
1 17-214

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Design	for	reuse	
	
Behavioral	subtyping	
	
Josh	Bloch 	 	Charlie	Garrod	

2 17-214

Administrivia	

•  Homework	1	graded	soon	
•  Please	sign	and	return	collaboration	policy	to	Gradescope	

•  Reading	due	today:		Effective	Java,	Items	17	and	50	
–  Optional	reading	due	Thursday	
–  Required	reading	due	next	Tuesday	

•  Homework	2	due	Sunday	11:59	p.m.	

3 17-214

Required	reading	participation	quiz	

•  https://bit.ly/32x0vsU	

4 17-214

Design	goals	for	your	Homework	1	solution?	

Functional	
correctness	 Adherence	of	implementation	to	the	specifications	

Robustness	 Ability	to	handle	anomalous	events	

Flexibility	 Ability	to	accommodate	changes	in	specifications	

Reusability	 Ability	to	be	reused	in	another	application	

Efficiency	 Satisfaction	of	speed	and	storage	requirements	

Scalability	 Ability	to	serve	as	the	basis	of	a	larger	version	of	the	application	

Security	 Level	of	consideration	of	application	security	

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

5 17-214

One	Homework	1	solution…	

class	Document	{	
				private	final	String	url;	
				public	Document(String	url)	{	
								this.url	=	url;	
				}	
	
				public	double	similarityTo(Document	d)	{	
								…	ourText	=	download(url);	
								…	theirText	=	download(d.url);	
								…	ourFreq	=	computeFrequencies(ourText);	
								…	theirFreq	=	computeFrequencies(theirText);	
								return	cosine(ourFreq,	theirFreq);	
				}	
				…	
}	

6 17-214

Compare	to	another	Homework	1	solution…	

class	Document	{	
				private	final	String	url;	
				public	Document(String	url)	{	
								this.url	=	url;	
				}	
	
				public	double	similarityTo(Document	d)	{	
								…	ourText	=	download(url);	
								…	theirText	=	download(d.url);	
								…	ourFreq	=	computeFreq(ourText);	
								…	theirFreq	=	computeFreq(theirText);	
								return	cosine(ourFreq,	theirFreq);	
				}	
				…	
}	

class	Document	{	
				private	final	…	frequencies;	
				public	Document(String	url)	{	
								…	ourText	=	download(url);	
								frequencies	=	computeFrequencies(ourText);	
				}	
	
				public	double	similarityTo(Document	d)	{	
								return	cosine(frequencies,		
																						d.frequencies);	
				}	
				…	
}	

7 17-214

Using	the	Document	class	

			For	each	url:	
							Construct	a	new	Document	
	
			For	each	pair	of	Documents	d1,	d2:	
							Compute	d1.similarityTo(d2)	
							…	

•  What	is	the	running	time	of	this,	for	n	urls?	

8 17-214

Latency	Numbers	Every	Programmer	Should	Know	
Jeff	Dean,	Senior	Fellow,	Google		

PRIMITIVE																							LATENCY:					ns									us				ms	
L1	cache	reference																											0.5	
Branch	mispredict																												5			
L2	cache	reference																											7			
Mutex	lock/unlock																											25			
Main	memory	reference																						100																								
Compress	1K	bytes	with	Zippy													3,000										3	
Send	1K	bytes	over	1	Gbps	network							10,000									10	
Read	4K	randomly	from	SSD*													150,000								150	
Read	1	MB	sequentially	from	memory					250,000								250	
Round	trip	within	same	datacenter						500,000								500	
Read	1	MB	sequentially	from	SSD*					1,000,000						1,000				1	
Disk	seek																											10,000,000					10,000			10	
Read	1	MB	sequentially	from	disk				20,000,000					20,000			20	
Send	packet	CA->Netherlands->CA				150,000,000				150,000		150	

9 17-214

The	point	

•  Constants	matter	
•  Design	goals	sometimes	clearly	suggest	one	alternative	

10 17-214

Design	goals	for	your	Homework	2	solution?	

Functional	
correctness	 Adherence	of	implementation	to	the	specifications	

Robustness	 Ability	to	handle	anomalous	events	

Flexibility	 Ability	to	accommodate	changes	in	specifications	

Reusability	 Ability	to	be	reused	in	another	application	

Efficiency	 Satisfaction	of	speed	and	storage	requirements	

Scalability	 Ability	to	serve	as	the	basis	of	a	larger	version	of	the	application	

Security	 Level	of	consideration	of	application	security	

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

11 17-214

Key	concepts	from	last	Thursday	

12 17-214

Key	concepts	from	last	Thursday	

•  Exceptions	
•  Specifying	program	behavior:	contracts	
•  Testing:	

–  Continuous	integration,	practical	advice	
–  Coverage	metrics,	statement	coverage	

