
1 17-214 

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Design	for	reuse	
	
Delegation,	inheritance,	and	an	introduction	to	design	
patterns	
	
Josh	Bloch 	 	Charlie	Garrod	



2 17-214 

Administrivia	

•  Homework	1	feedback	in	your	GitHub	repository	
•  Homework	2	due	Sunday	11:59	p.m.	
•  Homework	3	available	Monday	
•  Optional	reading	due	today:		Effective	Java	Items	18,	19,	and	20	

–  Required	reading	due	next	Tuesday*:		UML	&	Patterns	Ch	9	and	10	

•  No	lecture	next	Tuesday	



3 17-214 

Key	concept	from	Tuesday:		Behavioral	subtyping	

•  e.g.,	Compiler-enforced	rules	in	Java:	
–  Subtypes	can	add,	but	not	remove	methods	
–  Concrete	class	must	implement	all	undefined	methods	
–  Overriding	method	must	return	same	type	or	subtype	
–  Overriding	method	must	accept	the	same	parameter	types	
–  Overriding	method	may	not	throw	additional	exceptions	

•  Also	applies	to	specified	behavior.		Subtypes	must	have:	
–  Same	or	stronger	invariants	
–  Same	or	stronger	postconditions	for	all	methods	
–  Same	or	weaker	preconditions	for	all	methods	

Let q(x) be a property provable about objects x of type T. Then q(y) 
should be provable for objects y of type S where S is a subtype of T. 

Barbara Liskov 

This is called the Liskov 
Substitution Principle. 



4 17-214 

Today	

•  Design	for	reuse:		delegation	and	inheritance	
•  UML	class	diagrams	
•  Introduction	to	design	patterns	

–  Strategy	pattern	
–  Command	pattern	

•  Design	patterns	for	reuse:	
–  Template	method	pattern	(next	week)	
–  Iterator	pattern	(next	week)	
–  Decorator	pattern	(next	week)	



5 17-214 

Recall	our	earlier	sorting	example:	

static	void	sort(int[]	list,	boolean	ascending)	{	
			…		
			boolean	mustSwap;	
			if	(ascending)	{	
						mustSwap	=	list[i]	>	list[j];	
			}	else	{	
						mustSwap	=	list[i]	<	list[j];	
			}	
			…	
}	

interface	Order	{	
		boolean	lessThan(int	i,	int	j);	
}	
final	Order	ASCENDING	=		(i,	j)	->	i	<	j;	
final	Order	DESCENDING	=	(i,	j)	->	i	>	j;	
	
static	void	sort(int[]	list,	Order	cmp)	{	
		…		
		boolean	mustSwap	=	
				cmp.lessThan(list[i],	list[j]);	
		…	
}	

Version A: 

Version B': 



6 17-214 

Delegation	

•  Delegation	is	simply	when	one	object	relies	on	another	object	
for	some	subset	of	its	functionality	
–  e.g.	here,	the	Sorter	is	delegating	functionality	to	some	Order	

•  Judicious	delegation	enables	code	reuse	

interface	Order	{	
		boolean	lessThan(int	i,	int	j);	
}	
final	Order	ASCENDING	=		(i,	j)	->	i	<	j;	
final	Order	DESCENDING	=	(i,	j)	->	i	>	j;	
	
static	void	sort(int[]	list,	Order	cmp)	{	
		…		
		boolean	mustSwap	=	
				cmp.lessThan(list[i],	list[j]);	
		…	
}	



7 17-214 

Delegation	

•  Delegation	is	simply	when	one	object	relies	on	another	object	
for	some	subset	of	its	functionality	
–  e.g.	here,	the	Sorter	is	delegating	functionality	to	some	Order	

