
1 17-214 

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	3:	Concurrency	
	
Introduction	to	concurrency:		Concurrency	challenges	
	
Charlie	Garrod									Chris	Timperley	



2 17-214 

Administrivia	

•  Homework	5a	due	9	a.m.	tomorrow	
•  Midterm	exam	available	on	Gradescope	

–  Regrade	requests	due	Monday,	18	November	

•  Reading	due	today:	
–  Java	Concurrency	in	Practice,	Sections	11.3	and	11.4	



3 17-214 

Winter	is	coming	discussion	



4 17-214 

Key	concepts	from	last	Tuesday	



5 17-214 

A	concurrency	bug	with	an	easy	fix:	

public	class	BankAccount	{	
				private	long	balance;	
	
				public	BankAccount(long	balance)	{	
								this.balance	=	balance;	
				}	
				static	synchronized	void	transferFrom(BankAccount	source,	
																													BankAccount	dest,	long	amount)	{	
								source.balance	-=	amount;	
								dest.balance			+=	amount;	
				}	
				public	synchronized	long	balance()	{	
								return	balance;	
				}	
}	



6 17-214 

Concurrency	control	with	Java's	intrinsic	locks	

•  synchronized	(lock)	{	…	}		
–  Synchronizes	entire	block	on	object	lock;	cannot	forget	to	unlock	
–  Intrinsic	locks	are	exclusive:	One	thread	at	a	time	holds	the	lock	
–  Intrinsic	locks	are	reentrant:		A	thread	can	repeatedly	get	same	lock	

•  synchronized	on	an	instance	method		
–  Equivalent	to		synchronized	(this)	{	…	}	for	entire	method	

•  synchronized	on	a		static	method	in	class	Foo	
–  Equivalent	to		synchronized	(Foo.class)	{	…	}	for	entire	method	



7 17-214 

Atomicity	

•  An	action	is	atomic	if	it	is	indivisible	
–  Effectively,	it	happens	all	at	once	

•  No	effects	of	the	action	are	visible	until	it	is	complete	
•  No	other	actions	have	an	effect	during	the	action	

•  In	Java,	integer	increment	is	not	atomic	

i++;

1. Load data from variable i

2. Increment data by 1

3. Store data to variable i

is actually 



8 17-214 

Yet	another	example:	cooperative	thread	termination	

public	class	StopThread	{	
				private	static	boolean	stopRequested;	
	
				public	static	void	main(String[]	args)	throws	Exception	{	
								Thread	backgroundThread	=	new	Thread(()	->	{	
												while	(!stopRequested)	
																/*	Do	something	*/	;	
								});	
								backgroundThread.start();	
	
								TimeUnit.SECONDS.sleep(42);	
								stopRequested	=	true;	
				}	
}	



9 17-214 

What	went	wrong?	

•  In	the	absence	of	synchronization,	there	is	no	guarantee	as	to	
when,	if	ever,	one	thread	will	see	changes	made	by	another	

•  JVMs	can	and	do	perform	this	optimization:	
					while	(!done)	
									/*	do	something	*/	;	

				becomes:	
					if	(!done)	
									while	(true)	
													/*	do	something	*/	;	

Process 

Thread 

Copy 

Thread 

Copy 

Memory 



10 17-214 

Today	

•  Midterm	exam	2	recap	
•  More	basic	concurrency	in	Java	

–  Some	challenges	of	concurrency	

•  Concurrency	puzzlers	
•  Still	coming	soon:	

–  Higher-level	abstractions	for	concurrency	
–  Program	structure	for	concurrency	
–  Frameworks	for	concurrent	computation	



11 17-214 

A	liveness	problem:		poor	performance	

public	class	BankAccount	{	
				private	long	balance;	
	
				public	BankAccount(long	balance)	{	
								this.balance	=	balance;	
				}	
				static	synchronized	void	transferFrom(BankAccount	source,	
																													BankAccount	dest,	long	amount)	{	
								source.balance	-=	amount;	
								dest.balance			+=	amount;	
				}	
				public	synchronized	long	balance()	{	
								return	balance;	
				}	
}	



