Principles of Software Construction:
Objects, Design, and Concurrency

Introduction to Java

Josh Bloch Charlie Garrod

Carnegie Mellon University
School of Computer Science

®
institute for

I S SOFTWARE
RESEARCH

17-214 v [ek

RRRRRRRR

Administrivia

* Homework 1 due next Thursday 11:59 p.m.
— Everyone must read and sign our collaboration policy

* First reading assignment due Tuesday
— Effective Java Items 15 and 16

17-214 > [sk

RRRRRRRR

Outline

"Hello World!" explained
|. The type system
Il. Quick ‘n’ dirty 1/0
V. A brief introduction to collections

[]
institut
17-214 3 IST SOFTWARE
RRRRRRRR

The “simplest” Java Program

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

[]
institute |
17-214 4 SOFTWARE
RESEARCH

Complication 1: you must use a class even if
you aren’t doing OO programming

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

SSSSSSSS

17-214 S

Complication 2: main must be public

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

[]
institute
17-214 6 e
RESEARCH

Complication 3: maln must be static

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

[]
institute |
17-214 7 SOFTWARE
RESEARCH

Complication 4: maln must return void

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

[]
institute
17-214 s e
RESEARCH

Complication 5: main must declare command
line arguments even if it doesn’t use them

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

17-214 o IR ik

RRRRRRRR

Complication 6: println uses the static
field System.out

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

17-214

Execution is a bit complicated, too

* First you compile the source file

— javac HelloWorld. java

— Produces class file HelloWorld.class
* Then you launch the program

— java HelloWorld
— Java Virtual Machine (JVM) executesmain method

17-214 11 B

RRRRRRRR

On the bright side...

* Has many good points to balance shortcomings

* Some verbosity is not a bad thing
— Can reduce errors and increase readability

 Modern IDEs eliminate much of the pain
— Type psvminstead of public static void main
e Managed runtime (JVM) has many advantages

— Safe, flexible, enables garbage collection

* |t may not be best language for Hello World...

— But Java is very good for large-scale programming!

17-214 12 [

RRRRRRRR

Outline

“Hello World!” explained
|. The type system
Il. Quick ‘n’ dirty 1/0
V. A brief introduction to collections

[]
institute ror
17-214 13 |Yf sorm

Java has a bipartite (2-part) type system

Primitives Object Reference Types
int, long, byte, short, Classes, interfaces, arrays,

char, float, double, boolean enums, annotations

No identity except their value Have identity distinct from value
Immutable Some mutable, some immutable

On stack, exist only when in use On heap, garbage collected

Can’t achieve unity of Unity of expression with generics
expression
Dirt cheap More costly

[]
institute for
17-214 14

Programming with primitives

A lot like C!

public class TrailingZeros {
public static void main(String[] args) {
int i = Integer.parselnt(args[0]);
System.out.println(trailingZerosInFactorial(i));

}

static int trailingZerosInFactorial(int i) {
int result = 0; // Conventional name for return value

while (i >= 5) {
i /= 5; // Same as i = i / 5; Remainder discarded
result += 1i;

}

return result;

institute for
17-214 15

Primitive type summary

e int

* long
* byte
* short
* char
e float

e double
* boolean

17-214

32-bit signed integer

64-bit sighed integer

8-bit signed integer

16-
16-
32-
64-

oit sighed integer
oit unsigned integer/character
oit IEEE 754 floating point number

oit IEEE 754 floating point number

Boolean value: true or false

“Deficient” primitive types

* byte, short —typically use int instead!

— byte is broken — should have been unsigned

 float —typically use double instead!
— Provides too little precision

— Few compelling use cases, e.g., large arrays in
resource-constrained environments

17-214 17 I

RRRRRRRR

Pop Quiz!

institutej&
17-214 18

What does this fragment print?

int[] a = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int 1i;

int suml = ©;

for (i = @; i < a.length; i++) {
suml += a[i];

int j;

int sum2 = 0;

for (j = 0; i < a.length; j++) {
sum2 += a[j];

}

System.out.println(suml - sum2);

[]
institute for
17-214 19

Maybe not what you expect!

int[] a = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int 1i;

int suml = ©;

for (1 = 0; 1 < a.length; i++) {
suml += a[i];

}

int j;

int sum2 = O;

for (j = @; 1 < a.length; j++) { // Copy/paste error!!!
sum2 += a[j];

}

System.out.println(suml - sum2);

You might expect it to print O, but it prints 55

[]
institute for
17-214 20

You could fix it like this...

int[] a = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int 1i;

int suml = ©;

for (i = @; i < a.length; i++) {
suml += a[i];

int j;

int sum2 = 0;

for (j = 0; j < a.length; j++) {
sum2 += a[j];

System.out.println(suml - sum2); // Now prints @, as expected

institute for
17-214 21

But this fix is far better...

idiomatic Java for loop

int suml = 0;
for (int 1 = 0; i < a.length; i++) {
suml += a[i];