•  The	java.lang.Object	contracts	

13 17-214

Selecting	test	cases	

•  Write	tests	based	on	the	specification,	for:	
–  Representative	cases	
–  Invalid	cases	
–  Boundary	conditions	

•  Write	stress	tests	
–  Automatically	generate	huge	numbers	of	test	cases	

•  Think	like	an	attacker	
•  Other	tests:		performance,	security,	system	interactions,	…	

14 17-214

Methods	common	to	all	objects	

•  How	do	collections	know	how	to	test	objects	for	equality?	
•  How	do	they	know	how	to	hash	and	print	them?	
•  The	relevant	methods	are	all	present	on	Object	

–  toString	-	returns	a	printable	string	representation	
–  equals	-	returns		true	if	the	two	objects	are	“equal”	
–  hashCode	-	returns	an	int	that	must	be	equal	for	equal	
objects,	and	is	likely	to	differ	on	unequal	objects	

15 17-214

The	hashCode	contract	

	

Whenever	it	is	invoked	on	the	same	object	more	than	once	during	an	execution	
of	an	application,	the	hashCode	method	must	consistently	return	the	
same	integer,	provided	no	information	used	in	equals	comparisons	on	the	
object	is	modified.	This	integer	need	not	remain	consistent	from	one	execution	
of	an	application	to	another	execution	of	the	same	application.	
–  If	two	objects	are	equal	according	to	the	equals(Object)	method,	then	calling	the	

hashCode	method	on	each	of	the	two	objects	must	produce	the	same	integer	
result.	

–  It	is	not	required	that	if	two	objects	are	unequal	according	to	the	equals(Object)	
method,	then	calling	the	hashCode	method	on	each	of	the	two	objects	must	
produce	distinct	integer	results.	However,	the	programmer	should	be	aware	that	
producing	distinct	integer	results	for	unequal	objects	may	improve	the	
performance	of	hash	tables.	

16 17-214

The	hashCode	contract	in	English	

•  Equal	objects	must	have	equal	hash	codes	
–  If	you	override	equals	you	must	override	hashCode	

•  Unequal	objects	should	have	different	hash	codes	
–  Take	all	value	fields	into	account	when	calculating	it	

•  Hash	code	must	not	change	unless	object	mutated	
–  Use	a	deterministic	function	of	the	field	values	

17 17-214

hashCode	override	example	

public	final	class	PhoneNumber	{	
				private	final	short	areaCode;	
				private	final	short	prefix;	
				private	final	short	lineNumber;	
	
				@Override	public	int	hashCode()	{	
								int	result	=	17;		//	Nonzero	is	good	
								result	=	31	*	result	+	areaCode;			//	Constant	must	be	odd	
								result	=	31	*	result	+	prefix;					//					"					"			"			"		
								result	=	31	*	result	+	lineNumber;	//					"					"			"			"		
								return	result;	
				}	
	
				...	
}	
	

18 17-214

Alternative	hashCode	override	
Less	efficient,	but	otherwise	equally	good!	

public	final	class	PhoneNumber	{	
				private	final	short	areaCode;	
				private	final	short	prefix;	
				private	final	short	lineNumber;	
	
				@Override	public	int	hashCode()	{	
								return	Objects.hash(areaCode,	prefix,	lineNumber);	
				}	
	
				...	
}	
	
	
	
	

A	one	liner.	No	excuse	for	failing	to	override	hashCode!	
	

19 17-214

For	more	than	you	want	to	know	about	overriding	
object	methods,	see	Effective	Java	Chapter	2	

20 17-214

Today	

•  Behavioral	subtyping	
–  Liskov	Substitution	Principle	

•  Design	for	reuse:		delegation	and	inheritance	(Thursday)	
–  Java-specific	details	for	inheritance	

21 17-214

Recall:	The	class	hierarchy	

•  The	root	is	Object	(all	non-primitives	are	Objects)	
•  All	classes	except	Object	have	one	parent	class	

–  Specified	with	an	extends	clause:	
class	Guitar	extends	Instrument	{	...	}	

–  If	extends	clause	is	omitted,	defaults	to	Object	
•  A	class	is	an	instance	of	all	its	superclasses	

Object	

Toy	Instrument	

Yoyo	Guitar	

22 17-214

Behavioral	subtyping	

•  e.g.,	Compiler-enforced	rules	in	Java:	
–  Subtypes	can	add,	but	not	remove	methods	
–  Concrete	class	must	implement	all	undefined	methods	
–  Overriding	method	must	return	same	type	or	subtype	
–  Overriding	method	must	accept	the	same	parameter	types	
–  Overriding	method	may	not	throw	additional	exceptions	

Let q(x) be a property provable about objects x of type T. Then q(y)
should be provable for objects y of type S where S is a subtype of T.

Barbara Liskov

This is called the Liskov
Substitution Principle.

