
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Exceptions and contracts in Java

Josh Bloch Charlie Garrod

217-214

Administrivia

• Homework 1 due Today 11:59 p.m.

– Everyone must read and sign our collaboration policy

– TAs will be available to help you

– You have late days, buy you might want to save for later

• Second homework will be posted shortly

317-214

Key concepts from Tuesday

• Interfaces-based designs are flexible

• Information hiding is crucial to good design

• Enums are your friend

417-214

Outline

I. Exceptions

II. Specifying program behavior – contracts

III. Testing correctness – Junit and friends

IV. Overriding Object methods

517-214

What does this code do?
FileInputStream fis = new FileInputStream(fileName);
if (fis == null) {
switch (errno) {
case _ENOFILE:
System.err.println("File not found: " + …);
return -1;

default:
System.err.println("Something else bad happened: " + …);
return -1;

}
}
DataInput dataInput = new DataInputStream(fis);
if (dataInput == null) {
System.err.println("Unknown internal error.");
return -1; // errno > 0 set by new DataInputStream

}
int i = dataInput.readInt();
if (errno > 0) {
System.err.println("Error reading binary data from file");
return -1;

} // The Slide lacks space to close the file. Oh well.
return i;

617-214

What does this code do?
FileInputStream fis = new FileInputStream(fileName);
if (fis == null) {
switch (errno) {
case _ENOFILE:
System.err.println(“File not found: “ + …);
return -1;

default:
System.err.println(“Something else bad happened: “ + …);
return -1;

}
}
DataInput dataInput = new DataInputStream(fis);
if (dataInput == null) {
System.err.println(“Unknown internal error.”);
return -1; // errno > 0 set by new DataInputStream

}
int i = dataInput.readInt();
if (errno > 0) {
System.err.println(“Error reading binary data from file”);
return -1;

} // The Slide lacks space to close the file. Oh well.
return i;

717-214

There’s a better way: exceptions

FileInputStream fileInput = null;

try {

fileInput = new FileInputStream(fileName);

DataInputStream dataInput = new DataInputStream(fileInput);

return dataInput.readInt();

} catch (IOException e) {

System.err.println("Could not read int from file: " + e);

return DEFAULT_VALUE;

}

817-214

Exceptions

• Inform caller of problem by transfer of control

• Semantics

– Propagates up call stack until exception is caught, or
main method is reached (terminates program!)

• Where do exceptions come from?

– Program can throw explicitly using throw

– Underlying virtual machine (JVM) can generate

917-214

Control-flow of exceptions

public static void main(String[] args) {
try {

test();
} catch (ArrayIndexOutOfBoundsException e) {

System.out.println"("Caught index out of bounds exception: " + e);
}

}

public static void test() {
try {

System.out.println("Top");
int[] a = new int[10];
a[42] = 42; // Index is too high; throws exception
System.out.println("Bottom");

} catch (NegativeArraySizeException e) {
System.out.println("Caught negative array size exception: " + e);

}
}

1017-214

Benefits of exceptions

• You can’t forget to handle common failure modes

– Compare: using a flag or special return value

• Provide high-level summary of error

– Compare: core dump in C

• Improve code structure

– Separate normal code path from exceptional

– Error handling code is segregated in catch blocks

• Ease task of writing robust, maintainable code

1117-214

Checked vs. unchecked exceptions

• Checked exception

– Must be caught or propagated, or program won’t compile

– Exceptional condition that programmer must deal with

• Unchecked exception

– No action is required for program to compile…

• But uncaught exception will cause failure at runtime

– Usually indicates a programming error

• Error

– Special unchecked exception typically thrown by VM

– Recovery is usually impossible

1217-214

Java’s exception hierarchy

Throwable

Exception

RuntimeException

IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException

Object

Error

StackOverflowError

…

…

…

…

Checked Exceptions

1317-214

Design choice: checked vs. unchecked

• Unchecked exception

– Programming error, other unrecoverable failure

• Checked exception

– An error that every caller should be aware of and handle

• Special return value (e.g., null from Map.get)

– Common but atypical result

• Do not use error codes – too easy to ignore

• Avoid null return values

– Never return null instead of zero-length list or array

1417-214

Defining & using your own exception types

class SpanishInquisitionException extends RuntimeException {
SpanishInquisitionException(String detail) {

super(detail);
}

}

public class HolyGrail {
public void seek() {

...
if (heresyByWord() || heresyByDeed())

throw new SpanishInquisitionException("heresy");
...

