
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Software engineering anti-patterns

Charlie Garrod Chris Timperley

217-214

Administrivia

• Homework 6 due at end of Wednesday
• Final exam next Monday, 1–4 p.m. at GHC 4401 (Rashid)

– Review session on Saturday, 12–2 p.m. at DH 1212
– Additional office hours over the weekend (see calendar)

317-214

Last week: A tour of the “Gang of Four” patterns

1. Creational Patterns
2. Structural Patterns
3. Behavioral Patterns

417-214

Problem: An object should behave differently based upon
its internal state.

https://gameprogrammingpatterns.com/state.html

public class GameCharacter {
 …
 public void handleInput(Input input) {
 ...
 }
 …
}

517-214

<<interface>>
CharacterState

Solution: Delegate behavior to a State object!

DuckingState

DivingState

StandingState

JumpingState

Character

617-214

8. State

• Intent: allow an object to alter its behavior when
internal state changes. “Object will appear to change
class.”

• Use case: TCP Connection, Game AI

• Key type: State (Object delegates to state!)

• JDK: none that I’m aware of, but…
– Works great in Java
– Use enums as states
– Use AtomicReference<State> to store it

717-214

Wrap-Up

• You now know most of the Gang of Four patterns

• Definitions can be vague

• Coverage is incomplete

• But they’re extremely valuable

– They gave us a vocabulary

– And a way of thinking about software

• Look for patterns as you read and write software

– GoF, non-GoF, and undiscovered

817-214

Today

● Software quality
● Technical debt
● Anti-patterns
● Code smells

917-214

Is it worth writing high-quality software?

https://martinfowler.com/articles/is-quality-worth-cost.html

Writing and shipping
new features.

OR

https://www.fedex.com/content/dam/fedex/us-united-states/FedEx-Office/images/2018/Q4/brown_boxes_stack_tile_1706294410.png
https://sierraclub.typepad.com/.a/6a00d83451b96069e20120a5b520b0970c-400wi

Polishing existing code
and improving quality.

https://www.fedex.com/content/dam/fedex/us-united-states/FedEx-Office/images/2018/Q4/brown_boxes_stack_tile_1706294410.png

1017-214

What is software quality?

1117-214

External quality

● Does the software crash?
● Does the software meet its

requirements?
● Is the UI well designed?

https://bugfender.com/wp-content/uploads/2018/06/01-App-crash.jpg
https://exceptionnotfound.net/content/images/2018/08/messy-circuit.jpg

Internal quality

● Is the code well structured?
● Is the code understandable?
● How well tested is the code?

https://bugfender.com/wp-content/uploads/2018/06/01-App-crash.jpg

1217-214

Is it worth writing high-quality software?

https://martinfowler.com/articles/is-quality-worth-cost.html

Writing and shipping
new features.

OR

https://www.fedex.com/content/dam/fedex/us-united-states/FedEx-Office/images/2018/Q4/brown_boxes_stack_tile_1706294410.png
https://sierraclub.typepad.com/.a/6a00d83451b96069e20120a5b520b0970c-400wi

Polishing existing code
and improving internal

quality.

https://www.fedex.com/content/dam/fedex/us-united-states/FedEx-Office/images/2018/Q4/brown_boxes_stack_tile_1706294410.png

1317-214

Which is better value to the customer?

SOME
APP

SOME
APPOR

$6 $10

Horrifying
code

Beautiful
code

1417-214

Software entropy

“As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done to
maintain or reduce it”
Meir Manny Lehman

“Now, here, you see, it takes
all the running you can do
just to keep in the same
place. If you want to get
somewhere else, you must
run at least twice as fast!”
Through the Looking Glass

https://phys.org/news/2013-06-red-queen.html

1517-214

Aside: Software decay (a.k.a. “bit rot”)

Even if your software doesn’t change, it’s going to break over time
due to changes in its environment.

http://absfreepic.com/absolutely_free_photos/small_photos/old-cars-in-forest-4272x2848_75303.jpg

1617-214

What’s happening here?

1717-214

Technical debt

https://martinfowler.com/bliki/TechnicalDebt.html

1817-214

Internal quality makes it easier to add features

1917-214

High internal quality pays off over time

TL;DR: High-quality software is cheaper to produce

2017-214

Today

● Software quality
● Technical debt
● Anti-patterns
● Code smells

2117-214

What causes technical debt?

• Tightly-coupled components
• Poorly-specified requirements
• Business pressure
• Lack of process
• Lack of documentation
• Lack of a test suite
• Lack of knowledge
• Lack of ownership
• Delayed refactoring
• Multiple, long-lived development branches
• ...