•  Judicious	delegation	enables	code	reuse	
–  Sorter	can	be	reused	with	arbitrary	sort	orders	
–  Orders	can	be	reused	with	arbitrary	client	code	that	needs	to	compare	

integers	
interface	Order	{	
		boolean	lessThan(int	i,	int	j);	
}	
final	Order	ASCENDING	=		(i,	j)	->	i	<	j;	
final	Order	DESCENDING	=	(i,	j)	->	i	>	j;	
	
static	void	sort(int[]	list,	Order	cmp)	{	
		…		
		boolean	mustSwap	=	
				cmp.lessThan(list[i],	list[j]);	
		…	
}	



8 17-214 

Using	delegation	to	extend	functionality	

•  Consider	the	java.util.List	(excerpted):	
	public	interface	List<E>	{	
			public	boolean	add(E	e);	
			public	E							remove(int	index);	
			public	void				clear();	
			…	
	}	

•  Suppose	we	want	a	list	that	logs	its	operations	to	the	console…	



9 17-214 

Using	delegation	to	extend	functionality	

•  One	solution:	
public	class	LoggingList<E>	implements	List<E>	{	
		private	final	List<E>	list;	
		public	LoggingList<E>(List<E>	list)	{	this.list	=	list;	}	
		public	boolean	add(E	e)	{	
						System.out.println("Adding	"	+	e);	
						return	list.add(e);	
		}	
		public	E	remove(int	index)	{	
						System.out.println("Removing	at	"	+	index);	
						return	list.remove(index);	
		}	
		…	

The	LoggingList	is	composed	of	
a	List,	and	delegates	(the	non-
logging)	functionality	to	that	List	



10 17-214 

Delegation	and	design	

•  Small	interfaces	with	clear	contracts	
•  Classes	to	encapsulate	algorithms,	behaviors	

–  E.g.,	the	Order	



11 17-214 

Today	

•  Design	for	reuse:		delegation	and	inheritance	
•  UML	class	diagrams	
•  Introduction	to	design	patterns	

–  Strategy	pattern	
–  Command	pattern	

•  Design	patterns	for	reuse:	
–  Template	method	pattern	(next	week)	
–  Iterator	pattern	(next	week)	
–  Decorator	pattern	(next	week)	



12 17-214 

Consider:		types	of	bank	accounts	

public	interface	CheckingAccount	{	
				public	long	getBalance();	
				public	void		deposit(long	amount);	
				public	boolean	withdraw(long	amount);	
				public	boolean	transfer(long	amount,	Account???	target);	
				public	long	getFee();	
}	

public	interface	SavingsAccount	{	
				public	long	getBalance();	
				public	void		deposit(long	amount);	
				public	boolean	withdraw(long	amount);	
				public	boolean	transfer(long	amount,	Account???	target);	
				public	double	getInterestRate();	
}	



13 17-214 

Interface	inheritance	for	an	account	type	hierarchy	

public	interface	Account	{	
				public	long	getBalance();	
				public	void		deposit(long	amount);	
				public	boolean	withdraw(long	amount);	
				public	boolean	transfer(long	amount,	Account	target);	
				public	void	monthlyAdjustment();	
}	

public	interface	CheckingAccount	extends	Account	{	
				public	long	getFee();	
}	

public	interface	SavingsAccount	extends	Account	{	
				public	double	getInterestRate();	
}	

public	interface	InterestCheckingAccount		
																						extends	CheckingAccount,	SavingsAccount	{	
}	



14 17-214 

The	power	of	object-oriented	interfaces	

•  Subtype	polymorphism	
–  Different	kinds	of	objects	can	be	treated	uniformly	by	client	code	
–  Each	object	behaves	according	to	its	type	

•  e.g.,	if	you	add	new	kind	of	account,	client	code	does	not	change:	
	

If	today	is	the	last	day	of	the	month:	
			For	each	acct	in	allAccounts:	
						acct.monthlyAdjustment();	
    



15 17-214 

public	abstract	class	AbstractAccount	
	 	implements	Account	{	
	protected	long	balance	=	0;	
	public	long	getBalance()	{	
	 	return	balance;	
	}	
	abstract	public	void	monthlyAdjustment();	
	//	other	methods…	