23 17-214

Behavioral	subtyping	

•  e.g.,	Compiler-enforced	rules	in	Java:	
–  Subtypes	can	add,	but	not	remove	methods	
–  Concrete	class	must	implement	all	undefined	methods	
–  Overriding	method	must	return	same	type	or	subtype	
–  Overriding	method	must	accept	the	same	parameter	types	
–  Overriding	method	may	not	throw	additional	exceptions	

•  Also	applies	to	specified	behavior.		Subtypes	must	have:	
–  Same	or	stronger	invariants	
–  Same	or	stronger	postconditions	for	all	methods	
–  Same	or	weaker	preconditions	for	all	methods	

Let q(x) be a property provable about objects x of type T. Then q(y)
should be provable for objects y of type S where S is a subtype of T.

Barbara Liskov

This is called the Liskov
Substitution Principle.

24 17-214

LSP	example:		Car	is	a	behavioral	subtype	of	Vehicle	

abstract	class	Vehicle	{	
		int	speed,	limit;	
	
		//@	invariant	speed	<	limit;	
	
	
	
	
	
	
	
	
	
		//@	requires	speed	!=	0;	
		//@	ensures	speed	<	\old(speed)	
		abstract	void	brake();	
}	

class	Car	extends	Vehicle	{	
		int	fuel;	
		boolean	engineOn;	
		//@	invariant	speed	<	limit;	
		//@	invariant	fuel	>=	0;	
	
		//@	requires	fuel	>	0	
								&&	!engineOn;	
		//@	ensures	engineOn;	
		void	start()	{	…	}	
	
		void	accelerate()	{	…	}	
	
		//@	requires	speed	!=	0;	
		//@	ensures	speed	<	\old(speed)	
		void	brake()	{	…	}	
}	

Subclass fulfills the same invariants (and additional ones)
Overridden method has the same pre and postconditions

25 17-214

LSP	example:		Hybrid	is	a	behavioral	subtype	of	Car	

class	Car	extends	Vehicle	{	
		int	fuel;	
		boolean	engineOn;	
		//@	invariant	speed	<	limit;	
		//@	invariant	fuel	>=	0;	
	
		//@	requires	fuel	>	0	
								&&	!engineOn;	
		//@	ensures	engineOn;	
		void	start()	{	…	}	
	
		void	accelerate()	{	…	}	
	
		//@	requires	speed	!=	0;	
		//@	ensures	speed	<	\old(speed)	
		void	brake()	{	…	}	
}	

class	Hybrid	extends	Car	{	
		int	charge;	
		//@	invariant	charge	>=	0;	
		//@	invariant	…	
		//@	requires	(charge	>	0		
																		||	fuel	>	0)		

	 	 	 	&&	!engineOn;	
		//@	ensures	engineOn;	
		void	start()	{	…	}	
	
		void	accelerate()	{	…	}	
	
		//@	requires	speed	!=	0;	
		//@	ensures	speed	<	\old(speed)	
		//@	ensures	charge	>	\old(charge)	
		void	brake()	{	…	}	
}	Subclass fulfills the same invariants (and additional ones)

Overridden method start has weaker precondition
Overridden method brake has stronger postcondition

26 17-214

Is	this	Square	a	behavioral	subtype	of	Rectangle?	

class	Rectangle	{	
	int	h,	w;	
		
	Rectangle(int	h,	int	w)	{	
	 	this.h=h;	this.w=w;	
	}	

	
	//methods	

}	

class	Square	extends	Rectangle	{	
	Square(int	w)	{	
	 	super(w,	w);	
	}	

}	

27 17-214

Is	this	Square	a	behavioral	subtype	of	Rectangle?	

class	Rectangle	{	
	int	h,	w;	
		
	Rectangle(int	h,	int	w)	{	
	 	this.h=h;	this.w=w;	
	}	

	
	//methods	

}	

class	Square	extends	Rectangle	{	
	Square(int	w)	{	
	 	super(w,	w);	
	}	

}	

(Yes.)

28 17-214

Is	this	Square	a	behavioral	subtype	of	Rectangle?	

class	Rectangle	{	
	//@	invariant	h>0	&&	w>0;	
	int	h,	w;	
		
	Rectangle(int	h,	int	w)	{	
	 	this.h=h;	this.w=w;	
	}	

	
	//methods	

}	

class	Square	extends	Rectangle	{	
			//@	invariant	h>0	&&	w>0;	
			//@	invariant	h==w;	

	Square(int	w)	{	
	 	super(w,	w);	
	}	

}	

29 17-214

Is	this	Square	a	behavioral	subtype	of	Rectangle?	

class	Rectangle	{	
	//@	invariant	h>0	&&	w>0;	
	int	h,	w;	
		
	Rectangle(int	h,	int	w)	{	
	 	this.h=h;	this.w=w;	
	}	

	
	//methods	

}	

class	Square	extends	Rectangle	{	
			//@	invariant	h>0	&&	w>0;	
			//@	invariant	h==w;	

	Square(int	w)	{	
	 	super(w,	w);	
	}	

}	

(Yes.)

