Principles of Software Construction:
Objects, Design, and Concurrency

Software engineering anti-patterns

Charlie Garrod Chris Timperley

g,(ku'ncgiv Mellon University
School of Computer Science
[J
institute for
I S SOFTWARE
RESEARCH

(]
institute f
17-214 1 ‘s“ét%%“»t&r?é
RESEARCH

Administrivia

« Homework 6 due at end of Wednesday

 Final exam next Monday, 1-4 p.m. at GHC 4401 (Rashid)

— Review session on Saturday, 12—-2 p.m. at DH 1212
— Additional office hours over the weekend (see calendar)

(]
institute f
17-214 2 ‘s“ététT“vtveAr‘?é
RESEARCH

Last week: A tour of the “Gang of Four” patterns

1. Creational Patterns

2. Structural Patterns /

3. Behavioral Patterns

SOPISSIIA @ uosuyof

vy
2z
g
-
7
74
=
>
-
m
Z
0
7
0
9
m
u
o
)
o
7/
>
(=
o)
2,
“
rd
S
P
=
74
0
v
m
%
z
=
w

WS » BLULLED)

: @&

institute F
17-214 3 DB
RESEARCH

Problem: An object should behave differently based upon
its internal state.

SUPERNINTENDD.

PP\
SELECT START '\'(.\‘K
e _ S

E—— T ‘ i | gTAv\)D\Y\)6 '\ |
ReLense (¥
public class GameCharacter { ReLel. O FF?ss
(T ree@ 1
public void handleInput(Input input) {
puc,pme.\/ TORARG |

! | - 7

. institute for
17-214 https://gameprogrammingpatterns.com/state.html a4 SOFTWARE

Solution: Delegate behavior to a State object!

DuckingState

DivingState

StandingState

JumpingState

17-214

<<interface>>
CharacterState

Character

5

institute for
SOFTWARE
RESEARCH

8. State

* Intent: allow an object to alter its behavior when
internal state changes. “Object will appear to change
class.”

* Use case: TCP Connection, Game Al
* Key type: State (Object delegates to state!)

* JDK: none that I’'m aware of, but...
— Works great in Java
— Use enums as states
— Use AtomicReference<State> to store it

17-214 6 SO

Wrap-Up

You now know most of the Gang of Four patterns
Definitions can be vague

Coverage is incomplete

But they’re extremely valuable
— They gave us a vocabulary
— And a way of thinking about software

Look for patterns as you read and write software
— GoF, non-GoF, and undiscovered

(]
institute f
17-214 7 ‘s“é?%“@?é
RESEARCH

Today

e Software quality
e Technical debt
e Anti-patterns

e Code smells

(]
institute f
17-214 8 SOFTWARE
RESEARCH

Is it worth writing high-quality software?

Writing and shipping Polishing existing code
new features. and improving quality.

https://www.fedex.com/content/dam/fedex/us-united-states/FedEx-Office/images/2018/Q4/brown_boxes_stack_tile_1706294410.png
https://sierraclub.typepad.com/.a/6a00d83451b96069e20120a5b520b0970c-400wi

institute for
17-214 https://martinfowler.com/articles/is-quality-worth-cost.html 9 SOFTWARE
RESEARCH

https://www.fedex.com/content/dam/fedex/us-united-states/FedEx-Office/images/2018/Q4/brown_boxes_stack_tile_1706294410.png

What is software quality?

- institute for
17-214 10 SO

Internal quality

External quality

® Isthe code well structured?
® Isthe code understandable?
e How well tested is the code?

https://bugfender.com/wp-content/uploads/2018/06/01-App-crash.jpg
https://exceptionnotfound.net/content/images/2018/08/messy-circuit.jpg

17-214

Does the software crash?
Does the software meet its
requirements?

Is the Ul well designed?

institute for
11 I S SOFTWARE
RESEARCH

https://bugfender.com/wp-content/uploads/2018/06/01-App-crash.jpg

Is it worth writing high-quality software?