}	
	
public	class	CheckingAccountImpl	
	 	extends	AbstractAccount	
	 	implements	CheckingAccount	{	
	public	void	monthlyAdjustment()	{	
	 	balance	-=	getFee();	
	}	
	public	long	getFee()	{	…	}	

}	

Implementation	inheritance	for	code	reuse	



16 17-214 

public	abstract	class	AbstractAccount	
	 	implements	Account	{	
	protected	long	balance	=	0;	
	public	long	getBalance()	{	
	 	return	balance;	
	}	
	abstract	public	void	monthlyAdjustment();	
	//	other	methods…	

}	
	
public	class	CheckingAccountImpl	
	 	extends	AbstractAccount	
	 	implements	CheckingAccount	{	
	public	void	monthlyAdjustment()	{	
	 	balance	-=	getFee();	
	}	
	public	long	getFee()	{	…	}	

}	

Implementation	inheritance	for	code	reuse	

protected	elements	
are	visible	in	
subclasses	

an	abstract	class	is	missing	
the	implementation	of	one	

or	more	methods	

an	abstract	method	is	
left	to	be	

implemented	in	a	
subclass	

no	need	to		define	getBalance()	
–	the	code	is	inherited	from	

AbstractAccount	



17 17-214 

Inheritance:		a	glimpse	at	the	hierarchy	

•  Examples	from	Java	
–  java.lang.Object	
–  Collections	library	



18 17-214 

Java	Collections	API	(excerpt)	

Collection 

List Set AbstractCollection 

AbstractList 

LinkedList 

Vector 

HashSet 

AbstractSequentialList 

AbstractSet 

Cloneable 

ArrayList 

interfaces 



19 17-214 

The	abstract	java.util.AbstractList<E>	

		abstract	E			get(int	i);														
		abstract	int	size();																		
		boolean						set(int	i,	E	e);									//	pseudo-abstract	
		boolean						add(E	e);																//	pseudo-abstract																
		boolean						remove(E	e);													//	pseudo-abstract	
		boolean						addAll(Collection<?	extends	E>	c);	
		boolean						removeAll(Collection<?>	c);	
		boolean						retainAll(Collection<?>	c);	
		boolean						contains(E	e);	
		boolean						containsAll(Collection<?>	c);	
		void									clear();	
		boolean						isEmpty();	
		Iterator<E>		iterator();	
		Object[]					toArray()	
		<T>	T[]						toArray(T[]	a);	
		…	
	



20 17-214 

Using	java.util.AbstractList<E>	

public	class	ReversedList<E>	extends	java.util.AbstractList<E>	
													implements	java.util.List<E>	{	
				private	final	List<E>	list;	
	
				public	ReversedList(List<E>	list)	{	
								this.list	=	list;	
				}	
	
				@Override	
				public	int	size()	{	
								return	list.size();	
				}	
	
				@Override	
				public	E	get(int	index)	{	
								return	list.get(size()	-	index	-	1);	
				}	
}	



21 17-214 

Benefits	of	inheritance	

•  Reuse	of	code	
•  Modeling	flexibility	



22 17-214 

Inheritance	and	subtyping	

•  Inheritance	is	for	polymorphism	and	
code	reuse	
–  Write	code	once	and	only	once	
–  Superclass	features	implicitly	available	in	

subclass	

•  Subtyping	is	for	polymorphism	
–  Accessing	objects	the	same	way,	but	getting	

different	behavior	
–  Subtype	is	substitutable	for	supertype	

class	A	extends	B	

class	A	implements	B	
class	A	extends	B	



23 17-214 

Typical	roles	for	interfaces	and	classes	

•  An	interface	defines	expectations	/	commitments	for	clients	
•  A	class	fulfills	the	expectations	of	an	interface	

–  An	abstract	class	is	a	convenient	hybrid	
–  A	subclass	specializes	a	class's	implementation	