}
}

1517-214

Guidelines for using exceptions (1)

• Avoid unnecessary checked exceptions (EJ Item 71)

• Favor standard exceptions (EJ Item 72)
– IllegalArgumentException – invalid parameter value

– IllegalStateException – invalid object state

– NullPointerException – null param where prohibited

– IndexOutOfBoundsException – invalid index param

• Throw exceptions appropriate to abstraction
(EJ Item 73)

1617-214

Guidelines for using exceptions (2)

• Document all exceptions thrown by each method

– Unchecked as well as checked (EJ Item 74)

– But don’t declare unchecked exceptions!

• Include failure-capture info in detail message (Item 75)
– throw new IlegalArgumentException(

"Quantity must be positive: " + quantity);

• Don’t ignore exceptions (EJ Item 77)
// Empty catch block IGNORES exception – Bad smell in code!

try {

...

} catch (SomeException e) {

}

1717-214

Remember this slide from earlier this lecture?

FileInputStream fileInput = null;

try {

fileInput = new FileInputStream(fileName);

DataInputStream dataInput = new DataInputStream(fileInput);

return dataInput.readInt();

} catch (IOException e) {

System.err.println("Could not read int from file: " + e);

return DEFAULT_VALUE;

}

1817-214

There’s one part we didn’t show you: cleanup

FileInputStream fileInput = null;

try {

fileInput = new FileInputStream(fileName);

DataInputStream dataInput = new DataInputStream(fileInput);

return dataInput.readInt();

} catch (IOException e) {

System.err.println("Could not read int from file: " + e);

return DEFAULT_VALUE;

} finally { // Close file if it’s open

if (fileInput != null) {

try {

fileInput.close();

} catch (IOException ignored) {

// No recovery necessary (or possible)

}

}

}

1917-214

Manual resource termination is ugly and
error-prone, especially for multiple resources

• Even good programmers usually get it wrong

– Sun’s Guide to Persistent Connections got it wrong in
code that claimed to be exemplary

– Solution on page 88 of Bloch and Gafter’s Java
Puzzlers is badly broken; no one noticed for years

• 70% of the uses of close in the JDK itself were
wrong in 2008!

• Even “correct” idioms for manual resource
management are deficient

2017-214

The solution: try-with-resources
Automatically closes resources!

try (DataInputStream dataInput =
new DataInputStream(new FileInputStream(fileName))) {

return dataInput.readInt();

} catch (IOException e) {

System.err.println("Could not read file: " + e);

return DEFAULT_VALUE;

}

2117-214

File copy with manual cleanup

static void copy(String src, String dest) throws IOException {
InputStream in = new FileInputStream(src);
try {

OutputStream out = new FileOutputStream(dest);
try {

byte[] buf = new byte[8 * 1024];
int n;
while ((n = in.read(buf)) >= 0)

out.write(buf, 0, n);
} finally {

if (out != null) out.close();
}

} finally {
if (in != null) in.close();

}
}

}

2217-214

File copy with try-with-resources

static void copy(String src, String dest) throws IOException {

try (InputStream in = new FileInputStream(src);

OutputStream out = new FileOutputStream(dest)) {

byte[] buf = new byte[8 * 1024];

int n;

while ((n = in.read(buf)) >= 0)

out.write(buf, 0, n);

}

}

2317-214

Outline

I. Exceptions

II. Specifying program behavior – contracts

III. Testing correctness – Junit and friends

IV. Overriding Object methods

2417-214

What is a contract?

• Agreement between an object and its user

– What object provides, and user can count on

• Includes:

– Method signature (type specifications)

– Functionality and correctness expectations

– Sometimes: performance expectations

• What the method does, not how it does it

– Interface (API), not implementation

• “Focus on concepts rather than operations”

2517-214

Method contract details

• Defines method’s and caller’s responsibilities

• Analogy: legal contract
– If you pay me this amount on this schedule…
– I will build a room with the following detailed spec
– Some contracts have remedies for nonperformance

• Method contract structure
– Preconditions: what method requires for correct operation
– Postconditions: what method establishes on completion
– Exceptional behavior: what it does if precondition violated

• Defines correctness of implementation
25

2617-214

Formal contract specification
Java Modelling Language (JML)

/*@ requires array != null;
@
@ ensures \result ==
@ (\sum int j; 0 <= j && j < array.length; array[j]);
@*/

int total(int array[]);

• Theoretical approach
– Advantages

• Runtime checks generated automatically
• Basis for formal verification
• Automatic analysis tools

– Disadvantages
• Requires a lot of work
• Impractical in the large
• Some aspects of behavior not amenable to formal specification

postcondition

precondition

2717-214

Textual specification - Javadoc

• Practical approach
• Document

– Every parameter
– Return value
– Every exception (checked and unchecked)
– What the method does, including

• Primary purpose
• Any side effects
• Any thread safety issues
• Any performance issues

• Do not document implementation details
– Known as overspecification

2817-214

Specifications in the real world
Javadoc for List’s get method

/**

* Returns the element at the specified position of this list.

