is
CPU-bound in a large number of real-world systems.

Moreover, the large gap between the top and the middle
curves highlights the opportunity for dramatically reducing
the total time by improving the CPU performance, e.g., a 3-
fold potential improvement when there are 6 disks.

7.3 Join Phase Performance
Figure 10 shows the join phase performance of the base-

line and the prefetching schemes. The experiments model
the processing of a pair of partitions in the join phase. In
all experiments, the build partition fits tightly in the 50MB
memory. The default settings are 100B tuples and that every
build tuple matches two probe tuples. As shown in the fig-
ure, group and software-pipelined prefetching achieve 2.4-
2.9X and 2.1-2.7X speedups over the baseline, respectively.
Because the central part of the join phase algorithm is hash
table visits, simple prefetching only obtains marginal benefit,
a 1.1-1.2X speedup over the baseline. By exploring the inter-
tuple parallelism, group and software-pipelined prefetching
achieve additional 2.3-2.5X and 2.0-2.3X speedups over the
simple prefetching scheme, respectively.

In Figure 10(a), as we increase the tuple size, the number
of tuples processed decreases, leading to the decreasing trend
of the curves. In Figure 10(b) and (c), the total number of
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Figure 11. Execution time breakdown for join phase performance
(Figure 10(a), 100B tuples)

matches increases as we increase the number of matches per
build tuple or the percentage of tuples having matches. This
explains the upward trends. Moreover, the probe partition
size also increases in Figure 10(b), contributing to the much
steeper curves than those in Figure 10(c).

Figure 11 shows the execution time breakdowns for the
100B points in Figure 10(a). The baseline case is shown as
the “join” bar in Figure 1. Group prefetching and software-
pipelined prefetching indeed successfully hide most of the
data cache miss latencies. The simulator outputs confirm that
the remaining cache misses are mostly L1 cache misses (but
L2 hits) due to cache conflicts. The (transformation, book-
keeping, and prefetching) overheads of the techniques lead to
larger portions of busy times. Software-pipelined prefetch-
ing is 7.7% more costly than group prefetching in this ex-
periment. Interestingly, other stalls also increase. A possible
reason is that some secondary causes of stalls show up when
the data cache stalls are reduced.

Figure 12 shows the relationship between the cache per-
formance and the parameters of our prefetching algorithms.
We perform the same experiment as in Figure 10(a) when
tuples are 20 bytes. We show the tuning results for only the
probing loop here but the curves for the building loop have
similar shapes. The optimal values for probing are ��2�-)�
and v�2�- . These values are used in all experiments unless
otherwise noted.

The top curves in Figure 12 show the performance when
the memory latency = is set to 1000 cycles in the simula-
tor. The optimal points shift right; larger group size and
prefetch distance are needed to hide the increased latencies,
as expected by our models. Interestingly, software-pipelined
prefetching becomes better than group prefetching. More
importantly, software-pipelined prefetching achieves similar
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Figure 13. Breakdowns of cache misses to understand the tuning
curves of the join phase

performance when we change = from 150 to 1000 cycles.
This means that the prefetching algorithm will still keep up
when the processor/memory speed gap increases even more
(6 times in our experiments) as expected to happen in the
future by the technology trend.

The curves all have concave shapes; performance be-
comes worse when the parameters are too small or too large.
According to our models, the group size and the prefetch dis-
tance must be large enough to hide cache miss latencies. This
explains the poor performance with small parameters. To
verify this and to understand the cases with large parameters,
we analyze the breakdowns of cache misses in Figure 13.
The bars correspond to optimal points ( �q2;-)� # vw2q- ), too-
small points ( �f2�� ), and too-large points ( �q2�x gh# vr2k� )
from the =u2;-N�'l curves in Figure 12.

The bars are normalized to the number of cache misses
in the baseline GRACE case (100 in the figure). The total
heights of the bars correspond to the number of cache misses
when we apply the code transformations but without insert-
ing any prefetches. When we insert the prefetches, a lot of
cache misses disappear, which are captured by the bottom
part of the bars (“removed”). The other categories are i) “pf
too late”, i.e. prefetching is too late to hide all the latency; ii)
“pf replaced”, i.e. prefetching is too early and the prefetched
cache line has already been replaced from the cache by other
memory references or prefetches; and iii) “not prefetched”.

From Figure 13, the too-small case shows a large “pf too
late” portion. This confirms the above analysis. In the too-
large cases, a lot of prefetches have been replaced, meaning
that the poor performance is caused by cache conflicts. The
larger the parameters, the more prefetches and other mem-
ory references are executed between a prefetch and its visit
instruction, and therefore the greater chance that a prefetch
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Figure 14. Partition phase performance
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Figure 15. Execution time breakdown for partition phase perfor-
mance (Figure 14(a), 800 partitions)

is replaced from cache.

7.4 Partition Phase Performance
Figure 14(a) shows the partition phase performance vary-

ing the number of partitions from 25 to 800. The source
relation has 10 million 100B tuples. (Unlike all the other
experiments, the generated partitions may be much smaller
than 50MB.) The figure is divided into two different re-
gions. When the partition number is 25, 50, and 100, simple
prefetching achieves the best performance. However, when
the number of partitions becomes larger, the performance
of simple prefetching deteriorates dramatically, while group
prefetching and software-pipelined prefetching win. Since
a 1MB L2 cache can hold 128 pages of 8KB each, the out-
put buffers (and other miscellaneous data structures) fit in
the L2 cache in the left region, and hence more sophisticated
prefetching techniques are unnecessary. However, when the
output buffers can not fit in cache as in the right region, sim-
ple prefetching suffers from excessive cache misses. Group
and software-pipelined prefetching exploit inter-tuple paral-
lelism to successfully hide most of the cache miss latencies.