24 17-214 

Java	inheritance	details	not	discussed	here	

•  Reuse	with	the	super	keyword	
–  In	constructors	and	other	methods	

•  The	final	keyword	applied	to	methods	and	classes	
•  Type-casting	
•  The	instanceof	keyword	
•  Nuances	of	dynamic	dispatch	in	Java	



25 17-214 

Java	details:		extended	reuse	with	super	

public	abstract	class	AbstractAccount	implements	Account	{	
	protected	long	balance	=	0;	
	public	boolean	withdraw(long	amount)	{	
					//	withdraws	money	from	account	(code	not	shown)	
	}	

}	
	
public	class	ExpensiveCheckingAccountImpl	
	 	extends	AbstractAccount	implements	CheckingAccount	{	
	public	boolean	withdraw(long	amount)	{	
	 	balance	-=	HUGE_ATM_FEE;	
	 	boolean	success	=	super.withdraw(amount)	
	 	if	(!success)	
	 	 	balance	+=	HUGE_ATM_FEE;	
	 	return	success;	
	}	

}	

	Overrides	withdraw	but	
also	uses	the	superclass	
withdraw	method	



26 17-214 

Java	details:	constructors	with	this	and	super

public	class	CheckingAccountImpl	
	 	extends	AbstractAccount	implements	CheckingAccount	{	

	
	private	long	fee;	

	
	public	CheckingAccountImpl(long	initialBalance,	long	fee)	{	
	 	super(initialBalance);	
	 	this.fee	=	fee;	
	}	

	
	public	CheckingAccountImpl(long	initialBalance)	{	
	 	this(initialBalance,	500);	
	}	
	/*	other	methods…	*/	}	 Invokes	another	

constructor	in	
this	same	class	

Invokes	a	constructor	of	
the	superclass.	Must	be	the	

first	statement	of	the	
constructor.	



27 17-214 

Java	details:		final	

•  A	final	field:	prevents	reassignment	to	the	field	after	
initialization	

•  A	final	method:	prevents	overriding	the	method	
•  A	final	class:	prevents	extending	the	class	

–  e.g.,		public	final	class	CheckingAccountImpl	{	…	
	



28 17-214 

Note:	type-casting	in	Java	

•  Sometimes	you	want	a	different	type	than	you	have	
–  e.g., 	double	pi	=	3.14;	
							 	int	indianaPi	=	(int)	pi;	

•  Useful	if	you	know	you	have	a	more	specific	subtype:	
–  e.g.,			 		
  Account	acct	=	…;	
		CheckingAccount	checkingAcct	=		
																							(CheckingAccount)	acct;	
		long	fee	=	checkingAcct.getFee();	
–  Will	get	a	ClassCastException	if	types	are	incompatible	

•  Advice:		avoid	downcasting	types	
–  Never(?)	downcast	within	superclass	to	a	subclass	



29 17-214 

An	aside:	instanceof	

•  Operator	that	tests	whether	an	object	is	of	a	given	class	
public	void	doSomething(Account	acct)	{	
				long	adj	=	0;	
				if	(acct	instanceof	CheckingAccount)	{	
								checkingAcct	=	(CheckingAccount)	acct;	
								adj	=	checkingAcct.getFee();	

				}	else	if	(acct	instanceof	SavingsAccount)	{	
								savingsAcct	=	(SavingsAccount)	acct;	
								adj	=	savingsAcct.getInterest();	

				}	
				…	
}	

•  Advice:		avoid	instanceof	if	possible	
–  Never(?)	use	instanceof	in	a	superclass	to	check	type	against	subclass	

	

Do not 
do this. 
This code 
is bad. 



30 17-214 

An	aside:	instanceof	

•  Operator	that	tests	whether	an	object	is	of	a	given	class	
public	void	doSomething(Account	acct)	{	
				long	adj	=	0;	
				if	(acct	instanceof	CheckingAccount)	{	
								checkingAcct	=	(CheckingAccount)	acct;	
								adj	=	checkingAcct.getFee();	

				}	else	if	(acct	instanceof	SavingsAccount)	{	
								savingsAcct	=	(SavingsAccount)	acct;	
								adj	=	savingsAcct.getInterest();	

				}	else	if	(acct	instanceof	InterestCheckingAccount)	{	
								icAccount	=	(InterestCheckingAccount)	acct;	
								adj	=	icAccount.getInterest();	
								adj	-=	icAccount.getFee();	
				}	
				…	
}	

Do not 
do this. 
This code 
is bad. 