2217-214

Types of Technical Debt

Reckless Prudent

Deliberate “We don’t have time
for design”

“We must ship now
and deal with

consequences (later)”

Inadvertent “What’s layering?” “Now we know how we
should have done it”

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

2317-214 https://www.amazon.com/Everyone-Turtleback-School-Library-Binding/dp/0613685725

CREATES TECHNICAL
DEBT

2417-214

Too much technical debt

• Bad code can be demoralising
• Conversations with the client

become awkward
• Team infighting
• Atrophied skills
• Turnover and attrition

https://www.theverge.com/2016/5/5/11592622/this-is-fine-meme-comic

https://daedtech.com/human-cost-tech-debt/

2517-214

When should we reduce technical
debt?

2617-214

Dealing with technical debt: Fixing broken windows

https://phys.org/news/2019-05-evidence-broken-windows-theory-neighborhood.html

2717-214

Alternative: Putting out fires is expensive!

https://internetofbusiness.com/how-fog-computing-is-enabling-smart-firefighting

https://internetofbusiness.com/how-fog-computing-is-enabling-smart-firefighting/

2817-214

Analogy: Cleaning your dryer

https://www.squeegeepros.com/files/71AC337A-6FC3-46A6-A68F-12551AD60EA9--E1F09494-816E-48D5-A812-7A327D17098F/dryer-lint-dryer-fire.jpg?nc=05232019092309

https://www.squeegeepros.com/files/71AC337A-6FC3-46A6-A68F-12551AD60EA9--E1F09494-816E-48D5-A812-7A327D17098F/dryer-lint-dryer-fire.jpg?nc=05232019092309

2917-214

How should we reduce technical debt?

3017-214

Refactoring

Refactoring (noun): “a change made to the
internal structure of software to make it
easier to understand and cheaper to modify
without changing its observable behavior.”

Refactoring (verb): “to restructure software
by applying a series of refactorings without
changing its observable behavior.”

3117-214

Refactorings

https://refactoring.com/catalog/

3217-214 https://dzone.com/articles/what-is-refactoring

3317-214

When should we refactor?

https://martinfowler.com/articles/preparatory-refactoring-example.html
https://martinfowler.com/bliki/OpportunisticRefactoring.html

Preparatory Refactoring

Opportunistic Refactoring

https://martinfowler.com/articles/preparatory-refactoring-example.html
https://martinfowler.com/articles/workflowsOfRefactoring/?source=post_page-----da982d08d2c7----------------------

3417-214

Today

● Software quality
● Technical debt
● Anti-patterns
● Code smells

3517-214

Anti-patterns

• “Anti”-pattern
• Describe things that you should AVOID

– Anti-patterns cover programming, design, and process

• Often have memorable names

https://pbs.twimg.com/profile_images/632821853627678720/zPKK7jql_400x400.png

“Some repeated pattern of action, process
or structure that initially appears to be
beneficial, but ultimately produces more
bad consequences than beneficial
results, …”
Anti Patterns: refactoring software, architectures, and
projects in crisis

http://wiki3.cosc.canterbury.ac.nz/index.php/Antipatterns

3617-214

There are lots of anti-patterns! Here’s a few...

Analysis paralysis
Cash cow
Design by committee
Escalation of commitment
Management by perkele
Matrix Management
Moral hazard
Mushroom management
Silos
Vendor lock-in
Death march
Groupthink
Smoke and mirrors
Software bloat
Waterfall model
Bystander apathy
Abstraction inversion
Ambiguous viewpoint
Big ball of mud
Database-as-IPC
Gold plating
Inner-platform effect
Input kludge
Interface bloat

Accidental complexity
Action at a distance
Blind faith
Boat anchor
Busy spin
Caching failure
Cargo cult programming
Coding by exception
Error hiding
Hard code
Lava flow
Loop-switch sequence
Magic numbers
Magic strings
Soft code
Spaghetti code
Copy and paste programming
Golden hammer
Improbability factor
Not Invented Here (NIH) syndrome
Premature optimization
Programming by permutation
Reinventing the wheel
Reinventing the square wheel

Extension conflict
JAR hell
BaseBean
Call super
Circle-ellipse problem
Circular dependency
Constant interface
God object
Object cesspool
Object orgy
Poltergeists
Sequential coupling
Yo-yo problem
Hurry up and wait
Magic pushbutton
Race hazard
Stovepipe system
Anemic Domain Model
Silver bullet
Tester Driven Development
Dependency hell
DLL hell
...