*

* <p>This method is <i>not</i> guaranteed to run in constant time.

* In some implementations, it may run in time proportional to the

* element position.

*

* @param index position of element to return;

* must be non-negative and less than the size of this list.

* @return the element at the specified position of this list

* @throws IndexOutOfBoundsException if the index is out of range

* ({@code index < 0 || index >= this.size()})

*/

E get(int index);

(No side effects)

postcondition

precondition

exceptional
behavior

2917-214

Outline

I. Exceptions

II. Specifying program behavior – contracts

III. Testing correctness – Junit and friends

IV. Overriding Object methods

3017-214

Semantic correctness
Adherence to contracts

• Compiler ensures types are correct (type-checking)

– Prevents many runtime errors, such as “Method
Not Found” and “Cannot add boolean to int”

• Static analysis tools (e.g., SpotBugs) recognize
many common problems (bug patterns)

• But how do you ensure semantic correctness?

3117-214

Formal verification

• Use mathematical methods to prove correctness
with respect to the formal specification

• Formally prove that all possible executions of an
implementation fulfill the specification

• Requires manual effort. Can be partially
automated, but not automatically decidable

“Testing shows the presence,
not the absence of bugs.”

Edsger W. Dijkstra, 1969

3217-214

Testing

• Execute the program with selected inputs in a
controlled environment

• Goals

– Reveal bugs, so they can be fixed (primary goal)

– Clarify the specification, documentation

“Beware of bugs in the above code; I
have only proved it correct, not tried it.”

Donald Knuth, 1977

3317-214

Who’s right, Dijkstra or Knuth?

• They’re both right!

• Please see “Extra, Extra - Read All About It: Nearly All
Binary Searches and Mergesorts are Broken”

– Official “Google Research” blog

– http://googleresearch.blogspot.com/2006/06/extra-
extra-read-all-about-it-nearly.html

• Conclusion: There is no silver bullet

– Use all tools at your disposal

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

3417-214

Manual testing?

• Live system?
• Lots of hardware?
• Check output / assertions?
• Effort, Costs?
• Reproducible?

3517-214

Automate testing

• Automatically execute program with specific
inputs, and check output for expected values

• Set up testing infrastructure

• Execute tests regularly

– After every change, before (and after) it’s pushed

3617-214

Unit tests

• For “small” units: methods, classes, subsystems

– Unit is smallest testable part of system

– Test parts before assembling them

– Intended to catch local bugs

• Typically (but not always) written by developers

• Many small, fast-running, independent tests

• Few dependencies on other system parts or environment

• Insufficient, but a good starting point

3717-214

Selecting test cases: common strategies

• Read specification
• Write tests for

– Representative case
– Invalid cases
– Boundary conditions

• Write stress tests
– Automatically generate huge numbers of test cases

• Think like an attacker – read spec looking for “loopholes”
– The tester’s goal, like the hackers, is to find bugs!

• How many test should you write?
– Aim to cover the entire specification
– But work within time/money constraints

3817-214

JUnit

• Popular unit-testing framework for Java

• Easy to use

• Tool support available, e.g., IntelliJ integration

3917-214

Kent Beck on automated testing

“Functionality that can’t be demonstrated by
automated test simply don't exist.”

4017-214

JUnit conventions

• TestCase collects multiple tests (in one class)

• TestSuite collects test cases (typically package)

• Tests should run fast

• Tests should be independent

• Tests are methods without parameters or return values

• AssertError signals failed test (unchecked exception)

• Test Runner knows how to run JUnit tests
– (uses reflection to find all methods with @Test annotation)

4117-214

Test organization

• Conventions (not requirements)

• Have a test class FooTest for each
public class Foo

• Have a source directory and a test
directory
– Store FooTest and Foo in the same

package

– Tests can access members with
default (package) visibility

4217-214

Write testable code

• Think about testing when writing code
• Unit testing encourages you to write testable code
• Modularity and testability go hand in hand
• Same test can be used on multiple implementations

of an interface!
• Test-Driven Development

– A design and development method in which you
write tests before you write the code

– Writing tests can expose API weaknesses!

4317-214

Run tests frequently

• You should only commit code that is passing all tests

• So run tests before every commit

• If test suite becomes too large & slow for rapid feedback
– Run local package-level tests (“smoke tests”) frequently

– Run all tests nightly

– Medium sized projects often have thousands of test cases

• Continuous integration (CI) servers help to scale testing

4417-214

Continuous integration – Travis CI

Automatically
builds, tests, and
displays the
result

4517-214

Continuous integration – Travis CI

You can see the
results of builds
over time

4617-214

Outlook: statement coverage

• Trying to test all parts of the implementation
• Execute every statement, ideally

• Does 100% coverage guarantee correctness?

