Principles of Software Construction:
Objects, Design, and Concurrency

23 Patterns in 80 Minutes: a Whirlwind Java-centric Tour
of the Gang-of-Four Design Patterns

Josh Bloch Charlie Garrod

gj]urmgiv Mellon University
School of Computer Science
. s .
institute for
I S SOFTWARE
RESEARCH

[]
institute
17-214 1 e
RESEARCH

Administrivia

* Homework 6 due tomorrow (Wednesday) 11:59 pm EST
* Final exam review session Sunday 7:30 pm —9:30 pm EST

— Zoom link to be announced on Piazza

* Final exam
- Will be released on Gradescope, Monday 12/14, evening
- Due Tuesday 11:59 p.m. EDT
- Designed to take 3 hrs.
- Open book, open notes, open Internet
- Closed person, no interaction with others about the exam

[]
institute |
17-214 2 SOFTWARE
RESEARCH

Outline

. Creational Patterns

Il. Structural Patterns /

lIl. Behavioral Patterns

V‘V
s
4
=
7
VA
=
=z
%
=
m
<
o
]
0
4
m
v
7]
A
4
Z
Z
=
N
N
®,
rd
=
~
-
74
0
4
v
=
m
)

SOPISSIIA e UOSULO[
s e BLILUET)

&=

institute |
17-214 3 SOFTWARE
RESEARCH

Pattern Name

* Intent —the aim of this pattern
* Use case — a motivating example

Types — the key types that define pattern

— Italic type name indicates an abstract class; typically this is an interface
type when the pattern is used in Java

JDK — example(s) of this pattern in the JDK

[]
institute |
17-214 4 SOFTWARE
RESEARCH

Illustration

 Code sample, diagram, or drawing

— Time constraints make it impossible to include illustrations from some
patterns

institute |
17-214 5 SOFTWARE
RESEARCH

|. Creational Patterns

1. Abstract factory
2. Builder

3. Factory method
4. Prototype

5. Singleton

[]
institute
17-214 6 e
RESEARCH

1. Abstract Factory

* Intent — allow creation of families of related objects
independent of implementation

 Use case — look-and-feel in a GUI toolkit
— Each look-and-feel has its own windows, scrollbars, etc.

 Types — AbstractFactory with methods to create each family
member; AbstractProducts, the family members themselves;
(ConcreteFactories and ConcreteProducts)

e JDK—-not common

[]
institute
17-214 7 e
RESEARCH

GoF Abstract Factory lllustration

Products
WidgetFactory [€<— Client
CreateWindow() Window <
CreateScrollBar() A
I |
* > PMWindow MotifWindow

MotifWidgetFactory PMWidgetFactory |-

CreateWindow()
CreateScroliBar()

CreateWindow()
CreateScrollBar()

ScrollBar €

A

[|
> PMScrollBar MotifScroliBar

______.__1

|
LA __dl____A

institute |
17-214 8 SOFTWARE
RESEARCH

2. Builder

* Intent —separate construction of a complex object from its
representation so same creation process can create different

representations
e Use case — converting rich text to various formats
* Types — Builder, ConcreteBuilders, Director, Products
 JDK-StringBuilder, StringBuffer (sorta)

— But there is no (visible) abstract supertype...
— And both generate same product class (String)

[]
institute
17-214 9 e
RESEARCH

GoF Builder lllustration

RTFReader

ParseRTF() © [

while(t = nextToken) {
switch t Type {

CHAR:
builder->AddChar(t.Char)
FONT:
builder->SetFont(t.Font)
PARA:
builder->AddParagraph()

}
}

17-214

TextConverter
| AddChar(char)
SetFont(font)
AddParagraph()
| JI\ |
ASClIConverter TeXConverter GUITextConverter
AddChar(char) AddChar(char) AddChar(char)
GetASClIText() SetFont(font) SetFont(font)
| AddParagraph() AddParagraph()
! GetTeXText() GetGUIText()
| ; .
: , :
1
s AsciiText > TeXText s GUIText

institute for
SOFTWARE
10 RESEARCH

My take on Builder [Effective Java ltem 2]