31 17-214 

Java	details:		Dynamic	method	dispatch	

1.  (Compile	time)	Determine	which	class	to	look	in	
2.  (Compile	time)	Determine	method	signature	to	be	executed	

1.  Find	all	accessible,	applicable	methods	
2.  Select	most	specific	matching	method	



32 17-214 

Java	details:		Dynamic	method	dispatch	

1.  (Compile	time)	Determine	which	class	to	look	in	
2.  (Compile	time)	Determine	method	signature	to	be	executed	

1.  Find	all	accessible,	applicable	methods	
2.  Select	most	specific	matching	method	

3.  (Run	time)	Determine	dynamic	class	of	the	receiver	
4.  (Run	time)	From	dynamic	class,	determine	method	to	invoke	

1.  Execute	method	with	the	same	signature	found	in	step	2	(from	dynamic	
class	or	one	of	its	supertypes)	



33 17-214 

Use	polymorphism	to	avoid	instanceof	
public	interface	Account	{	
				…	
				public	long	getMonthlyAdjustment();	
}	
	
public	class	CheckingAccount	implements	Account	{	
				…	
				public	long	getMonthlyAdjustment()	{	
								return	getFee();	
				}	
}	
	
public	class	SavingsAccount	implements	Account	{	
				…	
				public	long	getMonthlyAdjustment()	{	
								return	getInterest();	
				}	
}	
	
	
	



34 17-214 

Use	polymorphism	to	avoid	instanceof	

public	void	doSomething(Account	acct)	{	
		long	adj	=	0;	
		if	(acct	instanceof	CheckingAccount)	{	
				checkingAcct	=	(CheckingAccount)	acct;	
			adj	=	checkingAcct.getFee();	

		}	else	if	(acct	instanceof	SavingsAccount)	{	
				savingsAcct	=	(SavingsAccount)	acct;	
			adj	=	savingsAcct.getInterest();	

		}	
		…	
}	

Instead:	
  public	void	doSomething(Account	acct)	{	
		long	adj	=	acct.getMonthlyAdjustment();	
		…	
}	



35 17-214 

Delegation	vs.	inheritance	summary	

•  Inheritance	can	improve	modeling	flexibility	
•  Usually,	favor	composition/delegation	over	inheritance	

–  Inheritance	violates	information	hiding	
–  Delegation	supports	information	hiding	

•  Design	and	document	for	inheritance,	or	prohibit	it	
–  Document	requirements	for	overriding	any	method	



36 17-214 

Today	

•  Design	for	reuse:		delegation	and	inheritance	
•  UML	class	diagrams	
•  Introduction	to	design	patterns	

–  Strategy	pattern	
–  Command	pattern	

•  Design	patterns	for	reuse:	
–  Template	method	pattern	(next	week)	
–  Iterator	pattern	(next	week)	
–  Decorator	pattern	(next	week)	



37 17-214 

Religious	debates…	

"Democracy	is	the	worst	form	of	government,	
except	for	all	the	others…"				

	--	(allegedly)	Winston	Churchill	



38 17-214 

UML:		Unified	Modeling	Language	



39 17-214 

UML:		Unified	Modeling	Language	



40 17-214 

UML:		Unified	Modeling	Language	



41 17-214 

UML:		Unified	Modeling	Language	



42 17-214 

UML	in	this	course	

•  UML	class	diagrams	
•  UML	interaction	diagrams	

–  Sequence	diagrams	



43 17-214 

UML	class	diagrams		(interfaces	and	inheritance)	

public	interface	Account	{	
				public	long	getBalance();	
				public	void		deposit(long	amount);	
				public	boolean	withdraw(long	amount);	
				public	boolean	transfer(long	amount,	Account	target);	
				public	void	monthlyAdjustment();	
}	

public	interface	CheckingAccount	extends	Account	{	
				public	long	getFee();	
}	

public	interface	SavingsAccount	extends	Account	{	
				public	double	getInterestRate();	
}	

public	interface	InterestCheckingAccount		
																						extends	CheckingAccount,	SavingsAccount	{	
}	



