Principles of Software Construction:
Objects, Design, and Concurrency

Part 3: Concurrency

Introduction to concurrency, part 4
In the trenches of parallelism

Charlie Garrod Chris Timperley

Carnegie Mellon University
School of Computer Science
[J

institute for
I S SOFTWARE
RESEARCH

°

institute for

- SOFTWARE
17 214 1 RESEAI;\CH

Administrivia

* Homework 5b due 11:59 p.m. tonight

— Turnin by tomorrow 9 a.m. to be considered as a Best Framework

e Optional reading due today:

— Java Concurrency in Practice, Chapter 12

°
institute for

- SOFTWARE
17-214 2

NEW COURSE: LANGUAGE DESIGN & PROTOTYPING

17-396/17-696 — SPRING 2020

Little languages are everywhere! Would you like to — or do you need to — design your own?

In this course, you will:

Learn how to critique a language design

Practice several language prototyping approaches (interpreters, transpilers, fluent APls)
Apply techniques for evaluating language designs with users

Design and prototype your own language in the final project

Prof. Jonathan Aldrich — T/Th 3-4:20
http://www.cs.cmu.edu/~aldrich/courses/17-396/

Software Engineering (SE) at CMU

17-214: Code-level design

— Extensibility, reuse, concurrency, functional correctness

 17-313: Human aspects of software development

— Requirements, teamwork, scalability, security, scheduling, costs, risks,
business models

* 17-413 Practicum, 17-415 Seminar, Internship

e Various courses on requirements, architecture, software
analysis, SE for startups, APl design, etc.

e SE Minor: http://isri.cmu.edu/education/undergrad

o
4 institute for
17-214 a SO

Key concepts from last Thursday

°
institute for

- SOFTWARE
17 214 5 RESEAI;\CH

Policies for thread safety

Thread-confined

Shared read-only

Shared thread-safe
— Objects that perform internal synchronization

Guarded

— Objects that must be synchronized externally

°
institute for

- SOFTWARE
17-214 6

Shared thread-safe

 "Thread-safe" objects that perform internal synchronization
* Build your own, or know the Java concurrency libraries

°
institute for

- SOFTWARE
17 214 7 RESEAI;\CH

Advice for building thread-safe objects

* Do as little as possible in synchronized region: get in, get out
— Obtain lock
— Examine shared data
— Transform as necessary
— Drop the lock

* If you must do something slow, move it outside the
synchronized region

°
institute for

- SOFTWARE
17-214 8

Example: adding concurrency to the observer pattern

private final List<Observer<E>> observers = new ArraylList<>();
public void addObserver(Observer<E> observer) {
synchronized(observers) { observers.add(observer); }
}
public boolean removeObserver(Observer<E> observer) {
synchronized(observers) { return observers.remove(observer); }
}
private void notifyOf(E element) {
synchronized(observers) {
for (Observer<E> observer : observers)
observer.notify(this, element); // Risks liveness and
} // safety failures!

institute for
- SOFTWARE
17 2 14 9 RESEAI;\CH

One solution: snapshot iteration

private void notifyOf(E element) {
List<Observer<ge>> snapshot = null;

synchronized(observers) {
snapshot = new ArraylList<>(observers);

for (Observer<E> observer : snapshot) {
observer.notify(this, element); // Safe

[J
institute for
17-214 10 SO

A better solution: CopyOnWriteArraylList

private final List<Observer<E>> observers =
new CopyOnWriteArrayList<>();

public void addObserver(Observer<E> observer) {
observers.add(observer);

¥

public boolean removeObserver(Observer<E> observer) {
return observers.remove(observer);

}
private void notifyOf(E element) {

for (Observer<E> observer : observers)
observer.notify(this, element);

[J
institute for
17-214 11 SO

The fork-join pattern

Parallel Task |

Master Thread . .

if (my portion of the work is small)
do the work directly
else
split my work into pieces
invoke the pieces and wait for the results

[J
institute for
17-214 Image from: Wikipedia 12 EEOSFETX?ERFE

A framework for asynchronous computation

* The java.util.concurrent.Future<V> interface
Vv get();
V get(long timeout, TimeUnit unit);
boolean isDone();

boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();