 Emulates named optional parameters in languages that don’t
support them

* Emulates 2" constructors or factories with only n builder methods

* Emulates variable arity parameter lists (varargs) in languages that don’t
support them, and provides better type-safety in languages that do

* Costis an intermediate (Builder) object
* Not the same as GoF pattern, but related

Pizza largeHawaiian =
new Pizza.Builder(LARGE).add(HAM).add(PINEAPPLE).build();

[]
institute for
17-214 11

3. Factory Method

 |ntent — abstract creational method that lets subclasses decide
which class to instantiate

e Use case — creating documents in a framework
* Types — Creator, contains abstract method to create an instance

 JDK—-SortedMap.subMap(K fromKey, K toKey)
— TreeMap, SkipListConcurrentMap return different implementations

Related Static Factory pattern is very common in Java
— Technically not a GoF pattern, but close enough

[]
institute for
17-214 12

Factory Method Illustration

public interface SortedMap<K,V> {
SortedMap<K,V> subMap(K fromKey, K toKey);

}

public class TreeMap<K,V> implements SortedMap<K,V> {
SortedMap<K,V> subMap(K fromKey, K toKey) { ... }

}

public class ConcurrentSkipListMap<K,V> implements SortedMap<K,V>

{
SortedMap<K,V> subMap(K fromKey, K toKey) { ... }

}
SortedMap<K,V> dictionary = ...;

SortedMap<K,V> firstHalf = dictionary.submap("A", "M");

institute for
17-214 13

4. Prototype

* Intent — create an object by cloning another and tweaking
* Use case — writing music score editor in graphical editor framework
* Types — Prototype

e JDK - Cloneable, but avoid (except on arrays)

— Java and Prototype pattern are a poor fit
— Or maybe | just don’t like the pattern, because it only works for mutable types

[]
institute for
17-214 14

5. Singleton

* Intent —ensuring a class has only one instance

* Use case — GoF say print queue, file system, company in an
accounting system
— Compelling uses are rare but they do exist

* Types — Singleton
 JDK—-java.lang.Runtime

[]
institute for
17-214 15

Singleton Illustration

public enum Elvis {

ELVIS;

sing(Song song) { ... }
playGuitar(Riff riff) { ... }
eat(Food food) { ... }
take(Drug drug) { ... }

}

// Alternative implementation

public class Elvis {
public static final Elvis ELVIS = new Elvis();
private Elvis() { }

[]
institute for
17-214 16

My take on Singleton

* |t’s an instance-controlled class; others include
— Static utility class — non-instantiable
— Enum —one instance per value, all values known at compile time
— Interned class — one canonical instance per value, new values created at runtime

 There is a duality between singleton and static utility class

institute for
17-214 17

Il. Structural Patterns

Adapter
Bridge
Composite
Decorator
Facade
Flyweight

N o kR W e

Proxy

17-214

18

institute for
SOFTWARE
RESEARCH

1. Adapter

* |ntent — convert interface of a class into one that another class
requires, allowing interoperability

e Use case — numerous, e.g., arrays vs. collections

* Types — Target (what you need), Adaptee (what you have),
Adapter (class that implements Target atop Adaptee)

* JDK-Arrays.asList(T[])

[]
institute for
17-214 19

Adapter lllustration

Have this and this? Use this!

[]
institute for
17-214 20

2. Bridge

* Intent —decouple an abstraction from its implementation so
they can vary independently

e Use case — portable windowing toolkit
* Types — Abstraction, Implementor

 JDK - Java Database Connectivity (JDBC), Java Cryptography
Extension (JCE), Java Naming & Directory Interface (JNDI)

* Bridge pattern very similar to Service Provider (not a GoF pattern)

— Abstraction ~ API, Implementer ~ SPI

[]
institute for
17-214 21

Bridge lllustration

Java Application

JNDI API

Naming Manager

m
. - . ‘- N v »
Pk PTULAY ey raat \ v S e - W KN W

il Taan JNDI
[31211] ©{0]5{=1.Y Implementation
| Possibilities

[]
institute for
17-214 22

3. Composite

* Intent—compose objects into tree structures. Let clients treat
primitives & compositions uniformly.

e Use case — GUI toolkit (widgets and containers)

e Key type — Component that represents both primitives and their
containers

 JDK-javax.swing.JComponent

[]
institute for
17-214 23

Composite lllustration

public interface Expression {
double eval(); // Returns value
String toString(); // Returns infix expression string