30 17-214

Is	this	Square	a	behavioral	subtype	of	Rectangle?	

class	Rectangle	{	
	//@	invariant	h>0	&&	w>0;	
	int	h,	w;	
		
	Rectangle(int	h,	int	w)	{	
	 	this.h=h;	this.w=w;	
	}	

	
			//@	requires	factor	>	0;	

	void	scale(int	factor)	{	
	 	w=w*factor;	
	 	h=h*factor;	
	}	

	
}	

class	Square	extends	Rectangle	{	
			//@	invariant	h>0	&&	w>0;	
			//@	invariant	h==w;	

	Square(int	w)	{	
	 	super(w,	w);	
	}	

}	

31 17-214

Is	this	Square	a	behavioral	subtype	of	Rectangle?	

class	Rectangle	{	
	//@	invariant	h>0	&&	w>0;	
	int	h,	w;	
		
	Rectangle(int	h,	int	w)	{	
	 	this.h=h;	this.w=w;	
	}	

	
			//@	requires	factor	>	0;	

	void	scale(int	factor)	{	
	 	w=w*factor;	
	 	h=h*factor;	
	}	

	
}	

class	Square	extends	Rectangle	{	
			//@	invariant	h>0	&&	w>0;	
			//@	invariant	h==w;	

	Square(int	w)	{	
	 	super(w,	w);	
	}	

}	

(Yes.)

32 17-214

Is	this	Square	a	behavioral	subtype	of	Rectangle?	

class	Rectangle	{	
	//@	invariant	h>0	&&	w>0;	
	int	h,	w;	
		
	Rectangle(int	h,	int	w)	{	
	 	this.h=h;	this.w=w;	
	}	

	
			//@	requires	factor	>	0;	

	void	scale(int	factor)	{	
	 	w=w*factor;	
	 	h=h*factor;	
	}	

			//@	requires	neww	>	0;	
	void	setWidth(int	neww)	{	
	 	w=neww;	
	}	

}	

class	Square	extends	Rectangle	{	
			//@	invariant	h>0	&&	w>0;	
			//@	invariant	h==w;	

	Square(int	w)	{	
	 	super(w,	w);	
	}	

}	

33 17-214

Is	this	Square	a	behavioral	subtype	of	Rectangle?	

class	Rectangle	{	
	//@	invariant	h>0	&&	w>0;	
	int	h,	w;	
		
	Rectangle(int	h,	int	w)	{	
	 	this.h=h;	this.w=w;	
	}	

	
			//@	requires	factor	>	0;	

	void	scale(int	factor)	{	
	 	w=w*factor;	
	 	h=h*factor;	
	}	

			//@	requires	neww	>	0;	
	void	setWidth(int	neww)	{	
	 	w=neww;	
	}	

}	

class	Square	extends	Rectangle	{	
			//@	invariant	h>0	&&	w>0;	
			//@	invariant	h==w;	

	Square(int	w)	{	
	 	super(w,	w);	
	}	

}	

← Invalidates stronger
 invariant (h==w) in subclass

class	GraphicProgram	{	
				void	scaleW(Rectangle	r,	int	f)	{	
								r.setWidth(r.getWidth()	*	f);	
				}	
}	

(Yes! But the Square is not a square…)

34 17-214

This	Square	is	not	a	behavioral	subtype	of	Rectangle	

class	Rectangle	{	
	//@	invariant	h>0	&&	w>0;	
	int	h,	w;	
		
	Rectangle(int	h,	int	w)	{	
	 	this.h=h;	this.w=w;	
	}	

	
			//@	requires	factor	>	0;	

	void	scale(int	factor)	{	
	 	w=w*factor;	
	 	h=h*factor;	
	}	

			//@	requires	neww	>	0;	
			//@	ensures	w==neww		
													&&	h==old.h;	

	void	setWidth(int	neww)	{	
	 	w=neww;	
	}	

}	

class	Square	extends	Rectangle	{	
			//@	invariant	h>0	&&	w>0;	
			//@	invariant	h==w;	

	Square(int	w)	{	
	 	super(w,	w);	
	}	

	
			//@	requires	neww	>	0;	
			//@	ensures	w==neww	
													&&	h==neww;	
			@Override	
			void	setWidth(int	neww)	{	
						w=neww;	
						h=neww;	
			}	
}	

35 17-214

Today	

•  Behavioral	subtyping	
–  Liskov	Substitution	Principle	

•  Design	for	reuse:		delegation	and	inheritance	(Thursday)	
–  Java-specific	details	for	inheritance	