12 17-214 

A	liveness	problem:		poor	performance	

public	class	BankAccount	{	
				private	long	balance;	
	
				public	BankAccount(long	balance)	{	
								this.balance	=	balance;	
				}	
				static	void	transferFrom(BankAccount	source,	
																													BankAccount	dest,	long	amount)	{	
								synchronized(BankAccount.class)	{	
												source.balance	-=	amount;	
												dest.balance			+=	amount;	
								}	
				}	
				public	synchronized	long	balance()	{	
								return	balance;	
				}	
}	



13 17-214 

A	proposed	fix?:		lock	splitting	

public	class	BankAccount	{	
				private	long	balance;	
	
				public	BankAccount(long	balance)	{	
								this.balance	=	balance;	
				}	
				static	void	transferFrom(BankAccount	source,	
																													BankAccount	dest,	long	amount)	{	
								synchronized(source)	{		
												synchronized(dest)	{	
																source.balance	-=	amount;	
																dest.balance			+=	amount;	
												}	
								}	
				}	
				…	
}	



14 17-214 

A	liveness	problem:		deadlock	

•  A	possible	interleaving	of	operations:	
–  bugsThread	locks	the	daffy	account	
–  daffyThread	locks	the	bugs	account	
–  bugsThread	waits	to	lock	the	bugs	account…	
–  daffyThread	waits	to	lock	the	daffy	account…	



15 17-214 

A	liveness	problem:		deadlock	

public	class	BankAccount	{	
				private	long	balance;	
	
				public	BankAccount(long	balance)	{	
								this.balance	=	balance;	
				}	
				static	void	transferFrom(BankAccount	source,	
																													BankAccount	dest,	long	amount)	{	
								synchronized(source)	{		
												synchronized(dest)	{	
																source.balance	-=	amount;	
																dest.balance			+=	amount;	
												}	
								}	
				}	
				…	
}	



16 17-214 

Avoiding	deadlock	

•  The	waits-for	graph	represents	dependencies	between	threads	
–  Each	node	in	the	graph	represents	a	thread	
–  An	edge	T1->T2	represents	that	thread	T1	is	waiting	for	a	lock	T2	owns	

•  Deadlock	has	occurred	iff	the	waits-for	graph	contains	a	cycle	
•  One	way	to	avoid	deadlock:		locking	protocols	that	avoid	cycles	

a
b

c

d

f

e

h

g

i



17 17-214 

Avoiding	deadlock	by	ordering	lock	acquisition	

public	class	BankAccount	{	
		private	long	balance;	
		private	final	long	id	=	SerialNumber.generateSerialNumber();	

	
		public	BankAccount(long	balance)	{	
				this.balance	=	balance;	
		}	

	
		static	void	transferFrom(BankAccount	source,	
																											BankAccount	dest,	long	amount)	{	
				BankAccount	first	=	source.id	<	dest.id	?	source	:	dest;	
				BankAccount	second	=	first	==	source	?	dest	:	source;	
				synchronized	(first)	{	
								synchronized	(second)	{	
												source.balance	-=	amount;	
												dest.balance	+=	amount;	
								}	
				}	
		}	…	



18 17-214 

Another	subtle	problem:		The	lock	object	is	exposed	

public	class	BankAccount	{	
		private	long	balance;	
		private	final	long	id	=	SerialNumber.generateSerialNumber();	

	
		public	BankAccount(long	balance)	{	
				this.balance	=	balance;	
		}	

	
		static	void	transferFrom(BankAccount	source,	
																											BankAccount	dest,	long	amount)	{	
				BankAccount	first	=	source.id	<	dest.id	?	source	:	dest;	
				BankAccount	second	=	first	==	source	?	dest	:	source;	
				synchronized	(first)	{	
								synchronized	(second)	{	
												source.balance	-=	amount;	
												dest.balance	+=	amount;	
								}	
				}	
		}	…	



19 17-214 

An	easy	fix:		Use	a	private	lock	

public	class	BankAccount	{	
		private	long	balance;	
		private	final	long	id	=	SerialNumber.generateSerialNumber();	
		private	final	Object	lock	=	new	Object();	
	
		public	BankAccount(long	balance)	{	
				this.balance	=	balance;	
		}	

	
		static	void	transferFrom(BankAccount	source,	
																											BankAccount	dest,	long	amount)	{	
				BankAccount	first	=	source.id	<	dest.id	?	source	:	dest;	
				BankAccount	second	=	first	==	source	?	dest	:	source;	
				synchronized	(first.lock)	{	
								synchronized	(second.lock)	{	
												source.balance	-=	amount;	
												dest.balance	+=	amount;	
								}	
				}	
		}	…	