4717-214

Outline

I. Exceptions

II. Specifying program behavior – contracts

III. Testing correctness – Junit and friends

IV. Overriding Object methods

4817-214

Methods common to all objects

• How do collections know how to test objects for equality?

• How do they know how to hash and print them?

• The relevant methods are all present on Object

– equals - returns true if the two objects are “equal”

– hashCode - returns an int hash value that must be equal
for equal objects, and is likely to differ on unequal objects

– toString - returns a printable string representation

4917-214

Object implementations

• Provide identity semantics

– equals(Object o) - returns true if o refers to
this object

– hashCode() - returns an unspecified int that
never changes over the object’s lifetime

– toString() - returns a nasty looking string
consisting of the type and hash code

• For example: java.lang.Object@659e0bfd

5017-214

Overriding Object implementations

• (nearly) Always override toString

– println invokes it automatically

– Why settle for ugly?

• No need to override equals and hashCode if
you want identity semantics

– When in doubt, don't override them

– Identity semantics are often what you want

– It's easy to get the overrides wrong

5117-214

Overriding toString is easy & beneficial

final class PhoneNumber {
private final short areaCode;
private final short prefix;
private final short lineNumber;
...

@Override public String toString() {
return String.format("(%03d) %03d-%04d",

areaCode, prefix, lineNumber);
}

}

PhoneNumber jenny = ...;
System.out.println(jenny);
Prints: (707) 867-5309

5217-214

The equals contract

The equals method implements an equivalence relation. It is:

– Reflexive: For any non-null reference value x, x.equals(x) must
return true.

– Symmetric: For any non-null reference values x and y, x.equals(y)
must return true if and only if y.equals(x) returns true.

– Transitive: For any non-null reference values x, y, z, if x.equals(y)
returns true and y.equals(z) returns true, then x.equals(z) must
return true.

– Consistent: For any non-null reference values x and y, multiple
invocations of x.equals(y) consistently return true or consistently
return false, provided no information used in equals comparisons
on the objects is modified.

– For any non-null reference value x, x.equals(null) must return false.

5317-214

The equals contract in English

• Reflexive – every object is equal to itself

• Symmetric – if a.equals(b) then b.equals(a)

• Transitive – if a.equals(b) and b.equals(c),
then a.equals(c)

• Consistent– equal objects stay equal unless mutated

• “Non-null” – a.equals(null) returns false

• Taken together these ensure that equals is a
global equivalence relation over all objects

5417-214

equals Override Example

public final class PhoneNumber {
private final short areaCode;
private final short prefix;
private final short lineNumber;

@Override public boolean equals(Object o) {
if (!(o instanceof PhoneNumber)) // Does null check

return false;
PhoneNumber pn = (PhoneNumber) o;
return pn.lineNumber == lineNumber

&& pn.prefix == prefix
&& pn.areaCode == areaCode;

}

...
}

5517-214

The hashCode contract

Whenever it is invoked on the same object more than once during an execution

of an application, the hashCode method must consistently return the

same integer, provided no information used in equals comparisons on the

object is modified. This integer need not remain consistent from one execution

of an application to another execution of the same application.

– If two objects are equal according to the equals(Object) method, then calling the
hashCode method on each of the two objects must produce the same integer
result.

– It is not required that if two objects are unequal according to the equals(Object)
method, then calling the hashCode method on each of the two objects must
produce distinct integer results. However, the programmer should be aware that
producing distinct integer results for unequal objects may improve the
performance of hash tables.

5617-214

The hashCode contract in English

• Equal objects must have equal hash codes

– If you override equals you must override hashCode

• Unequal objects should have different hash codes

– Take all value fields into account when calculating it

• Hash code must not change unless object mutated

– Use a deterministic function of the field values

5717-214

hashCode override example

public final class PhoneNumber {
private final short areaCode;
private final short prefix;
private final short lineNumber;

@Override public int hashCode() {
int result = 17; // Nonzero is good
result = 31 * result + areaCode; // Constant must be odd
result = 31 * result + prefix; // " " " "
result = 31 * result + lineNumber; // " " " "
return result;

}

...
}

5817-214

Alternative hashCode override
Less efficient, but otherwise equally good!

public final class PhoneNumber {
private final short areaCode;
private final short prefix;
private final short lineNumber;

@Override public int hashCode() {
return Objects.hash(areaCode, prefix, lineNumber);

}

...
}

A one liner. No excuse for failing to override hashCode!

5917-214

For more than you want to know about overriding
object methods, see Effective Java Chapter 2

6017-214

Summary

• Exceptions are way better than error codes

• Use try-with-resources; not manual cleanup

• Contracts specify method behavior

– Document the contract of every method

• Testing is critical if you want program to work

• Always override toString (except for enums)

• Override equalswhen you need value semantics

• Override hashCodewhen your override equals

