Principles of Software Construction:
Objects, Design, and Concurrency

Part 4: Et cetera

Toward SE in practice: People and process

Josh Bloch Charlie Garrod

&:Iunmgiv Mellon University
School of Computer Science
. . .
institute for
I S SOFTWARE
RESEARCH

[]
institute for
_ SOFTWA
17-214 | S [Fat

Administrivia

* Homework 6 available
— Checkpoint deadline Thursday, December 3
— Due Wednesday, December 9th

[]
institute for
_ SOFTWA
17-214 2 RESEARCH

Key concepts from last Tuesday

 Java lambdas and streams

[]
institute for
- SOFTWA
17-214 3 RESEARCH

Use caution making streams parallel
Remember our Mersenne primes program?

static Stream<BigInteger> primes() {
return Stream.iterate(TWO, BigInteger::nextProbablePrime);

}

public static void main(String[] args) {
primes().map(p -> TWO.pow(p.intValueExact()).subtract(ONE))
.filter(mersenne -> mersenne.isProbablePrime(50))
.1imit(20)
.forEach(System.out: :println);

Runsin 10.1s on my 12-core, 24-thread Ryzen 9 3900X
Does not reasonably terminate if the stream is .parallel()

®
institute for
_ SOFTWA
17-214 s [Hi e

Lambdas and streams summary

e When to use a lambda
— Always, in preference to CICE

e When to use a method reference
— Almost always, in preference to a lambda

* When to use a stream
— When it feels and looks right

* When to use a parallel stream

— When you’ve convinced yourself it has equivalent semantics
and demonstrated that it’s a performance win

[]
institute for
_ SOFTWA
17-214 s [H s

What Josh didn't show you...

[]
institute for
= SOFTWA
17-214 6 RESEARCH

Streaminterface is a monster (1/3)

public interface Stream<T> extends BaseStream<T, Stream<T>> {
// Intermediate Operations

Stream<T> filter(Predicate<T>);

<R> Stream<R> map(Function<T, R>);

IntStream mapToInt(ToIntFunction<T>);

LongStream mapToLong(ToLongFunction<T>);

DoubleStream mapToDouble(ToDoubleFunction<T>);

<R> Stream<R> flatMap(Function<T, Stream<R>>);

IntStream flatMapToInt(Function<T, IntStream>);
LongStream flatMapToLong(Function<T, LongStream>);
DoubleStream flatMapToDouble(Function<T, DoubleStream>);
Stream<T> distinct();

Stream<T> sorted();

Stream<T> sorted(Comparator<T>);

Stream<T> peek(Consumer<T>);

Stream<T> limit(long);

Stream<T> skip(long);

[]
institute for
_ SOFTWA
17-214 | S [Fsas

Streaminterface is a monster (2/3)

// Terminal Operations

void forEach(Consumer<T>); // Ordered only for sequential streams
void forEachOrdered(Consumer<T>); // Ordered if encounter order exists
Object[] toArray();

<A> A[] toArray(IntFunction<A[]> arrayAllocator);

T reduce(T, BinaryOperator<T>);

Optional<T> reduce(BinaryOperator<T>);

<U> U reduce(U, BiFunction<U, T, U>, BinaryOperator<U>);

<R, A> R collect(Collector<T, A, R>); // Mutable Reduction Operation
<R> R collect(Supplier<R>, BiConsumer<R, T>, BiConsumer<R, R>);
Optional<T> min(Comparator<T>);

Optional<T> max(Comparator<T>);

long count();

boolean anyMatch(Predicate<T>);

boolean allMatch(Predicate<T>);

boolean noneMatch(Predicate<T>);

Optional<T> findFirst();

Optional<T> findAny();

[]
institute for
_ SOFTWA
17-214 s [Hl e

Streaminterface is a monster (3/3)

// Static methods: stream sources
Stream.Builder<T> builder();

public
public
public
public
public
public
public

17-214

static
static
static
static
static
static
static

<T>
<T>
<T>
<T>
<T>
<T>
<T>

Stream<T>
Stream<T>
Stream<T>
Stream<T>
Stream<T>
Stream<T>

empty();

of(T);

of(T...);

iterate(T, UnaryOperator<T>);
generate(Supplier<T>);
concat(Stream<T>, Stream<T>);

[]
institute for
9 | S SOFTWARE
RESEARCH

In case your eyes aren’t glazed yet

public interface BaseStream<T, S extends BaseStream<T, S>>
extends AutoCloseable {

Iterator<T> iterator();

Spliterator<T> spliterator();

boolean isParallel();

S sequential(); // May have little or no effect

S parallel(); // May have little or no effect

S unordered(); // Note asymmetry wrt sequential/parallel
S onClose(Runnable);

void close();

[]
institute for
17-214 10

It keeps going: java.util.stream.Collectors

. tolist()

. toMap(...)

. toSet(...)

. reducingBy(...)

. groupingBy(...)

. partitioningBy(...)

[]
institute for
17-214 11

It keeps going: java.util.stream.Collectors

. tolist()

. toMap(...)

. toSet(...)
reducingBy(...)

. groupingBy(...)
partitioningBy(...)

static <T,K,D,A,M extends Map<K,D>> Collector<T,?,M> groupingBy/(
Function<? super T,? extends K> classifier,
Supplier<M> mapFactory,
Collector<? super T,A,D> downstream)

[]
institute for
17-214 12

Optional<T> —a third way to indicate the absence of a result

public final class Optional<T> {
boolean isPresent();

T get();

void ifPresent(Consumer<T>);

Optional<T> filter(Predicate<T>);

<U> Optional<U> map(Function<T, U>);

<U> Optional<U> flatMap(Function<T, Optional<U>>);

T orElse(T);

T orElseGet(Supplier<T>);

<X extends Throwable> T orElseThrow(Supplier<X>) throws X;

[]
institute for
17-214 13

Changes to existing libraries... e.g.,

public interface Collection<E> {
default Stream<E> stream();

default Stream<E> parallelStream();
default Spliterator<E> spliterator();

17-214

14

institute for
SOFTWARE
RESEARCH

Overall: Streams design discussion

* Recall the fundamental API design principles...