Writing and shipping Polishing existing code
new features. and improving internal
quality.

https://www.fedex.com/content/dam/fedex/us-united-states/FedEx-Office/images/2018/Q4/brown_boxes_stack_tile_1706294410.png
https://sierraclub.typepad.com/.a/6a00d83451b96069e20120a5b520b0970c-400wi

institute for
17-214 https://martinfowler.com/articles/is-quality-worth-cost.html 12 EEOSFETXVRACR:

https://www.fedex.com/content/dam/fedex/us-united-states/FedEx-Office/images/2018/Q4/brown_boxes_stack_tile_1706294410.png

Which is better value to the customer?

Beautiful
code

Horrifying
code

OR

$10

[)
insti f
17-214 13 R
RESEARCH

Software entropy

“As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done to

maintain or reduce it”
Meir Manny Lehman

“Now, here, you see, it takes
all the running you can do
just to keep in the same
place. If you want to get
somewhere else, you must

run at least twice as fast!”
Through the Looking Glass

institute f
17-214 https://phys.org/news/2013-06-red-queen.html 14 'sng]FtTu\tgAr?é
RESEARCH

Aside: Software decay (a.k.a. “bit rot”)

Even if your software doesn’t change, it’s going to break over time
due to changes in its environment.

http://absfreepic.com/absolutely_free_photos/small_photos/old-cars-in-forest-4272x2848_75303.jpg
[J

institute f
17-214 15 SOFTWARE
RESEARCH

What’s happening here?

- institute ror
17-214 16 [RYY o

Technical debt

Any software system has
a certain amount of

essential complexity

Cruft causes changes
required to do its job...

to take more effort

4 44
& &

... but most systems

contain cruft that makes it
harder to understand.

The technical debt metaphor treats the
cruft as a debt, whose interest payments
are the extra effort these changes require.

17-214

https://martinfowler.com/bliki/TechnicalDebt.html

°
institute for
17 | S SOFTWARE
RESEARCH

Internal quality makes it easier to add features

the cruft means new features

If we compare one take longer to build

system with a lot of
cruft...

LR 2 2 g T8 =

et L ee o ee Lo
\t

+
+
-
+
+
-
f
-
*

T rethrer et H
o g 5 S o T
»

Yr+tt4 o4y
L S 5 28 o 8 R 2
LR T o i i o 2
LR 2 2 =5 S S
. -4 o§¢¢ * <+

this extra time and effort is
the cost of the cruft, paid
with each new feature

...to an equivalent
one W,thout oot 86 69 699

free of cruft, features can be
added more quickly

17-214 18 e

RESEARCH

High internal quality pays off over time

A high internal quality

cumulative
functionality

but delivers more rapidly
(and cheaply) later

software with high internal
quality gets a short initial
slow down |

low internal quality

{
f
|
I time

this point occurs in
weeks (not months)

TL;DR: High-quality software is cheaper to produce

[
institute
17-214 19 [H] o
RESEARCH

Today

e Software quality
e Technical debt
e Anti-patterns

e Code smells

[)
insti f
17-214 20 e o
RESEARCH

What causes technical debt?

Tightly-coupled components
Poorly-specified requirements

Business pressure

Lack of process

Lack of documentation

Lack of a test suite

Lack of knowledge

Lack of ownership

Delayed refactoring

Multiple, long-lived development branches

[)
insti f
17-214 21 e o
RESEARCH

Types of Technical Debt

Reckless Prudent

p , , “‘We must ship now
Deliberate S COUTT T Wi and deal with

for design”)
g consequences (later)

“Now we know how we

111 J - ?JI
Inadvertent What’s layering: should have done it”

institute for
17-214 https://martinfowler.com/bliki/TechnicalDebtQuadrant.html 22 SOFTWARE

RESEARCH

EVERYONE
CREATES TECHNICAL

DEBT

' . .
17_2 1 4 https://www.amazon.com/Everyone-Turtleback-School-Library-Binding/dp/0613685725 23 'Snét}tTu\t,ﬁ%
RESEARCH

Too much technical debt

- Bad code can be demoralising
« Conversations with the client
become awkward

- Team infighting M OKAY WITH THE
. . €veNTs THAT ARe
- Atrophied skills UNFOLDIN G
CURRENTLY.

