
1 17-214 

Principles	of	Software	Construction:					 																			
Objects,	Design,	and	Concurrency	
	
Part	4:	Et	cetera	
	
Toward	SE	in	practice:		Empiricism	in	SE	
	
Josh	Bloch 	 	Charlie	Garrod	



2 17-214 

Administrivia	

•  Homework	6	available	
–  Checkpoint	deadline	tonight	
–  Due	Wednesday,	December	9th	

•  Final	exam	due	11:59	pm	EST	Tuesday,	December	15th	
–  Will	be	released	on	the	evening	(EST)	of	Monday,	December	14th	
–  Review	session	Sunday,	December	13th,	7:30-9:30	pm	EST	
–  Practice	exam	released	late	next	week	



3 17-214 

Key	concepts	from	Tuesday	

•  SE	as	a	sociotechnical	system	



4 17-214 

https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-
developer 



5 17-214 

Major	topics	in	17-313	(Foundations	of	SE)	

•  Process	considerations	for	software	development	
•  Requirements	elicitation,	documentation,	and	evaluation	
•  Design	for	quality	attributes	
•  Strategies	for	quality	assurance	
•  Empirical	methods	in	software	engineering	
•  Time	and	team	management	
•  Economics	of	software	development	



6 17-214 

SE	as	a	sociotechnical	system	summary	

•  Software	engineering	requires	consideration	of	many	issues,	
social	and	technical,	above	code-level	considerations	

•  Interested?			Take	17-313	
•  Shameless	plug:	Take	API	Design,	17-480	



7 17-214 

Today:		Software	engineering	in	practice	

•  Empiricism	in	SE	
–  Mob	programming	
–  Test-driven	development	



8 17-214 

Volunteer?	



9 17-214 

Mob	programming	



10 17-214 

Mob	programming	

•  Like	pair	programming,	but	with	more	people	
–  Driver	vs.	navigators	(a.k.a.	the	typist	vs.	everyone	else)	
–  Group	decision-making	
–  Frequent	rotation	



11 17-214 

Today:		Software	engineering	in	practice	

•  Empiricism	in	SE	
–  Mob	programming	
–  Test-driven	development	



12 17-214 

Test-driven	development	(TDD)	



13 17-214 

Test-driven	development	(TDD),	informally	



14 17-214 

Formal	test-driven	development	rules	

1.  You	may	only	write	production	code	to	make	a	failing	test	pass	
2.  You	may	only	write	a	minimally	failing	unit	test	
3.  You	may	only	write	minimal	code	to	pass	the	failing	test	



15 17-214 

Test-driven	development	as	a	design	process	

"The	act	of	writing	a	unit	test	is	more	an	act	of	design	and	
documentation	than	of	verification.		It	closes	a	remarkable	number	
of	feedback	loops,	the	least	of	which	pertains	to	verification."	



16 17-214 

Advantages	of	test-driven	development	

•  Clear	place	to	start	
•  Iterative,	agile	design	process	
•  Less	wasted	effort?	
•  Robust	test	suite,	including	regression	tests	



17 17-214 

A	test-driven	development	demo:		Diamond	Kata	

•  Given	a	letter,	generate	a	diamond	starting	at	‘A’,	with	the	given	
letter	at	the	widest	point.	
–  e.g.,	diamond('C')	would	generate:	
					A	
				B	B	
			C			C	
				B	B	
					A	



18 17-214 

Formal	test-driven	development:			Your	impressions?	



19 17-214 

Empirical	methods	in	software	engineering	

•  How	do	we	study	the	effectiveness	of	mob	programming	or	test-
driven	development	compared	to	other	methodologies?	
–  Note:	Mix	of	social	and	technical	issues	



20 17-214 

Research	on	test-driven	development	(1/2)	

•  Hilton	et	al.:	Students	learn	better	when	
	forced	to	write	tests	first	

•  Bhat	et	al.:	At	Microsoft,	projects	using	TDD	
had	greater	than	two	times	code	quality,		
but	15%	more	upfront	setup	time	

•  George	et	al.:	TDD	passed	18%	more	test	cases,	but	took	16%	
more	time	

•  Scanniello	et	al.:	Perceptions	of	TDD	include:	novices	believe	
TDD	improves	productivity	at	the	expense	of	internal	quality	



21 17-214 

Research	on	test-driven	development	(2/2)	

•  Fucci	et	al.:		Results:	The	Kruskal-Wallis	tests	did	not	show	any	
significant	difference	between	TDD	and	TLD	in	terms	of	testing	
effort	(p-value	=	.27),	external	code	quality	(p-value	=	.82),	and	
developers'	productivity	(p-value	=	.83).		