* The java.util.concurrent.ExecutorService interface

void execute(Runnable task);

Future submit(Runnable task);

Future<V> submit(Callable<V> task);

List<Future<V>> invokeAll(Collection<Callable<V>> tasks);
Future<V> invokeAny(Collection<Callable<V>> tasks);

[J
institute for
17-214 13 SO

Today

* Concurrency in practice: In the trenches of parallelism

institute for
17-214 14 SO

Concurrency at the language level

* Consider:
Collection<Integer> collection = ..;
int sum = ©;
for (int i : collection) {

sum += 1i;
}

* |n python:
collection = ..
sum = 0
for item in collection:

sum += item

[J
institute for
17-214 15 SO

Parallel quicksort in Nesl

function quicksort(a) =
if (#a < 2) then a

else
let pivot = a[#a/2];
lesser = {e in a| e < pivot};
equal = {e in a| e == pivot};
greater = {e in a| e > pivot};

result = {quicksort(v): v in [lesser,greater]};
in result[@] ++ equal ++ result[1];

e Operationsin {} occur in parallel
e 210-esque questions: What is total work? What is depth?

[J
institute for
17-214 16 SO

Prefix sums (a.k.a. inclusive scan, a.k.a. scan)

* Goal: given array x[0..n-1], compute array of the sum of
each prefix of X

[sum(X
sum(X
sum(x

gum(x[@mn—l])]

c eg, X

0.0
0..1]

0.2

prefix sums:

17-214

)>
)>
)

[13,

9, -4, 19, -6, 2, 6, 3]
22, 18, 37, 31, 33, 39, 42]

°
- S institute for
SOFTWARE

1 7 RESEARCH

Parallel prefix sums

* Intuition: Partial sums can be efficiently combined to form
much larger partial sums. E.g., if we know sum(x[0..3]) and
sum(x[4..7]), then we can easily compute sum(x[0..7])

* eg., X = (1.3, 9, -4, 19, -6, 2, 6, 3]

[J
institute for
17-214 18 SO

Parallel prefix sums algorithm, upsweep

Compute the partial sums in a more useful manner

(13, 9, -4, 19, -6, 2, 6, 3]
(13, 22, -4, 15, -6, -4, 6, 9]

[J
institute for
17-214 19 SO

Parallel prefix sums algorithm, upsweep

Compute the partial sums in a more useful manner

[13, 9, -4,

NN

[13, 22, -4,

T~

(13, 22, -4,

17-214

-6, 2, 6, 3]
—6, _4] 6[9]
-6, -4, 6, 51

°
- S institute for
SOFTWARE

20 RESEARCH

Parallel prefix sums algorithm, upsweep

Compute the partial sums in a more useful manner

[13, 9o, -4, 19, -6, 2, 6, 3]
N U N N
(13, 22, -4, 15, -6, -4, 6, 91
\\\\\\\\\sl \\\\\\\\\sl

(13, 22, -4, 37, -6, -4, 6, 51
|

(13, 22, -4, 37, -6, -4, 6, 42]

[J
institute for
17-214 21 SO

Parallel prefix sums algorithm, downsweep

Now unwind to calculate the other sums

(13, 22, -4, 37, -6, -4, 6,
(13, 22, -4, 37, -6, 33, 6,

17-214 22

421

421

institute for
SOFTWARE
RESEARCH

Parallel prefix sums algorithm, downsweep

Now unwind to calculate the other sums

(13, 22, -4, 37, -6, -4, 6,
(13, 22, -4, 37, -6, 33, 6,

NEONE N

(13, 22, 18, 37, 31, 33, 39,

e Recall, we started with:

(13, 9, -4, 19, -6, 2, 6,

17-214 23

4

4

4

institute for
SOFTWARE
RESEARCH

2]

2]

2]

3]

Doubling array size adds two more levels

Upsweep

< \<+§ Downsweep
[

institute for

17-214 24 [BYf sormse

Parallel prefix sums

pseudocode

// Upsweep
prefix_sums(x):
for d in @ to (lgn)-1: // d 1is depth
parallelfor i in 29-1 to n-1, by 291:
x[1+29] = x[1i] + x[i+29]