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Architecture/Anti-Patterns

3717-214

Anti-patterns

1. Programming anti-patterns
2. Design anti-patterns
3. Process anti-patterns

3817-214

Spaghetti Code

https://i.pinimg.com/originals/c7/69/04/c76904f05d92f2b45a3bccc45a3998f2.png

3917-214

Lava Flow

https://image.shutterstock.com/image-photo/wood-blocks-stack-game-copyspace-260nw-1076163038.jpg

https://www.backbase.com/2018/04/19/cobol-and-the-big-tin-bank/

4017-214

The Blob

4117-214

Anti-patterns

1. Programming anti-patterns
2. Design anti-patterns
3. Process anti-patterns

4217-214

BaseBean

http://wiki3.cosc.canterbury.ac.nz/index.php/BaseBean

BAD
GOOD

http://wiki3.cosc.canterbury.ac.nz/index.php/BaseBean

4317-214

public class Properties extends Hashtable<Object, Object> {

“Because Properties inherits from Hashtable, the put and
putAll methods can be applied to a Properties object. Their
use is strongly discouraged …”

4417-214

Swiss-Army Knife

http://codebalance.blogspot.com/2011/08/software-architecture-antipatterns.html

4517-214

Call Super

public class EventHandler {
 …
 public void handle(BankEvent event) {
 housekeeping(event);
 }
}

public class TransferEventHandler extends EventHandler {
 …
 public void handle(BankingEvent event) {
 super.handle(event);
 initiateTransfer(e);
 }
}

https://martinfowler.com/bliki/CallSuper.html

Danger: Easy to forget to call super!

4617-214

Call Super

public class EventHandler {
 …
 public void handle(BankEvent event) {
 housekeeping(event);
 doHandle(event);
 }
 protected void doHandle(BankEvent event) { }
}

public class TransferEventHandler extends EventHandler {
 protected void doHandle(BankingEvent event) {
 initiateTransfer(e);
 }
}

https://martinfowler.com/bliki/CallSuper.html

Solution: Use the template method pattern instead.

4717-214

Anti-patterns

1. Programming anti-patterns
2. Design anti-patterns
3. Process anti-patterns

4817-214

Reinventing the wheel

https://imgs.xkcd.com/comics/reinvent_the_wheel.png

https://exceptionnotfound.net/reinventing-the-square-wheel-the-daily-software-anti-pattern/

4917-214

Death March

5017-214

Golden Hammer

https://images-na.ssl-images-amazon.com/images/I/81Qq22mGSYL._SL1500_.jpg

https://exceptionnotfound.net/the-golden-hammer-anti-pattern-primers/

5117-214

Cargo Cult Programming

https://www.apexbpm.com/blog/cargo-cult-programming/

https://exceptionnotfound.net/cargo-cult-programming-the-daily-software-anti-pattern/

Including code in a system without understanding
why that code needs to be included.

5217-214

Today

● Software quality
● Technical debt
● Anti-patterns
● Code smells

5317-214

What is a code smell?

• A code smell is a hint that
something has gone wrong
somewhere in your code.

• A smell is sniffable, or
something that is quick to
spot.

• A smell doesn’t always
indicate a problem.

5417-214

Smell checks can be manual or automatic

https://docs.codeclimate.com/docs/github-pull-requests

5517-214

Code Smells

1. Lack of polymorphism
2. Divergent change
3. Shotgun surgery
4. Mysterious names
5. Long methods
6. Large classes
7. Primitive obsession
8. Long parameter lists
9. Data clumps

10. Duplicated code
11. Dead code
12. Stinky comments

5617-214

Lack of polymorphism

public void doSomething(Account acct) {
 long adj = 0;
 if (acct instanceof CheckingAccount) {
 checkingAcct = (CheckingAccount) acct;

 adj = checkingAcct.getFee();
 } else if (acct instanceof SavingsAccount) {
 savingsAcct = (SavingsAccount) acct;

 adj = savingsAcct.getInterest();
 }
 …
}

Instead:
 public void doSomething(Account acct) {

 long adj = acct.getMonthlyAdjustment();
 …
}

5717-214

Long parameter lists

public class User {
 ...
 public User(String firstName,
 String lastName,
 int age,
 String address,
 String phone)
 {
 this.firstName = firstName;
 this.lastName = lastName;
 this.age = age;
 this.address = address;
 this.phone = phone;
 }
}

Code becomes had to read and maintain with many attributes!