« Turnover and attrition D~

THATS OKAY,THINGS
ARe GoING TO Be

https://www.theverge.com/2016/5/5/11592622/this-is-fine-meme-comic

17-214 https://daedtech.com/human-cost-tech-debt/ 24 isnét;t#\ggjl(z)é

RESEARCH

When should we reduce technical
debt?

- institute ror
17-214 25 [BYf sormse

Dealing with technical debt: Fixing broken windows

i i - : ~ —— ~ - — = .‘;‘— : '| _—I.I l I '__ -—-' —-"I—?" —— -—-—I]

i e I INRARE H | K) | —
R R e TR T T e

I

B
= ==
s

kr}l I'll

https://phys.org/news/2019-05-evidence-broken-windows-theory-neighborhood.html

institute f
17-214 26 SOFTWARE
RESEARCH

Alternative: Putting out fires is expensive!

https://internetofbusiness.com/how-fog-computing-is-enabling-smart-firefighting

insti f
17-214 27 e o
RESEARCH

https://internetofbusiness.com/how-fog-computing-is-enabling-smart-firefighting/

Analogy: Cleaning your dryer

https://www.squeegeepros.com/files/71AC337A-6FC3-46A6-A68F-12551AD60EA9--E1F09494-816E-48D5-A812-7A327D17098F/dryer-lint-dryer-fire.jpg?nc=05232019092309

[
institute
17-214 28 [i
RESEARCH

https://www.squeegeepros.com/files/71AC337A-6FC3-46A6-A68F-12551AD60EA9--E1F09494-816E-48D5-A812-7A327D17098F/dryer-lint-dryer-fire.jpg?nc=05232019092309

How should we reduce technical debt?

- institute ror
17-214 20 [y sormse

Refactoring

Refactoring (noun): “a change made to the kel
internal structure of software to make it i
easier to understand and cheaper to modify
without changing its observable behavior.”

Refactoring (verb): “to restructure software
by applying a series of refactorings without
changing its observable behavior.”

institute f
17-214 30 SOFTWARE
RESEARCH

Refactorings

efactoring.com

This is the online catalog of refactorings, to support my book Refactoring 2nd

Edition.

Bpart of martinfowler.com

This catalog of refactorings includes those refactorings described in my original
book on Refactoring, together with the Ruby Edition.

Using the Catalog »

Tags

basic

encapsulation
moving-features
organizing-data
simplify-conditional-logic
refactoring-apis
dealing-with-inheritance
collections

delegation

errors

extract

parameters

fragments
grouping-function
immutability

inline

remove

rename

split-phase

variables

17-214

Change Function Declaration

Add Parameter » Change Signature » Remove
Parameter * Rename Function * Rename Method

Change Reference to Value

Change Value to Reference

Collapse Hierarchy

Combine Functions into Class

Combine Functions into Transform

Consolidate Conditional Expression

Decompose Conditional

Encapsulate Collection

Encapsulate Record

Replace Record with Data Class

Encapsulate Variable
Encapsulate Field - Self-Encapsulate Field

Extract Class

Remove Dead Code

Remove Flag Argument

Replace Parameter with Explicit Methods

Remove Middle Man
Remove Setting Method

Remove Subclass

Replace Subclass with Fields

Rename Field
Rename Variable
Replace Command with Function

Replace Conditional with
Polymorphism

Replace Constructor with Factory
Function

Replace Constructor with Factory Method

Replace Control Flag with Break

Remove Control Flag

31

institute for
SOFTWARE
RESEARCH

https://refactoring.com/catalog/

Minor Minor Minor Minor
Start 3 : : . w3
change change change change
Refacoring
Start Major ° Major
change change
Obtrusive Changes

I Consistent behavior
I Unknown state

Revert
refactoring

o
o
s Make . Refactored Run
'cuT change code tests
o
=

Decide on

next refactoring

[J
institute f
17-214 https://dzone.com/articles/what-is-refactoring 32 SOFTWARE

RESEARCH

When should we refactor?