	
•  Fucci	et	al.:	Conclusion:	The	claimed	benefits	of	TDD	may	not	be	

due	to	its	distinctive	test-first	dynamic,	but	rather	due	to	the	fact	
that	TDD-like	processes	encourage	fine-grained,	steady	steps	
that	improve	focus	and	flow.	



22 17-214 

Summary	

•  Software	engineering	as	an	empirical	field	
–  Quantitative	and	qualitative	methodologies	



23 17-214 

6.	“When	Words	Collide” 

public	class	PrintWords	{	
		public	static	void	main(String[]	args)	{	
				System.out.println(	
						Words.FIRST	+	"	"	+	Words.SECOND	+	"	"	+	Words.THIRD);	
		}	
}	
	
public	class	Words	{	//	Compile	PrintWords	against	this	version	
		public	static	final	String	FIRST		=	"the";	
		public	static	final	String	SECOND	=	null;	
		public	static	final	String	THIRD		=	"set";	
}	
	
public	class	Words	{	//	Run	against	this	version	
		public	static	final	String	FIRST		=	"physics";	
		public	static	final	String	SECOND	=	"chemistry";	
		public	static	final	String	THIRD		=	"biology";	
}	



24 17-214 

What	does	it	print? 

public	class	PrintWords	{	
		public	static	void	main(String[]	args)	{	
				System.out.println(	
						Words.FIRST	+	"	"	+	Words.SECOND	+	"	"	+	Words.THIRD);	
		}	
}	
	
public	class	Words	{	//	Compile	PrintWords	against	this	version	
		public	static	final	String	FIRST		=	"the";	
		public	static	final	String	SECOND	=	null;	
		public	static	final	String	THIRD		=	"set";	
}	
	
public	class	Words	{	//	Run	against	this	version	
		public	static	final	String	FIRST		=	"physics";	
		public	static	final	String	SECOND	=	"chemistry";	
		public	static	final	String	THIRD		=	"biology";	
}	

(a) the	null	set	
(b) physics	chemistry	biology	
(c) Throws	exception	
(d) None of the above 



25 17-214 

What	does	it	print?	

(a)	the	null	set	
(b)	physics	chemistry	biology	
(c)	Throws	exception	
(d)	None	of	the	above:	the	chemistry	set	
	
	
	
Java	inlines	constant	variables	



26 17-214 

What	exactly	is	a	constant	variable?	

•  Loosely	speaking,	a	final	primitive	or	String	variable	whose	value	
is	a	compile-time	constant	
–  See	JLS3	4.12.4,	13.4.9,	15.28	for	gory	details	

•  Surprisingly,	null	isn’t	a	compile-time	constant	



27 17-214 

Another	look 

public	class	PrintWords	{	
		public	static	void	main(String[]	args)	{	
				System.out.println(	
						Words.FIRST	+	"	"	+	Words.SECOND	+	"	"	+	Words.THIRD);	
		}	
}	
	
public	class	Words	{	//	Compile	PrintWords	against	this	version	
		public	static	final	String	FIRST		=	"the";			//	Constant	variable	
		public	static	final	String	SECOND	=	null;				//	Not	a	constant	variable!!!	
		public	static	final	String	THIRD		=	"set";			//	Constant	variable	
}	
	
public	class	Words	{	//	Run	against	this	version	
		public	static	final	String	FIRST		=	"physics";	
		public	static	final	String	SECOND	=	"chemistry";	
		public	static	final	String	THIRD		=	"biology";	
}	



28 17-214 

How	do	you	prevent	constants	from	being	inlined?	

//	Utility	function	that	simply	returns	its	argument	
private	static	String	ident(String	s)	{	
		return	s;	
}	
	
//	None	of	these	fields	are	constant	variables!	
public	class	Words	{		
		public	static	final	String	FIRST		=	ident("the");	
		public	static	final	String	SECOND	=	ident(null);	
		public	static	final	String	THIRD		=	ident("set");	
}	

Prints physics	chemistry	biology	



29 17-214 

The	Moral	

•  Constant	variable	references	are	inlined	
–  Only	primitives	and	strings	can	be	constant	variables	
–  null	is	not	a	constant	variable	(neither	are	enums)	

•  If	you	change	a	constant’s	value	without	recompiling	its	clients,	
they	break!	
–  Use	constant	variable	only	if	value	will	never	change	
–  Use	ident	method	for	final	primitive	or	string	fields	whose	value	may	

change	

•  For	language	designers	
–  Don’t	inline	constants	in	a	late-binding	language	
–  More	generally,	be	consistent!	