5817-214

Solution: Use a Builder to hold build instructions.

public class User {
 private final String firstName;
 private final String lastName;
 private final int age;
 private final String address;
 private final String phone;

 private User(UserBuilder builder) {
 this.firstName = builder.firstName;
 this.lastName = builder.lastName;
 …
 }

 public String getFirstName() { … }
 public String getLastName() { … }
 …
}

public static class Builder {
 private final String firstName;
 private final String lastName;
 private int age;
 private String address;
 private String phone;

 private UserBuilder(String firstName,
 String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public UserBuilder age(int age) {
 this.age = age;
 return this;
 }
 public UserBuilder phone(String phone) {
 this.phone = phone;
 return this;
 }
 …
}

new User.Builder(“Fred”, “Rogers”)
 .age(30)
 .phone(“1234567”)
 .address(...)
 .build();

In general, you can introduce a Parameter object

5917-214

Primitive obsession

Common abuses:

● Phone numbers
● Currency
● Physical units
● Email addresses
● Zip codes
● Coordinates
● Ranges

Using primitives to represent
types.

• No type checking!
• Poor encapsulation

Variables represented by strings
are known as stringly-typed
variables.

Solution: Replace primitives with strongly-typed value objects

6017-214

Data clumps

Whenever two or more values are gathered together, turn them
into an object (e.g., database connections, coordinates).

public bool submitCreditCardOrder(string firstName,
 string lastName,
 string zipcode,
 string streetAddress1,
 string streetAddress2,
 string city,
 string state,
 string country,
 string phoneNumber,
 string creditCardNumber,
 int expirationMonth,
 int expirationYear,
 BigDecimal saleAmount)
{
 …
}

https://scotkelly.wordpress.com/2014/08/24/data-clumps-code-smell/

6117-214

Data clumps

Whenever two or more values are gathered together, turn them
into an object (e.g., database connections, coordinates).

public bool submitCreditCardOrder(ContactInformation customerInfo,
 CreditCard card,
 BigDecimal saleAmount)
{
 …
}

Benefits:
● Cleaner code
● Type checking and data validation
● Information hiding

6217-214

Dead Code

As your software evolves, parts of the source code become unused
or unreachable (e.g., if-else branches, parameters)

Solution: If you can, delete the dead code! If it’s an API, deprecate
the method and eventually remove.

6317-214

Stinky Comments

// prompt the user for their name using System.out, which
// is a PrintStream class. The PrintStream class has a
// method called println, which will output the text
// passed to the console (so that the user can see it)
// and then print a newline.
System.out.println("Welcome to my program! What is your name? ");

// if (opt.equals("d"))
// isDebug = true;

// TODO implement missing branch!

// BUG this code doesn’t actually work -- woops! :-)

// FIXME I should probably implement those features in my API

/* set the value of the age integer to 32 */
int age = 32;

// declare double-type variables
double salePrice;
double priceWithTax;

https://rmarcus.info/blog/2018/11/05/good-bad-comment.html

6417-214

Duplicated Code

Solutions: Extract Functions, Slide Statements, Pull Up Method

● Need to maintain
multiple copies!

● Slows down
development.

● Very easy to forget to
modify a copy and to
introduce a bug.

● Harms comprehension.

6517-214

Divergent change

https://refactoring.guru/smells/divergent-change

Changing a class requires
additional changes to unrelated

methods in that class.

Try to decompose the concerns
of the class into multiple

classes.

6617-214

The opposite smell: Shotgun surgery

https://refactoring.guru/smells/shotgun-surgery

Making a change
requires lots of small

changes to a large
number of classes.

Try to collapse methods
and fields into a single

class.

6717-214

Mysterious names

https://hilton.org.uk/blog/naming-smells

● Name should be
concise and
meaningful.

● If it’s really hard to
come up with a name,
you may have a
deeper design
problem!

Solution: Take the time to rename
your methods, variables, and fields.

https://hilton.org.uk/presentations/naming-guidelines

6817-214

Long methods

https://refactoring.guru/smells/long-method

Solution: Decompose large
methods into smaller methods

that capture different steps

● Difficult to understand
● Hard to debug*
● Redundant code?
● Poor code?

6917-214

Large classes

https://refactoring.guru/smells/large-class

Solution: Break up class into multiple, smaller classes, each with a
single responsibility.

● Suggests bad OO design
● Multiple responsibilities?
● Duplicate or redundant code?

7017-214

There are lots of code smells!

To learn more, check out:

• Refactoring: Improving the Design
of Existing Code by Martin Fowler

• https://refactoring.guru

https://refactoring.guru

7117-214

Summary

• Software accumulates technical debt as it evolves. Technical
debt introduces cruft and slows down development. The longer
technical debt lingers, the more problems it creates.

• Refactoring is used to continually reduce technical debt.
• Anti-patterns represent common programming, design, and

process failures that should be avoided.
• Code smells suggest problems with your code and design.
• Eliminating smells via refactoring can reduce cruft.