TDD Refactoring
Litter-Pickup Refactoring

>
Comprehension Refactoring -
Preparatory Refactoring \

Planned Refactoring — ->u

Long-Term Refactoring

=+ Kent Beck & .
<] @KentBeck

for each desired change, make the change easy
(warning: this may be hard), then make the easy change

SPER0R DTRMG Sepan. SN2 © Opportunistic Refactoring

© 933 people are talking about this >

Preparatory Refactoring

https://martinfowler.com/articles/preparatory-refactoring-example.html|
https://martinfowler.com/bliki/OpportunisticRefactoring.html

[]
institute for
17-214 33 sorivase

https://martinfowler.com/articles/preparatory-refactoring-example.html
https://martinfowler.com/articles/workflowsOfRefactoring/?source=post_page-----da982d08d2c7----------------------

Today

e Software quality
e Technical debt
e Anti-patterns

e Code smells

[)
institute F
17-214 34 SOFTWARE
RESEARCH

Anti-patterns

- “Anti”-pattern
« Describe things that you should AVOID

— Anti-patterns cover programming, design, and process
- Often have memorable names

“Some repeated pattern of action, process
or structure that initially appears to be
beneficial, but ultimately produces more
bad consequences than beneficial

results, ...”
Anti Patterns: refactoring software, architectures, and

projects in crisis

https://pbs.twimg.com/profile_images, /632821853627678720)/zPKK7jql_400x400 .png

institute for
17-214 http://wiki3.cosc.canterbury.ac.nz/index.php/Antipatterns 35 EEOSFETXVRACR:

There are lots of anti-patterns! Here’s a few...

Analysis paralysis
Cash cow
Design by committee

Escalation of commitment

Management by perkele
Matrix Management
Moral hazard
Mushroom management
Silos

Vendor lock-in

Death march
Groupthink

Smoke and mirrors
Software bloat
Waterfall model
Bystander apathy
Abstraction inversion
Ambiguous viewpoint

Accidental complexity
Action at a distance
Blind faith

Boat anchor

Busy spin

Caching failure

Cargo cult programming
Coding by exception
Error hiding

Hard code

Lava flow

Loop-switch sequence
Magic numbers

Magic strings

Soft code

Spaghetti code

Copy and paste programming
Golden hammer

Extension conflict
JAR hell

BaseBean

Call super
Circle-ellipse problem
Circular dependency
Constant interface
God object

Object cesspool
Object orgy
Poltergeists
Sequential coupling
Yo-yo problem

Hurry up and wait
Magic pushbutton
Race hazard
Stovepipe system
Anemic Domain Model

Big ball of mud Improbability factor Silver bullet
Database-as-IPC Not Invented Here (NIH) syndrome Tester Driven Development
Gold plating Premature optimization Dependency hell
Inner-platform effect Programming by permutation DLL hell
Input kludge Reinventing the wheel
Interface bloat Reinventing the square wheel
17-2 14 https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Architecture/Anti-Patterns 36 gég?i{%

Anti-patterns

1. Programming anti-patterns
2. Design anti-patterns
3. Process anti-patterns

[
institute f
17-214 37 SOFTWARE
RESEARCH

Spaghetti Code

What other see What you see

https://i.pinimg.com/originals/c7/69/04/c76904f05d92f2b45a3bccc45a3998f2.png

institute f
17-214 38 SOFTWARE
RESEARCH

Lava Flow

BACKBASE

COBOL and the bigt

Share this article: W n Ml G+

Z Jenny Maat © April 19,2018 & fintechs

In 2017, Reuters published the following findings from a piece of research
conducted by Celent, Accenture, IBM and others, into the technology supporting
major US banking systems:

- 43% of banking systems are built on COBOL
+ 80% of in-person transactions use COBOL

+ 95% of ATM swipes rely on COBOL

+ 220 billion lines of COBOL are in use today

For the less tech-savvy among us, COBOL is a computer programming language
designed by an astonishing woman, Rear Admiral “Amazing” Grace Hopper, in
1959. And no, that's not a typo. At a time when trillions of pounds are transacted
every year, and with the UK economy depending on six banks to keep the show
on the road, regulated banks are relying on a computer language that'’s nearly 60
years old, designed for an age when computers as powerful as your smartphone
filled entire rooms.