[]
institute for
17-214 15

Today: Software engineering in practice

* Anintroduction to software engineering
 Methodologies discussion: Test-driven development

[]
institute for
17-214 16

What is software engineering?

[]
institute for
17-214 17

Compare to other forms of engineering

e.g., Producing a car or bridge
— Estimable costs and risks
— Well-defined expected results
— High quality
* Separation between plan
and production
* Simulation before construction

* Quality assurance through
measurement

e Potential for automation

®
institute for
17-214 18

Software engineering in the real world

ESPANOL

e.g., HealthCare.gov HealthCare.gov
— Estimable costs and risks
— Well-defined expected results
— High quality

First time applying on HealthCare.gov? Have a 2018 Marketplace plan? ¥

* Separation between plan
and production

TAKE THE FIRST STEP TO LOG IN TO RENEW/CHANGE
APPLY PLANS

 Simulation before construction

* Quality assurance through
measurement

e Potential for automation

®
institute for
17-214 19

1968 NATO Conference on Software Engineering

—'-n_-"-‘-

®
institute for
17-214 20

Sociotechnical systems

* A sociotechnical system is, roughly, any interlinked system of
people, technology, and their environment

[]
institute for
17-214 21

How a Self-Driving Uber

Killed a Pedestrian in Arizona

BE O signin News Sport Reel Worklife —Travel Future Mo
By TROY GRIGGS and DAISUKE WAKABAYASHI UPDATED MARCH 21,2018

A woman was struck and killed on Sunday night by an N E WS

autonomous car operated by Uber in Tempe, Ariz. It was believed
to be the first pedestrian death associated with self-driving Home = Video | World | US&Canada | UK @ Business Tech = Science = Stories | Entertai
technology.

Business MarketData Global Trade =~ Companies Entrepreneurship ~ Technology of Busir

What We Know About the Accident

\

Uber in fatal crash had safety flaws say
US investigators

©® 6 November 2019 f © ¥ [< shae

Body seen
in this area

strifékwhile walking
her bike across the "+
Street soméwhere in

this'area. === The self-driving Uber

'was traveling north at
about 40 m.p.h.

REUTERS

An Uber self-driving test vehicle that hit and killed a woman in 2018 had
software problems, according to US safety investigators.

Elaine Herzberg, 49, was hit by the car as she was crossing a road in Tempe,
Arizona.

The US National Transportation Safety Board (NTSB) found the car failed to identify
her properly as a pedestrian.

The detailed findings raised a series of safety issues but did not determine the
probable cause of the accident.

https://www.nytimes.com/interactive/2018/03/20/us/self-driving-uber-pedestrian-killed.htmI?mtrref=www.google.com&assetType=REGIWALL
https://www.bbc.com/news/business-50312340
https://www.bbc.com/news/technology-44243118

institute for
17-214 22

Q st Bloomberg = Ayear after the first 737 Max crash,

Technology

Boeing’s 737 Max Software Outsourced to

it's unclear when the plane will fly

$9-an-Hour Engineers again

By Peter Robison
June 28, 2019, 4:46 PM EDT

Two crashes of Boeing's 737 Max 8 killed 346 people, and
authorities are blaming Boeing's design, a faulty sensor and airline

» Planemaker and suppliers used lower-paid temporary workers

» Engineers feared the practice meant code wasn’t done right

staff. Plus: Everything you need to know about the plane.

The cockpit of a grounded 737 Max 8 aircraft. Photographer: Dimas

It remains the mystery at the hea
crisis: how a company renowned
made seemingly basic software n
deadly crashes. Longtime Boeing
was complicated by a push to ou
contractors.

The Max software -- plagued by is
planes grounded months longer
week revealed a new flaw - was ¢
was laying off experienced engin
suppliers to cut costs.

https://spectrum.ieee.org/aerospace/aviation/k
developer

17-214

\
E" Kent German i’ November 1, 2019 9:01 AM PDT ~ @

How the Boeing 737 Max Disaster
Looks to a Software Developer

Design shortcuts meant to make a new plane
seem like an old, familiar one are to blame

By Gregory Travis

The views expressed here are solely those of the author and do
not represent positions of IEEE Spectrum or the IEEE.

d killing 346 people.

737 Max 8 that killed 346 people, Boeing is facing
s newest and most critical aircraft models. The
nd the world, and the Federal Aviation

Photo: Jemal Countess/Getty Images institute for
. . . 23 Y sorrware
This is part of the wreckage of Ethiopian Airlines Flight ET302, a Boeing 737 Max RESEARCH

Major topics in 17-313 (Foundations of SE)

* Process considerations for software development
 Requirements elicitation, documentation, and evaluation
e Design for quality attributes

e Strategies for quality assurance

* Empirical methods in software engineering

* Time and team management

* Economics of software development

[]
institute for
17-214 24

The foundations of our Software Engineering program

Core computer science fundamentals
* Building good software, organizing software projects

— Development teams, customers, and users
— Process, requirements, estimation, management, and methods

* The larger context of software

— Business, society, policy
* Engineering experience
e Communication skills

— Written and oral

[]
institute for
17-214 25

Summary

* Software engineering requires consideration of many issues,
social and technical, above code-level considerations

* Interested? Take 17-313
 Shameless plug: Take APl Design, 17-480

[]
institute for
17-214 26