}

public class UnaryOperationExpression implements Expression {
public UnaryOperationExpression(
UnaryOperator operator, Expression operand);
}
public class BinaryOperationExpression implements Expression {
public BinaryOperationExpression(BinaryOperator operator,
Expression operandl, Expression operand2);
}
public class NumberExpression implements Expression {
public NumberExpression(double number);

}

institute for
17-214 24

4. Decorator

* Intent — attach features to an object dynamically
e Use case — attaching borders in a GUI toolkit
* Types — Component, implemented by decorator and decorated

* JDK-Collections (e.g., Unmodifiable wrappers), java.io
streams, Swing components

[]
institute for
17-214 25

GoF Decorator lllustration

some applications woukll beoelit @
fromm wang obpects w aeslel every
aspoct of their functionalily, but

a naive design appreach would be
rrcdnbitively expensasg,

aBorderDecorator

For example. most docunseni od-
itors mwslularize cheir wext formal-
- ting and editing fcilities t some
ﬂst:l"{l“ D'Eli:ﬂl"ﬂtﬂt' .:-':1 Cxlcml. Hllwvl.:n.'_r. IhL'_l,'_ll'n-'_*l.rLaN_l,:
st shoorl of using ohjpecis o
represem cach characer and
praphical glenwnt w the dovunwenl,
Iunng sor wiorld prossste Bexibaliny
al the fimest level in the
applcation. Text and graphics
winaled b ereated wnifemly with

2 N —

aTextView

institute for
17-214 26

5. Facade

* Intent — provide a simple unified interface to a complex set of
interfaces in a subsystem
— GoF allow for variants where complex underpinnings are exposed and hidden

e Use case — any complex system; GoF use compiler
 Types — Facade (the simple unified interface)
 JDK—-java.util.concurrent.Executors

[]
institute for
17-214 27

Facade lllustration

Subsystem classes

Facade

L

17-214

28

institute for
SOFTWARE
RESEARCH

6. Flyweight

* Intent — use sharing to support large numbers of fine-grained
immutable objects efficiently

* Use case — characters in a document
* Types — Flyweight (instance-controlled)

— Some state can be extrinsic to reduce number of instances
e JDK—-Common! All enums, many others

— j.u.c.TimeUnit has number of units as extrinsic state

[]
institute for
17-214 29

GoF Flyweight lllustration

17-214

E"'*—___‘_“-
h‘““'a-..._‘
e
== character
s — [objects
& __’__,..-"'"
11 b T T rﬂ'\:’d"
alp{pa]r[efn{t=== objects
- . column
— object

30

institute for
SOFTWARE
RESEARCH

/. Proxy

* Intent — Use one object as a surrogate for another object
e Use case —delay loading of images till needed
 Types — Subject, Proxy, RealSubject

* Gof mention several flavors
— virtual proxy — stand-in that instantiates lazily
— remote proxy — local representative for remote obj
— protection proxy — denies some operations to some users
— smart reference — does locking or reference counting atop real subject

* JDK - RMI (remote proxy), collections wrappers (protection
proxy, smart reference)

institute for
17-214 31

Proxy lllustrations

Virtual Proxy

(aTextDocument |

anImageProxy |

limage = - _ [anImage]
| |fileName & - -- jl— - *Ldata]
in memory | on disk I
Smart Reference Remote Proxy
SynchronizedList ArraylList I

[]
institute for
17-214 32

lIl. Behavioral Patterns

Chain of Responsibility
Command
Interpreter
Iterator

Mediator
Memento
Observer

State

Strategy

10 Template method
11. Visitor

LN HEWNE

17-214 a3 [Giin

RRRRRRRR

1. Chain of Responsibility

* Intent —avoid coupling sender to receiver by passing request
along until someone handles it

e Use case — context-sensitive help facility
 Types — RequestHandler
 JDK-ClasslLoader, Properties (FWIW)

e Exception handling could be considered a form of Chain of
Responsibility pattern

[]
institute for
17-214 34

2. Command

* Intent —encapsulate a request as as an object, letting you
parameterize one action with another, queue or log requests, etc.