https://image.shutterstock.com/image-photo/wood-blocks-stack-game-copyspace-260nw-1076163038.jpg
[J

insttute F
17-214 39 SOFTWARE
RESEARCH

https://www.backbase.com/2018/04/19/cobol-and-the-big-tin-bank/

The Blob

Main Controller Class Records

+ Data_List_Provider

] + Status
Images]J + Mode ErrorSet

+ User / /
\ + Group wee
+ Date Time]
Table2 +ACL

Datal R J

/

+ Start()
+ Stop()
+ Initialize()

/ + Set_Mode()
Group4 + Login()

+ Set_Status() Figurel
+ Do_This()
+ Do_That()

Users

[
17-214 40 SOFTWARE
RESEARCH

Anti-patterns

1. Programming anti-patterns
2. Design anti-patterns
3. Process anti-patterns

[
institute f
17-214 41 SOFTWARE
RESEARCH

BaseBean

java.util

€ HashMap <K,\V> |

]

(9 PhoneBook l

17-214

BAD

3 PhoneBook

40 entries: Map=String,String=

GOOD

http://wiki3.cosc.canterbury.ac.nz/index.php/BaseBean

zinterfaces
€ Map <K,v>

java.util

L]
institute for
42 | S SOFTWARE
RESEARCH

http://wiki3.cosc.canterbury.ac.nz/index.php/BaseBean

public class Properties extends Hashtable<Object, Object> {

“Because Properties inherits from Hashtable, the put and
putAll methods can be applied to a Properties object. Their

use is strongly discouraged ...”

[)
insti f
17-214 43 R
RESEARCH

Swiss-Army Knife

http://codebalance.blogspot.com/2011/08/software-architecture-antipatterns.html

institute
17-214 44 SOFTWARE
RESEARCH

Call Super

public class EventHandler {

public void handle(BankEvent event) {
housekeeping(event) ;

}
}

public class TransferEventHandler extends EventHandler {

public void handle(BankingEvent event) {
super .handle(event);
initiateTransfer(e);

}
}

Danger: Easy to forget to call super!

institute for
17-214 https://martinfowler.com/bliki/CallSuper.html 45 Ao

Call Super

public class EventHandler {

public void handle(BankEvent event) {
housekeeping(event) ;
doHandle(event) ;

}
protected void doHandle(BankEvent event) { }

}

public class TransferEventHandler extends EventHandler {
protected void doHandle(BankingEvent event) {
initiateTransfer(e);

}
}

Solution: Use the template method pattern instead.

- institute for
17-214 https://martinfowler.com/bliki/CallSuper.html 46 Ao

Anti-patterns

1. Programming anti-patterns
2. Design anti-patterns
3. Process anti-patterns

[
institute f
17-214 47 SOFTWARE
RESEARCH

Reinventing the wheel

WE DON'T WANT TO REINVENT THE \HEEL,
S0 EVERY DAY WE GOOGLE. IMAGE SEARCH
"WJHEEL, AND \JHATEVER OBTECT COMES UP
THAT'S WHAT WE ATTACH TO OUR VEHICLES.

|
SURE, EXTERNAL DEPENDENCIES
CARRY RISKS, BUT SO FAR THEYVE
ALL BEEN PRETTY GOOD WHEELS.

¥

https://imgs.xkcd.com/comics/reinvent_the_wheel.png

institute for
1 7-2 14 https://exceptionnotfound.net/reinventing-the-square-wheel-the-daily-software-anti-pattern/ 48 SOFTWARE
RESEARCH

Death March

FROM THE NEW YORK TIMES BEST-SELLING AUTHOR

The #1 guide to identifying and surviving death marches .. expanded and updated:

SECOND EDITION

DEATH
MARCH

EDWARD YOURDON

institute f
17-214 49 SOFTWARE
RESEARCH

Golden Hammer

https://images-na.ssl-images-amazon.com/images/I/81Qq22mGSYL._SL1500_.jpg

°
institute for
1 7-2 14 https://exceptionnotfound.net/the-golden-hammer-anti-pattern-primers/ 50 I S SOFTWARE

RESEARCH

Cargo Cult Programming

Including code in a system without understanding
why that code needs to be included.

https://www.apexbpm.com/blog/cargo-cult-programming/

institute for
17-214 https://exceptionnotfound.net/cargo-cult-programming-the-daily-software-anti-pattern/ 51 ﬁ?sFET,:V.QRﬁ

Today

e Software quality
e Technical debt
e Anti-patterns

e Code smells

[
institute f
17-214 52 SOFTWARE
RESEARCH

What is a code smell?

