Principles of Software Construction:
Objects, Design, and Concurrency

Part 4: Et cetera

Toward SE in practice: Empiricism in SE

Josh Bloch Charlie Garrod

&:Iunmgiv Mellon University
School of Computer Science
. . .
institute for
I S SOFTWARE
RESEARCH

[]
institute for
= SOFTWA
17-214 1 RESEARCH

Administrivia

* Homework 6 available
— Checkpoint deadline tonight
— Due Wednesday, December 9th

* Final exam due 11:59 pm EST Tuesday, December 15t
— Will be released on the evening (EST) of Monday, December 14t
— Review session Sunday, December 13th, 7:30-9:30 pm EST
— Practice exam released late next week

[]
institute for
_ SOFTWA
17-214 I | S [Esmat

Key concepts from Tuesday

e SE as a sociotechnical system

[]
institute f
17-214 3 BORTVARE
RESEARCH

Q st Bloomberg = Ayear after the first 737 Max crash,

Technology

Boeing’s 737 Max Software Outsourced to

it's unclear when the plane will fly

$9-an-Hour Engineers again

By Peter Robison
June 28, 2019, 4:46 PM EDT

Two crashes of Boeing's 737 Max 8 killed 346 people, and
authorities are blaming Boeing's design, a faulty sensor and airline

» Planemaker and suppliers used lower-paid temporary workers

» Engineers feared the practice meant code wasn’t done right

staff. Plus: Everything you need to know about the plane.

The cockpit of a grounded 737 Max 8 aircraft. Photographer: Dimas

It remains the mystery at the hea
crisis: how a company renowned
made seemingly basic software n
deadly crashes. Longtime Boeing
was complicated by a push to ou
contractors.

The Max software -- plagued by is
planes grounded months longer
week revealed a new flaw - was ¢
was laying off experienced engin
suppliers to cut costs.

https://spectrum.ieee.org/aerospace/aviation/k
developer

17-214

\
E" Kent German i’ November 1, 2019 9:01 AM PDT ~ @

How the Boeing 737 Max Disaster
Looks to a Software Developer

Design shortcuts meant to make a new plane
seem like an old, familiar one are to blame

By Gregory Travis

The views expressed here are solely those of the author and do
not represent positions of IEEE Spectrum or the IEEE.

d killing 346 people.

737 Max 8 that killed 346 people, Boeing is facing
s newest and most critical aircraft models. The
nd the world, and the Federal Aviation

Photo: Jemal Countess/Getty Images institute for
L o . . 4 I S SOFTWARE
This is part of the wreckage of Ethiopian Airlines Flight ET302, a Boeing 737 Max RESEARCH

Major topics in 17-313 (Foundations of SE)

* Process considerations for software development
 Requirements elicitation, documentation, and evaluation
e Design for quality attributes

e Strategies for quality assurance

* Empirical methods in software engineering

* Time and team management

* Economics of software development

[]
institute for
_ SOFTWA
17-214 s [H s

SE as a sociotechnical system summary

* Software engineering requires consideration of many issues,
social and technical, above code-level considerations

* Interested? Take 17-313
 Shameless plug: Take APl Design, 17-480

[]
institute for
_ SOFTWA
17-214 ¢ [

Today: Software engineering in practice

* Empiricism in SE
— Mob programming
— Test-driven development

[]
institute for
_ SOFTWA
17-214 7 [H e

Volunteer?

®
institute for
17-214 8

Mob programming

[]
institute for
_ SOFTWA
17-214 o [

Mob programming

* Like pair programming, but with more people
— Driver vs. navigators (a.k.a. the typist vs. everyone else)
— Group decision-making
— Frequent rotation

[]
institute for
17-214 10

Today: Software engineering in practice

* Empiricism in SE
— Mob programming
— Test-driven development

[]
institute for
17-214 11

Test-driven development (TDD)

[]
institute for
17-214 12

Test-driven development (TDD), informally

R

Uff\LF a Make the
f':e;"s Fest [osS

RLelackoc

From Growing Object-Oriented Software by Nat Pryce and Steve Freeman
http:/www.growing-object-oriented-software.com/figures.html

@sebrose http:/cucumber.io

®
institute for
17-214 13

Formal test-driven development rules
1. You may only write production code to make a failing test pass

2. You may only write a minimally failing unit test
3. You may only write minimal code to pass the failing test

[]
institute for
17-214 14

Test-driven development as a design process

"The act of writing a unit test is more an act of design and
documentation than of verification. It closes a remarkable number
of feedback loops, the least of which pertains to verification."

[]
institute for
17-214 15

Advantages of test-driven development

e Clear place to start

* Iterative, agile design process

* Less wasted effort?