 Use case —menu tree
* Key type — Command (in Java, Runnable)
e JDK—-Common! Executor framework, etc.

e Is it Command pattern if you run the command repeatedly? If it
takes an argument? Returns a val? GoF are vague on this.

[]
institute for
17-214 35

Command Illustration

public static void main(String[] args) {
SwingUtilities.invokelLater(() -> new Demo().setVisible(true));

}

[]
institute for
17-214 36

3. Interpreter

* Intent —given a language, define class hierarchy for parse tree,
recursive method(s) to interpret it

e Use case — regular expression matching
* Types — Expression, NonterminalExpression, TerminalExpression

e JDK—-no uses I’'m aware of
— Our cryptarithm expression evaluator (HW2) is a classic example

* Necessarily uses Composite pattern!

[]
institute for
17-214 37

Interpreter lllustration

public interface Expression {
double eval(); // Returns value
String toString(); // Returns infix expression string

}

public class UnaryOperationExpression implements Expression {
public UnaryOperationExpression(
UnaryOperator operator, Expression operand);
}
public class BinaryOperationExpression implements Expression {
public BinaryOperationExpression(BinaryOperator operator,
Expression operandl, Expression operand2);
}
public class NumberExpression implements Expression {
public NumberExpression(double number);

}

institute for
17-214 38

4. |lterator

* Intent — provide a way to access elements of a collection without
exposing representation

e Use case — collections

 Types — Iterable, Iterator
— But GoF discuss internal iteration, too

 JDK - collections, for-each statement, etc.

* Note that the Iterator pattern uses the Factory Method pattern:
the iterator() method is a factory method

[]
institute for
17-214 39

Iterator lllustration

Collection<String> ¢ = ...;

for (String s : c) // Creates an Iterator appropriate to c
System.out.println(s);

institute for
17-214 a0

5. Mediator

* Intent —define an object that encapsulates how a set of objects

interact, to reduce coupling.

— Instead of directly interacting with each other, objects interact indirectly
through a mediator

— 0O(n) couplings instead of O(n?)
e Use case —dialog box where change in one component affects
behavior of others

* Types — Mediator, Components
 JDK—I'm sure there’s one hiding somewhere

[]
institute for
17-214 a1

Mediator Illustration

[]
institute for
17-214 a2

6. Memento

* Intent — without violating encapsulation, allow client to capture
an object’s state, and restore it later if desired

e Use case —undo stack for operations that aren’t easily undone,
e.g., line-art editor

* Key type — Memento (opaque state object)
* JDK - none that I’'m aware of (not serialization)

[]
institute for
17-214 a3

7. Observer

* Intent — let objects observe the behavior of other objects so they
can stay in sync with minimal coupling

* Use case — multiple views of a data object in a GUI
* Types — Subject, Observer (AKA event handler, AKA listener)

— GoF are agnostic on many details!

e JDK-Swing, left and right

[]
institute for
17-214 a4

Observer lllustration

// Implement roll button and dice type field
JTextField diceSpecField = new JTextField(diceSpec, 5); // Field width
JButton rollButton = new JButton("Roll");
rollButton.addActionListener(event -> {
if (!diceSpecField.getText().equals(diceSpec)) {

diceSpec = diceSpecField.getText();

dice = Die.dice(diceSpec);

jDice.resetDice(dice);

}

for (Die d : dice)
d.roll();

jDice.repaint();

})s

institute for
17-214 as

8. State

* Intent —allow an object to alter its behavior when internal state
changes. “Object will appear to change class.”

* Use case — TCP Connection (which is stateful)
* Key type — State (Object delegates to state!)

 JDK—none that I’'m aware of, but...

— Works great in Java
— Use enums as states
— Use AtomicReference<State> to store it (if you need thread-safety);

resulting state machine is highly concurrent.