Figure 14(b) varies the number of 100B tuples in the in-
put relation while keeping the partition size the same (to
fit tightly in 50MB memory). Hence the number of parti-
tions also increases; 26, 51, 76, 102, 127, and 152 partitions
are generated, respectively. Essentially the graph shows the
same tradeoff as Figure 14(a) but in a more natural setting.

To get the best of both situations, we choose the prefetch-
ing algorithm based on the cache size and the number of
partitions. Overall, this combined prefetching achieves 1.9-
2.6X speedups over the baseline.

Figure 15 shows the execution time breakdown for Fig-
ure 14(a) where 800 partitions are generated. Group
prefetching and software-pipelined prefetching successfully
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Figure 16. Tuning parameters of group and software-pipelined
prefetching for the partition phase

hide most of the data cache miss latencies. Figure 16 shows
the relationships between parameters and the cache perfor-
mance of group prefetching and software-pipelined prefetch-
ing. The optimal values for partition phase are �r2 g l andvr2ux . The figure and a cache miss analysis as in Figure 13
show similar curve shapes and trends as in the join phase.

7.5 Comparison with Cache Partitioning
Problems with Large Relations. The number of I/O

partitions is upper bounded by the available memory of the
partition phase and by the requirements of the storage man-
ager. Experiences with the IBM DB2 have shown that stor-
age managers can handle only hundreds of active partitions
per hash join [17]. Given a 1 MB CPU cache and (optimisti-
cally) 1000 partitions, the maximum relation size for “direct
cache” is only 1 GB. “Two-step cache” solves this problem
by introducing an additional partition pass. However, this
additional copying cost results in 50-150% slowdown com-
pared to our prefetching schemes, as discussed below.

Robustness. Cache partitioning assumes exclusive use of
the cache, which is unlikely to be valid in a dynamic environ-
ment with multiple concurrent activities. Although a smaller
“effective” cache size can be used, cache conflicts may still
be a big problem and cause poor performance. Figure 17
shows the performance degradation of all the schemes when
the cache is periodically flushed, which is the worst case in-
terference. We vary the period to flush the cache from 2 ms
to 10 ms. “100” corresponds to the join phase execution time
when there is no cache flush. “Direct cache” and “two-step
cache” suffer from 15-67% and 8-38% performance degra-
dation, respectively. The reason that “two-step cache” suf-
fers from less degradation is that cache flushes may occur
during in-memory partition operations and be less harmful.
Although the figure shows the worst-case cache interference,
it certainly reflects the robustness problem of cache partition-
ing. In contrast, our prefetching schemes do not assume hash
tables and build partitions remain in the cache. As shown in
the figure, they are very robust against even cache flushes.

Experiments when “direct cache” also applies. Fig-
ure 18 compares our prefetching schemes with cache parti-
tioning. Note that the I/O partition phases of all schemes
use the combined prefetching scheme discussed above; the
major difference is in the different numbers of I/O partitions
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Figure 17. Impact of cache flushing on the different techniques.

generated. The second partition step in “two-step cache” is
shown as part of the join phase performance. Moreover, we
employ prefetching in the join phase to enhance the cache
partitioning schemes wherever possible.

Figure 18(a)-(c) show experiments joining a 200MB build
relation with a 400MB probe relation. Every build tu-
ple matches two probe tuples. We increase the tuple size,
which results in decreasing numbers of tuples in the rela-
tions and the downward trends of the curves. “Direct cache”
achieves the best performance in the join phase by avoiding
most cache misses. However, it suffers from larger over-
heads in the partition phase because it generates many more
partitions. “Two-step cache” suffers from the overhead of
the additional partition step and is 50-150% worse than the
prefetching schemes. Overall, our prefetching schemes are
the best (slightly better than “direct cache” even under ex-
clusive use of the cache). In Figure 18(d), we keep the tuple
size to be 100B and vary the percentage of tuples that have
matches. Again, we see similar trends as in Figure 18(c).
In Figure 18, our prefetching techniques achieve 1.4-2.5X
speedups for the partition phase, 2.1-2.9X speedups for the
join phase, and 1.9-2.7X speedups overall compared to the
baseline algorithm.9

8. Conclusions
While prefetching is a promising technique for improving

CPU cache performance, applying it to the hash join algo-
rithm is not straightforward due to the dependencies within
the processing of a single tuple and the randomness of hash-
ing. In this paper, we have explored the potential for ex-
ploiting inter-tuple parallelism to schedule prefetches effec-
tively. Our prefetching techniques—group prefetching and
software-pipelined prefetching—systematically reorder the
memory references of hash joins and schedule prefetches so
that cache miss latencies in the processing of a tuple can be
overlapped with computation and miss latencies of other tu-
ples. We developed generalized models to better understand
these techniques and successfully overcame the complexities
involved with prefetching the hash join algorithm.

Our results demonstrated that hash join cache perfor-
mance can be improved dramatically through prefetching.
More interestingly, the techniques will still be effective even

9The experiments shown in the prefetching curves generate the same
number of partitions as in the baseline curve.
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Figure 18. Comparisons with cache partitioning when it applies

when the speed gap between processors and memory in-
creases significantly in the future (e.g., by a factor of six).
Moreover, we believe that our techniques can improve other
hash-based algorithms such as hash-based group-by and ag-
gregation algorithms, and other algorithms that have inter-
element parallelism.
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