* A code smellis a hint that
something has gone wrong
somewhere in your code.

* Asmellis sniffable, or
something that is quick to
spot.

 Asmell doesn’t always
indicate a problem.

[
institute f
17-214 53 SOFTWARE
RESEARCH

Smell checks can be manual or automatic

© codeclimate bot reviewed 18 hours ago View changes

foundation/path/to/file.rb

)
end

def duplicated_method?

a codeclimate bot 18 hours ago

Similar blocks of code found in 2 locations. Consider refactoring.

@ CODE CLIMATE
...path/to/file.rb =2 Show outdated

@) coverity-

Travis ClI

[
institute f
17-214 54 SOFTWARE
RESEARCH

https://docs.codeclimate.com/docs/github-pull-requests

Code Smells

[. - N
N = o

© 0 N O s N =2

Lack of polymorphism
Divergent change
Shotgun surgery
Mysterious names
Long methods

Large classes
Primitive obsession
Long parameter lists
Data clumps
Duplicated code
Dead code

Stinky comments

17-214

55

institute for
SOFTWARE
RESEARCH

Lack of polymorphism

public void doSomething(Account acct) {
long adj = 0;
if (acct instanceof CheckingAccount) {
checkingAcct = (CheckingAccount) acct;
adj = checkingAcct.getFee();
} else if (acct instanceof SavingsAccount) {
savingsAcct = (SavingsAccount) acct;
adj = savingsAcct.getInterest();

Instead:
public void doSomething(Account acct) {
long adj = acct.getMonthlyAdjustment();

[]
insttute F
17-214 56 SOFTWARE
RESEARCH

Long parameter lists

public class User {

public User(String firstName,
String lastName,
int age,
String address,
String phone)

this.firstName = firstName;
this.lastName = lastName;
this.age = age;
this.address = address;
this.phone = phone;

Code becomes had to read and maintain with many attributes!

[
institute f
17-214 57 SOFTWARE
RESEARCH

Solution: Use a Builder to hold build instructions.

public class User { public static class Builder {
private final String firstName; private final String firstName;
private final String lastName; private final String lastName;
private final int age; private int age;
private final String address; private String address;
private final String phone; private String phone;
private User(UserBuilder builder) { private UserBuilder(String firstName,
this.firstName = builder.firstName; String lastName) {
this.lastName = builder.lastName; this.firstName = firstName;
" this.lastName = lastName;
} }
public String getFirstName() { .. } public UserBuilder age(int age) {
public String getLastName() { .. } this.age = age;
" return this;
} }

public UserBuilder phone(String phone) {

new User.Builder(“Fred”, “Rogers”) this.phone = phone:

.age(30) > =
.phone(”1234567")) return this;
.address(...)

.build(); .

In general, you can introduce a Parameter object

[]
institute f
17-214 58 's“été%“éaﬁé
RESEARCH

Primitive obsession

Common abuses:

Phone numbers
Currency
Physical units
Email addresses
Zip codes
Coordinates
Ranges

Using primitives to represent

types.
* No type checking!
* Poor encapsulation

Variables represented by strings
are known as stringly-typed

variables.

Solution: Replace primitives with strongly-typed value objects

17-214

59

institute for
SOFTWARE
RESEARCH

Data clumps

Whenever two or more values are gathered together, turn them
into an object (e.g., database connections, coordinates).

public bool submitCreditCardOrder(string firstName,
string lastName,
string zipcode,
string streetAddresst,
string streetAddress2,
string city,
string state,
string country,
string phoneNumber,
string creditCardNumber,
int expirationMonth,
int expirationYear,
BigDecimal saleAmount)

institute f
17-214 https://scotkelly.wordpress.com/2014/08/24/data-clumps-code-smell/ 60 gésl‘:ji/\c%

Data clumps

Whenever two or more values are gathered together, turn them
into an object (e.g., database connections, coordinates).

public bool submitCreditCardOrder(ContactInformation customerInfo,
CreditCard card,
BigDecimal saleAmount)

Benefits:

e (leaner code

e Type checking and data validation
® [nformation hiding

insti f
17-214 61 e o
RESEARCH

Dead Code

As your software evolves, parts of the source code become unused
or unreachable (e.g., if-else branches, parameters)

Solution: If you can, delete the dead code! If it’s an API, deprecate
the method and eventually remove.