}

int sum2 = 0;
for (int 1 = 0; i < a.length; i++) {
sum2 += a[i];

}

System.out.println(suml - sum2); // Prints 0, as expected

* Reduces scope of index variable to the loop
* Shorter and less error prone

[]
institute for
17-214 22

This fix is better still!

for-each loop

int suml = ©O;
for (int x : a) {
suml += X;

}

int sum2 = 0;
for (int x : a) {
sum2 += X;

}

System.out.println(suml - sum2); // Prints @, as expected

* Eliminates scope of index variable entirely!
* Even shorter and less error prone

[]
institute for
17-214 23

Lessons from the quiz

 Minimize scope of local variables [EJ [tem 57]
— Declare variables at point of use

* |nitialize variables in declaration

* Prefer for-each loops to regular for-loops
e Use common idioms
 \Watch out for bad smells in code

— Such as index variable declared outside loop

17-214 PR | S [A

RRRRRRRR

Objects

* All non-primitives are represented by objects.
* An object is a bundle of state and behavior

e State —the data contained in the object
— |In Java, these are called its instance fields

* Behavior —the actions supported by the object
— In Java, these are called its methods
— Method is just OO-speak for function
— “Invoke a method” is OO-speak for “call a function”

- institute for
17-214 25 [y sormvee

Classes

* Every object has a class
— A class defines methods and fields
— Methods and fields collectively known as members

e Class defines both type and implementation

— Type = what object does (hence where it can be used)
— Implementation = how the object does things

* Loosely speaking, the methods of a class are its

Application Programming Interface (API)
— Defines how users interact with its instances

- institute for
17-214 26 [y sormae

The Java class hierarchy

 The root is Object (all non-primitives are objects)
* All classes except Object have one parent class

— Specified with an extends clause
class Guitar extends Instrument { ... }

— If extends clause omitted, defaults to Object
* Aclassis an instance of all its superclasses

Object

Instrument

Cu Guit a> <Yoyo>

nstitute for
17-214 27

Implementation inheritance

* Aclass:
— Inherits visible fields and methods from its superclasses
— Can override methods to change their behavior

e Overriding method implementation must obey the
contract(s) of its superclass(es)
— Ensures subclass can be used anywhere superclass can
— Liskov Substitution Principle (LSP)
— We will talk more about this in a later class

- institute for
17-214 2[R

Interface types

* Defines a type without an implementation
* Much more flexible than class types

— An interface can extend one or more others
— A class can implement multiple interfaces

Instrument

Electric
Instrument

Stringed
Instrument

Acoustic Electric Synthesizer
Guitar Guitar y

[]
institute for
17-214 29

Enum types

* Java has object-oriented enums

* Insimple form, they look just like C enums:

enum Planet { MERCURY, VENUS, EARTH, MARS,
JUPITER, SATURN, URANUS, NEPTUNE }

e But they have many advantages!
— Compile-time type safety
— Multiple enum types can share value names
— Can add or reorder without breaking existing uses
— High-quality Object methods are provided
— Screaming fast collections (EnumSet, EnumMap)
— Can iterate over all constants of an enum

[]
institute for
17-214 30

Boxed primitives

 Immutable containers for primitive types

* Boolean, Integer, Short, Long, Character,
Float, Double

e Let you “use” primitives in contexts requiring objects
* Canonical use case is collections
 Don’t use boxed primitives unless you have to!

* Language does autoboxing and auto-unboxing
— Blurs but does not eliminate distinction
— There be dragons!

17-214 a1 [Giia

RRRRRRRR

Comparing values

X == Yy compares X and y “directly”:
primitive values: returns true if x and y have the same value
objects refs: returns true if x and y refer to same object

X.equals(y) compares the values of the objects
referred to by X and y*

* Asuming it makes sense to do so for the objects in question

[]
institute for
17-214 32

True or false?

int 1 = 5;
int j = 5;
System.out.println(i == j);

[]
institute for
17-214 33

True or false?

int 1 = 5;
int j = 5;
System.out.println(i == j);

[]
institute for
17-214 34

True or false?

"FOOI';

int 1 = 5; String s

int j = 5; String t S;
System.out.println(i == j); System.out.println(s == t);

institute for
17-214 35

True or false?

int i = 5; String s = "foo";
int j = 5; String t = s;
System.out.println(i == j); System.out.println(s == t);

.

["foo"]

institute for
17-214 36

True or false?

String u = "iPhone";
int 1 = 5; String s = "foo"; String v = u.tolLowerCase();
int j = 5; String t = s; String w = "iphone";

System.out.println(i == j); System.out.println(s == t); System.out.println(v == w);

.

["foo"]

institute for
17-214 37

True or false?