* Robust test suite, including regression tests

[]
institute for
17-214 16

A test-driven development demo: Diamond Kata

* Given a letter, generate a diamond starting at ‘A’, with the given
letter at the widest point.
— e.g.,diamond('C") would generate:
A
B B

C C
B B
A

[]
institute for
17-214 17

Formal test-driven development: Your impressions?

[]
institute for
17-214 18

Empirical methods in software engineering

* How do we study the effectiveness of mob programming or test-
driven development compared to other methodologies?

— Note: Mix of social and technical issues

[]
institute for
17-214 19

Research on test-driven development (1/2)

WebIDE vs Traditional Labs

 Hilton et al.: Students learn better when
forced to write tests first

 Bhat et al.: At Microsoft, projects using TDD
had greater than two times code quality,
but 15% more upfront setup time

 George et al.: TDD passed 18% more test cases, but took 16%
more time

* Scanniello et al.: Perceptions of TDD include: novices believe
TDD improves productivity at the expense of internal quality

[]
institute for
17-214 20

Research on test-driven development (2/2)

* Fucci et al.: Results: The Kruskal-Wallis tests did not show any
significant difference between TDD and TLD in terms of testing
effort (p-value = .27), external code quality (p-value = .82), and
developers' productivity (p-value = .83).

* Fucci et al.: Conclusion: The claimed benefits of TDD may not be
due to its distinctive test-first dynamic, but rather due to the fact
that TDD-like processes encourage fine-grained, steady steps
that improve focus and flow.

[]
institute for
17-214 21

Summary

- Software engineering as an empirical field
— Quantitative and qualitative methodologies

[]
institute for
17-214 22

6. “When Words Collide” N

%%‘s§3w%§“
% v
| | WS
public class PrintWords { O
public static void main(String[] args) { w¢§$ﬁ
System.out.println(Yo
Words.FIRST + " " + Words.SECOND + " " + Words.THIRD); o 5L R
}
}
public class Words { // Compile PrintWords against this version
public static final String FIRST = "the";
public static final String SECOND = null;
public static final String THIRD = "set";
}
public class Words { // Run against this version
public static final String FIRST = "physics";
public static final String SECOND = "chemistry";
public static final String THIRD = "biology";
}

institute for
17-214 23

What does it print? (a) the null set
(b) physics chemistry biology

(c) Throws exception

public class PrintWords {
(d) None of the above

public static void main(String[] args) {

System.out.println(
Words.FIRST + " " + Words.SECOND + " " + Words.THIRD);
}
}
public class Words { // Compile PrintWords against this version
public static final String FIRST = "the";
public static final String SECOND = null;
public static final String THIRD = "set";
}
public class Words { // Run against this version
public static final String FIRST = "physics";
public static final String SECOND = "chemistry";
public static final String THIRD = "biology";
}

institute for
17-214 24

What does it print?
(a) the null set
(b) physics chemistry biology

(c) Throws exception
(d) None of the above: the chemistry set

Java inlines constant variables

®
institute for
17-214 25

What exactly is a constant variable?

* Loosely speaking, a final primitive or String variable whose value
is a compile-time constant

— See JLS34.12.4,13.4.9, 15.28 for gory details
e Surprisingly, null isn’t a compile-time constant

[]
institute for
17-214 26

Another look

public class PrintWords {
public static void main(String[] args) {

System.out.println(
Words.FIRST + " " + Words.SECOND + " " + Words.THIRD);
}
}
public class Words { // Compile PrintWords against this version
public static final String FIRST = "the"; // Constant variable
public static final String SECOND = null; // Not a constant variable!!!
public static final String THIRD = "set"; // Constant variable
}
public class Words { // Run against this version
public static final String FIRST = "physics";
public static final String SECOND = "chemistry";
public static final String THIRD = "biology";
}

institute for
17-214 27

How do you prevent constants from being inlined?

// Utility function that simply returns its argument
private static String ident(String s) {
return s;

¥

// None of these fields are constant variables!
public class Words {
public static final String FIRST
public static final String SECOND
public static final String THIRD

}

ident("the");
ident(null);
ident("set");

Prints physics chemistry biology

17-214

28

institute for
SOFTWARE
RESEARCH

The Moral

e Constant variable references are inlined
— Only primitives and strings can be constant variables
— null is not a constant variable (neither are enums)

* If you change a constant’s value without recompiling its clients,
they break!

— Use constant variable only if value will never change

— Use ident method for final primitive or string fields whose value may
change

* For language designers
— Don’tinline constants in a late-binding language
— More generally, be consistent!

[]
institute for
17-214 29