[
institute f
17-214 62 SOFTWARE
RESEARCH

Stinky Comments

// prompt the user for their name using System.out, which

// 1s a PrintStream class. The PrintStream class has a

// method called println, which will output the text

// passed to the console (so that the user can see it)

// and then print a newline.

System.out.println("Welcome to my program! What is your name? ");

/* set the value of the age integer to 32 */
int age = 32;

// declare double-type variables

double salePrice;
double priceWithTax;

// 1if (opt.equals("d"))

// isDebug = true;

// TODO implement missing branch!

// BUG this code doesn’t actually work -- woops! :-)

// FIXME I should probably implement those features in my API

17-214 https://rmarcus.info/blog/2018/11/05/good-bad-comment.html 63

institute for
SOFTWARE
RESEARCH

Duplicated Code

® Need to maintain
‘ multiple copies!
Ty e " e Slows down

P = development.

Yl 14 ' e \ery easy to forget to
modify a copy and to
introduce a bug.

e Harms comprehension.

X 4

-
) "\ -

§
e

Solutions: Extract Functions, Slide Statements, Pull Up Method

[]
o
17-214 64 's“étét#éme
RESEARCH

Divergent change

Changing a class requires
additional changes to unrelated
methods in that class.

Try to decompose the concerns
of the class into multiple
classes.

[J
- . . L . . F
17-214 https://refactoring.guru/smells/divergent-change 65 lsn(s)tlFtTu\EgA%
RESEARCH

The opposite smell: Shotgun surgery

Making a change
requires lots of small
changes to a large
number of classes.

Try to collapse methods
and fields into a single

class. @gﬁ%

o
. .) -
17-214 https://refactoring.guru/smells/shotgun-surgery 66 'snétllrtTU\tfo%
RESEARCH

Mysterious names

e Name should be

What is the worst ever variable name?

concise and
data meaningful.
What is the second-worst name? e |Ifit’sreally hardto
data?2 come up with a name,

you may have a
deeper design
problem!

What is the third-worst name ever?
data 2

How to name things:

the hardest problem in programming

Solution: Take the time to rename

your methods, variables, and fields.

@PeterHilton

http://hilton.org.uk/

. . .
17-214 https://hilton.org.uk/blog/naming-smells 67 'S”ét}t#vt‘fjﬁé

RESEARCH

https://hilton.org.uk/presentations/naming-guidelines

Long methods

Difficult to understand
Hard to debug*
Redundant code?
Poor code?

Solution: Decompose large

methods into smaller methods
that capture different steps

17-214 https://refactoring.guru/smells/long-method 68 SO TRk

RESEARCH

Large classes

® Suggests bad OO design
e Multiple responsibilities?
® Duplicate or redundant code?

Solution: Break up class into multiple, smaller classes, each with a
single responsibility.

17-214 https://refactoring.guru/smells/large-class 69 SO TRk

RESEARCH

There are lots of code smells!

To learn more, check out:
- Refactoring: Improving the Design
of Existing Code by Martin Fowler
. https://refactoring.guru

insti f
17-214 70 L
RESEARCH

https://refactoring.guru

Summary

- Software accumulates technical debt as it evolves. Technical
debt introduces cruft and slows down development. The longer
technical debt lingers, the more problems it creates.

- Refactoring is used to continually reduce technical debt.

- Anti-patterns represent common programming, design, and
process failures that should be avoided.

- Code smells suggest problems with your code and design.

- Eliminating smells via refactoring can reduce cruft.

[)
insti f
17-214 71 e o
RESEARCH