[]
institute for
17-214 a6

9. Strategy

* Intent —represent a behavior that parameterizes an algorithm
for behavior or performance

e Use case — line-breaking for text compositing

* Types — Strategy
* JDK-Comparator

[]
institute for
17-214 a7

Strategy lllustration

Comparator is a strategy for ordering

public static synchronized void main(String[] args) {
Arrays.sort(args, reverseOrder());
System.out.println(Arrays.toString(args));

Arrays.sort(args, comparingInt(String::length));
System.out.println(Arrays.toString(args));
}

java Test i eat wondrous spam
[wondrous, spam, i, eat]
[1, eat, spam, wondrous]

[]
institute for
17-214 a8

10. Template Method

* Intent —define skeleton of an algorithm or data structure,
deferring some decisions to subclasses

e Use case — application framework that lets plugins implement all
operations on documents

* Types — AbstractClass, ConcreteClass
* JDK — skeletal collection implementations (e.g.,, AbstractList)

[]
institute for
17-214 a9

Template Method Illustration

// List adapter for primitive int arrays
public static List<Integer> intArrayList(final int[] a) {
return new AbstractList<Integer>() {
public Integer get(int i) {
return a[i];
}

public Integer set(int i, Integer val) {
Integer oldval = a[i];
al[i] = val;
return oldval;

}

public int size() {
return a.length;
}

s

institute for
17-214 50

11. Visitor
Probably the trickiest GOF pattern

* Intent —represent an operation to be performed on a recursive
object structure (e.g., a parse tree). This pattern lets you add
new operations on a tree without adding a method to the types

used to represent the tree.
e Use case — type-checking, pretty-printing, etc.
* Types — Visitor, ConcreteVisitors, all element types that get visited
 JDK—-none that I’'m aware of (but pattern is important)

[]
institute for
17-214 51

Visitor lllustration (1/3: machinery)

public interface Expression {
public <T> T accept(Visitor<T> v); // No eval or toString!
}
public interface Visitor<T> { // T is result type
public T visitUnaryExpr(UnaryExpression ue);
public T visitBinaryExpr(BinaryExpression be);
public T visitNumberExpr(NumberExpression ne);
}
public class UnaryOperationExpression implements Expression {
public final UnaryOperator operator; public final Expression operand;
public <T> T accept(Visitor<T> v) { return v.visitUnaryExpr(this); }
}
public class BinaryOperationExpression implements Expression {
public final BinaryOperator operator; public final Expression opl, op2;
public <T> T accept(Visitor<T> v) { return v.visitBinaryExpr(this) ; }
}
public class NumberExpression implements Expression {
public final double val;
public <T> T accept(Visitor<T> v) { return v.visitNumberExpr(this); }

[]
institute for
17-214 52

Visitor lllustration (2/3, eval visitor)

public class EvalVisitor implements Visitor<Double> {
public Double visitUnaryExpr(UnaryExpression ue) {
return ue.operator.apply(ue.operand.accept(this));

}

public Double visitBinaryExpr(BinaryExpression be) {
return be.operator.apply(be.opl.accept(this),
be.op2.accept(this));

}

public Double visitNumberExpr(NumberExpression ne) { return ne.val; }

institute for
17-214 53

Visitor Illlustration (3/3, toString visitor)

public class ToStringVisitor implements Visitor<String> {
public String visitUnaryExpr(UnaryExpression ue) {
return ue.operator + ue.operand.accept(this);
}
public String visitBinaryExpr(BinaryExpression be) {
return String.format("(%s %s %s)", be.operandl.accept(this),
be.operator, be.operand2.accept(this));
}
public String visitNumberExpr(NumberExpression ne) {
return Double.toString(ne.number);

}
}

// Sample use of visitors
System.out.println(e.accept(new ToStringVisitor()) + " =" +
e.accept(new EvalVisitor()));

institute for
17-214 54

More on Visitor

e Visitor is NOT merely traversing a graph and applying a method

— That’s Iterator!
— Knowing this can prevent you from flunking a job interview

* The essence of Visitor is double-dispatch of vist method
— First (dynamically) dispatch on the node type (visitee)

— Then dispatch on the operation (visitor)
— This gives you the flexibility to add a new operation to the tree without
adding a method to the node types

[]
institute for
17-214 55

Summary

 Now you know all the Gang of Four patterns
e Definitions can be vague
 Coverage isincomplete

* But they’re extremely valuable
— They gave us a vocabulary
— And a way of thinking about software

e Look for patterns as you read and write software
— GoF, non-GoF, and undiscovered

[]
institute for
17-214 56