String u = "iPhone";
int 1 = 5; String s = "foo"; String v = u.tolLowerCase();
int j = 5; String t = s; String w = "iphone";

System.out.println(i == j); System.out.println(s == t); System.out.println(v == w);

Undefined! (false in practice)

true true
. u I LUK ||‘
i[5 <l @ L iPhone J
J| 5 te v| #+—|"iphone"
?/1
["'FOO"] W 1 , "iphone"

institute for
17-214 38

The moral

* Always use .equals to compare object refs!
— (Except for enums, which are special)

— The == operator can fail silently and unpredictably
when applied to object references

— Same goes for ! =

17-214 30 [Giin

RRRRRRRR

Outline

“Hello World!” explained
l. The Java type system
Il. Quick ‘n’ dirty 1/0
V. A brief introduction to collections

[]
institute ror
17-214 a0 |[BY) o

Output

* Unformatted
System.out.println("Hello World");

System.out.println("Radius: " + r);
System.out.println(r * Math.cos(theta));
System.out.println();

System.out.print("*");

 Formatted — very similar to C
System.out.printf("%d * %d = %d%»n", a, b, a * b); // Varargs

[]
institute for
17-214 a1

Command line input example

Echos all its command line arguments

class Echo {
public static void main(String[] args) {
for (String arg : args) {
System.out.print(arg + " ");
}

$ java Echo Woke up this morning, had them weary blues
Woke up this morning, had them weary blues

[]
institute for
17-214 a2

Command line input with parsing

Prints the GCD of its two command line arguments

class Gcd {
public static void main(String[] args) {

int i = Integer.parselnt(args[0]);
int j = Integer.parselnt(args[1]);
System.out.println(gcd(i, j));

¥

static int gcd(int i, int j) {
return i == 0 ? j : gcd(j % i, i);
}
}

$ java Gcd 11322 35298
666

17-214 43

institute for
SOFTWARE
RESEARCH

Scanner input

Counts the words on standard input

class Wc {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long result = 0;
while (sc.hasNext()) {
sc.next(); // Swallow token
result++;

}
System.out.println(result);

}

$ java Wc < Wc.java
32

[]
institute for
17-214 a4

Outline

“Hello World!” explained
|. The type system
Il. Quick ‘n’ dirty 1/0
V. A brief introduction to collections

[]
institute ror
17-214 as |[SY) o

Primary collection interfaces

Collection <Map>

17-214 P | G [B

RRRRRRRR

“Primary” collection implementations

17-214

Interface Implementation
Set HashSet

List Arraylist
Queue ArrayDeque
Deque ArrayDeque
(stack) ArrayDeque
Map HashMap

Other noteworthy collection implementations

17-214

Interface Implementation(s)

Set LinkedHashSet
TreeSet
EnumSet

Queue PriorityQueue

Map LinkedHashMap
TreeMap
EnumMap

Collections usage example 1

Squeezes duplicate words out of command line

public class Squeeze {
public static void main(String[] args) {
Set<String> s = new LinkedHashSet<>();
for (String word : args)
s.add(word);
System.out.println(s);

}

$ java Squeeze I came I saw I conquered
[I, came, saw, conquered]

[]
institute for
17-214 a9

Collections usage example 2

Prints unique words in alphabetical order

public class Lexicon {
public static void main(String[] args) {
Set<String> s = new TreeSet<>();
for (String word : args)
s.add(word);
System.out.println(s);

}

$ java Lexicon I came I saw I conquered
[I, came, conquered, saw]

[]
institute for
17-214 50

Collections usage example 3

Prints the index of the first occurrence of each word

class Index {
public static void main(String[] args) {
Map<String, Integer> index = new TreeMap<>();

// Iterate backwards so first occurrence wins
for (int i = args.length - 1; i >= 0; i--) {
index.put(args[i], i);

¥

System.out.println(index);

}

$ java Index if it is to be it is up to me to do it
{be=4, do=11, if=0, is=2, it=1, me=9, to=3, up=7}

[]
institute for
17-214 51

More information on collections

 For much more information on collections,
see the annotated outline:

https://docs.oracle.com/javase/11/docs/technotes
/suides/collections/reference.html

 For more info on any library class, see javadoc
— Search web for <fully qualified class name> 11

—e.g.,, Java.util.scanner 11

- institute for
17-214 2 [|]

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/reference.html

What about arrays?

* Arrays aren’t a part of the collections framework
* But thereis an adapter: Arrays.asList
* Arrays and collections don’t mix well

* If you try to mix them and get compiler
warnings, take them seriously

* Generally speaking, prefer collections to arrays

— But arrays of primitives (e.g., int[]) are preferable
to lists of boxed primitives (e.g., List<Integer>)

* See Effective Java Iltem 28 for details

17-214 .S A

RRRRRRRR

To learn Java quickly

THIRDIFEDITION

institute for
17-214 54

Summary

e Java is well suited to large programs; small ones
may seem a bit verbose

* Bipartite type system — primitives & object refs
* Single implementation inheritance

* Multiple interface inheritance

* Afew simple I/O techniques will go a long way

* Collections framework is powerful & easy to use

- institute for
17-214 55 [y sormvae