44 17-214 

public	abstract	class	AbstractAccount	
	 	implements	Account	{	
	protected	long	balance	=	0;	
	public	long	getBalance()	{	
	 	return	balance;	
	}	
	abstract	public	void	monthlyAdjustment();	
	//	other	methods…	

}	
	
public	class	CheckingAccountImpl	
	 	extends	AbstractAccount	
	 	implements	CheckingAccount	{	
	public	void	monthlyAdjustment()	{	
	 	balance	-=	getFee();	
	}	
	public	long	getFee()	{	…	}	

}	

UML	class	diagrams		(classes)	



45 17-214 

UML	you	should	know	

•  Interfaces	vs.	classes	
•  Fields	vs.	methods	
•  Relationships:			

–  "extends"	(inheritance)	
–  "implements"	(realization)	
–  "has	a"	(aggregation)	
–  non-specific	association	

•  Visibility:					+	(public)					-	(private)						#	(protected)	
•  Basic	best	practices…	



46 17-214 

•  Best	used	to	show	the	big	picture	
–  Omit	unimportant	details	

•  But	show	they	are	there:		…	
•  Avoid	redundancy	

–  e.g.,	bad:	

			good:	

UML	advice	



47 17-214 

Today	

•  Design	for	reuse:		delegation	and	inheritance	
•  UML	class	diagrams	
•  Introduction	to	design	patterns	

–  Strategy	pattern	
–  Command	pattern	

•  Design	patterns	for	reuse:	
–  Template	method	pattern	(next	week)	
–  Iterator	pattern	(next	week)	
–  Decorator	pattern	(next	week)	



48 17-214 

One	design	scenario	

•  Amazon.com	processes	millions	of	orders	each	year,	selling	in	75	
countries,	all	50	states,	and	thousands	of	cities	worldwide.		
These	countries,	states,	and	cities	have	hundreds	of	distinct	
sales	tax	policies	and,	for	any	order	and	destination,	
Amazon.com	must	be	able	to	compute	the	correct	sales	tax	for	
the	order	and	destination.	



49 17-214 

Another	design	scenario	

•  A	vision	processing	system	must	detect	lines	in	an	image.		For	
different	applications	the	line	detection	requirements	vary.		E.g.,	
for	a	vision	system	in	a	driverless	car	the	system	must	process	30	
images	per	second,	but	it's	OK	to	miss	some	lines	in	some	
images.		A	face	recognition	system	can	spend	3-5	seconds	
analyzing	an	image,	but	requires	accurate	detection	of	subtle	
lines	on	a	face.	



50 17-214 

A	third	design	scenario	

•  Suppose	we	need	to	sort	a	list	in	different	orders…	

interface	Order	{	
		boolean	lessThan(int	i,	int	j);	
}	
	
final	Order	ASCENDING	=		(i,	j)	->	i	<	j;	
final	Order	DESCENDING	=	(i,	j)	->	i	>	j;	
	
static	void	sort(int[]	list,	Order	cmp)	{	
		…		
		boolean	mustSwap	=	
				cmp.lessThan(list[i],	list[j]);	
		…	
}	



51 17-214 

Design	patterns	

“Each	pattern	describes	a	problem	
which	occurs	over	and	over	again	
in	our	environment,	and	then	
describes	the	core	of	the	solution	
to	that	problem,	in	such	a	way	
that	you	can	use	this	solution	a	
million	times	over,	without	ever	
doing	it	the	same	way	twice”	
			–	Christopher	Alexander,	
							Architect	(1977)	