// Downsweep
for d in (lgn)-1 to @:
parallelfor i in 29-1 to n-1-29, by 29+1:
if (i-29 >= 9):
x[1] = x[1] + x[i-29]

[J
institute for
17-214 25 SO

Parallel prefix sums algorithm, in code

* An iterative Java-esque implementation:
void iterativePrefixSums(long[] a) {
int gap = 1;
for (; gap < a.length; gap *= 2) {
parfor(int i=gap-1; i+gap < a.length; i += 2*gap) {
a[i+gap] = a[i] + a[i+gap];
}
}
for (5 gap > @; gap /= 2) {
parfor(int i=gap-1; i < a.length; i += 2*gap) {
a[i] = a[i] + ((i-gap >= @) ? a[i-gap] : 0);
}

[J
institute for
17-214 26 SO

Parallel prefix sums algorithm, in code

* Arecursive Java-esque implementation:
void recursivePrefixSums(long[] a, int gap) {
if (2*gap - 1 >= a.length) {
return;

¥

parfor(int i=gap-1; i+gap < a.length; i += 2*gap) {
a[i+gap] = a[i] + a[i+gap];
}

recursivePrefixSums(a, gap*2);

parfor(int i=gap-1; i < a.length; i += 2*gap) {
a[i] = a[i] + ((i-gap >= ©) ? a[i-gap] : 0);
}
}

[J
institute for
17-214 27 SO

Parallel prefix sums algorithm

* How good is this?

[J
institute for
17-214 28 SO

Parallel prefix sums algorithm

* How good is this?
— Work: O(n)
— Depth: O(lg n)

 See PrefixSums. java,
PrefixSumsSequentialWithParallelWork. java

[J
institute for
17-214 29 SO

Goal: parallelize the PrefixSums implementation

» Specifically, parallelize the parallelizable loops
parfor(int i = gap-1; i+gap < a.length; 1 += 2*gap) {
al[i+gap] = a[i] + a[i+gap];
}
e Partition into multiple segments, run in different threads
for(int i = left+gap-1; i+gap < right; 1 += 2*gap) {
a[i+gap] = a[i] + a[i+gap];
}

[J
institute for
17-214 30 SO

Recall from Thursday: Fork/join in Java

* The java.util.concurrent.ForkJoinPool class
— Implements ExecutorService

— Executes java.util.concurrent.ForkJoinTask<V> or
java.util.concurrent.RecursiveTask<V> or
java.util.concurrent.RecursiveAction

* In along computation:
— Fork a thread (or more) to do some work
— Join the thread(s) to obtain the result of the work

[J
institute for
17-214 31 SO

The RecursiveAction abstract class

public class MyActionFoo extends RecursiveAction {
public MyActionFoo(..) {
store the data fields we need

@Override
public void compute() {
if (the task is small) {
do the work here;
return;

¥

invokeAll(new MyActionFoo(..), // smaller
new MyActionFoo(..), // subtasks

) /] ..

[J
institute for
17-214 32 SO

A ForkJoin example

* See PrefixSumsParallelForkJoin.java
* See the processor go, go go!

[J
institute for
17-214 33 SO

Parallel prefix sums algorithm

* How good is this?
— Work: O(n)
— Depth: O(lg n)

* See PrefixSumsParallelArrays.java

[J
institute for
17-214 34 SO

Parallel prefix sums algorithm

* How good is this?
— Work: O(n)
— Depth: O(lg n)

* See PrefixSumsParallelArrays.java
 See PrefixSumsSequential.java

[J
institute for
17-214 35 SO

Parallel prefix sums algorithm

* How good is this?

— Work: O(n)

— Depth: O(lg n)
* See PrefixSumsParallelArrays.java
 See PrefixSumsSequential.java

— n-1 additions
— Memory access is sequential

* For PrefixSumsSequentialWithParallelWork. java
— About 2n useful additions, plus extra additions for the loop indexes
— Memory access is non-sequential

* The punchline:
— Don't roll your own. Know the libraries
— Cache and constants matter

[J
institute for
17-214 36 SO

In-class example for parallel prefix sums

[7, 5, 8, -36, 17, 2, 21, 18]

[J
institute for
17-214 37 SO