52 17-214 

How	not	to	discuss	design	(from	Shalloway	and	Trott)	

•  Carpentry:	
–  How	do	you	think	we	should	build	these	drawers?	
–  Well,	I	think	we	should	make	the	joint	by	cutting	straight	down	into	the	

wood,	and	then	cut	back	up	45	degrees,	and	then	going	straight	back	
down,	and	then	back	up	the	other	way	45	degrees,	and	then	going	
straight	down,	and	repeating…	



53 17-214 

How	not	to	discuss	design	(from	Shalloway	and	Trott)	

•  Carpentry:	
–  How	do	you	think	we	should	build	these	drawers?	
–  Well,	I	think	we	should	make	the	joint	by	cutting	straight	down	into	the	

wood,	and	then	cut	back	up	45	degrees,	and	then	going	straight	back	
down,	and	then	back	up	the	other	way	45	degrees,	and	then	going	
straight	down,	and	repeating…	

•  Software	Engineering:	
–  How	do	you	think	we	should	write	this	method?	
–  I	think	we	should	write	this	if	statement	to	handle	…	followed	by	a	while	

loop	…	with	a	break	statement	so	that…	



54 17-214 

Discussion	with	design	patterns	

•  Carpentry:	
–  "Is	a	dovetail	joint	or	a	miter	joint	better	here?"	

•  Software	Engineering:	
–  "Is	a	strategy	pattern	or	a	template	method	better	here?"	

	

	



55 17-214 

History:	Design	Patterns	(1994)	



56 17-214 

Elements	of	a	design	pattern	

•  Name	
•  Abstract	description	of	problem	
•  Abstract	description	of	solution	
•  Analysis	of	consequences	



57 17-214 

Strategy	pattern	

•  Problem:		Clients	need	different	variants	of	an	algorithm	
•  Solution:		Create	an	interface	for	the	algorithm,	with	an	

implementing	class	for	each	variant	of	the	algorithm	
•  Consequences:	

–  Easily	extensible	for	new	algorithm	implementations	
–  Separates	algorithm	from	client	context	
–  Introduces	an	extra	interface	and	many	classes:	

•  Code	can	be	harder	to	understand	
•  Lots	of	overhead	if	the	strategies	are	simple	



58 17-214 

Patterns	are	more	than	just	structure	

•  Consider:		A	modern	car	engine	is	constantly	monitored	by	a	
software	system.		The	monitoring	system	must	obtain	data	from	
many	distinct	engine	sensors,	such	as	an	oil	temperature	sensor,	
an	oxygen	sensor,	etc.		More	sensors	may	be	added	in	the	
future.	



59 17-214 

Different	patterns	can	have	the	same	structure	

Command	pattern:	
•  Problem:		Clients	need	to	execute	some	(possibly	flexible)	

operation	without	knowing	the	details	of	the	operation	
•  Solution:		Create	an	interface	for	the	operation,	with	a	class	(or	

classes)	that	actually	executes	the	operation	
•  Consequences:	

–  Separates	operation	from	client	context	
–  Can	specify,	queue,	and	execute	commands	at	different	times	
–  Introduces	an	extra	interface	and	classes:	

•  Code	can	be	harder	to	understand	
•  Lots	of	overhead	if	the	commands	are	simple	



60 17-214 

Design	pattern	conclusions	

•  Provide	shared	language	
•  Convey	shared	experience	
•  Can	be	system	and	language	specific	



61 17-214 

Summary	

•  Prefer	delegation	to	inheritance	
•  Use	UML	class	diagrams	to	simplify	communication	
•  Design	patterns…	

–  Convey	shared	experience,	general	solutions	
–  Facilitate	communication	

•  Specific	design	patterns	for	reuse:	
–  Strategy	
–  Command	
















	06-delegation-inheritance-design-patterns
	design-pattern-intro-paper-slides
	20190912-introduction-to-design-patterns
	20190917-design-patterns-continued