20 17-214 

Concurrency	and	information	hiding	

•  Encapsulate	an	object's	state:		Easier	to	implement	invariants	
–  Encapsulate	synchronization:		Easier	to	implement	synchronization	policy	



21 17-214 

An	aside:		Java	Concurrency	in	Practice	annotations	

@ThreadSafe	
public	class	BankAccount	{	
		@GuardedBy("lock")	
		private	long	balance;	
		private	final	long	id	=	SerialNumber.generateSerialNumber();	
		private	final	Object	lock	=	new	Object();	
	
		public	BankAccount(long	balance)	{	
				this.balance	=	balance;	
		}	

	
		static	void	transferFrom(BankAccount	source,	
																											BankAccount	dest,	long	amount)	{	
				BankAccount	first	=	source.id	<	dest.id	?	source	:	dest;	
				BankAccount	second	=	first	==	source	?	dest	:	source;	
				synchronized	(first.lock)	{	
								synchronized	(second.lock)	{	
												source.balance	-=	amount;	
												dest.balance	+=	amount;	
								}	…	



22 17-214 

An	aside:		Java	Concurrency	in	Practice	annotations	

•  @ThreadSafe	
•  @NotThreadSafe	
•  @GuardedBy	
•  @Immutable	



23 17-214 

Today	

•  Midterm	exam	2	recap	
•  More	basic	concurrency	in	Java	

–  Some	challenges	of	concurrency	

•  Concurrency	puzzlers	
•  Still	coming	soon:	

–  Higher-level	abstractions	for	concurrency	
–  Program	structure	for	concurrency	
–  Frameworks	for	concurrent	computation	



24 17-214 

Puzzler:	“Racy	Little	Number”	



25 17-214 

Puzzler:	“Racy	Little	Number”	

import	org.junit.Test;	
import	static	org.junit.Assert.assertEquals;	
	
public	class	LittleTest	{	
			int	number;	
	
			@Test	
			public	void	test()	throws	InterruptedException	{	
							number	=	0;	
							Thread	t	=	new	Thread(()	->	{	
										assertEquals(2,	number);	
							});	
							number	=	1;	
							t.start();	
							number++;	
							t.join();	
			}	
}	



26 17-214 

How	often	does	this	test	pass?	

import	org.junit.Test;	
import	static	org.junit.Assert.assertEquals;	
	
public	class	LittleTest	{	
			int	number;	
	
			@Test	
			public	void	test()	throws	InterruptedException	{	
							number	=	0;	
							Thread	t	=	new	Thread(()	->	{	
										assertEquals(2,	number);	
							});	
							number	=	1;	
							t.start();	
							number++;	
							t.join();	
			}	
}	

(a)	It	always	fails	
(b)	It	sometimes	passes	
(c)	It	always	passes	
(d)	It	always	hangs	



27 17-214 

How	often	does	this	test	pass?	

(a)	It	always	fails	
(b)	It	sometimes	passes	
(c)	It	always	passes	–	but	it	tells	us	nothing	
(d)	It	always	hangs	
	
	
JUnit	doesn’t	see	assertion	failures	in	other	threads	



28 17-214 

Another	look	

import	org.junit.*;	
import	static	org.junit.Assert.*;	
	
public	class	LittleTest	{	
			int	number;	
	
			@Test	
			public	void	test()	throws	InterruptedException	{	
							number	=	0;	
							Thread	t	=	new	Thread(()	->	{	
										assertEquals(2,	number);	//	JUnit	never	sees	the	exception!	
							});	
							number	=	1;	
							t.start();	
							number++;	
							t.join();	
			}	
}	



29 17-214 

How	do	you	fix	it?		(1)	

//	Keep	track	of	assertion	failures	during	test	
volatile	Exception	exception;	
volatile	Error	error;	
	
//	Triggers	test	case	failure	if	any	thread	asserts	failed	
@After		
public	void	tearDown()	throws	Exception	{	
				if	(error	!=	null)	
								throw	error;	
				if	(exception	!=	null)	
								throw	exception;	
}	



30 17-214 

How	do	you	fix	it?		(2)	

Thread	t	=	new	Thread(()	->	{	
				try	{	
								assertEquals(2,	number);		
				}	catch(Error	e)	{	
								error	=	e;	
				}	catch(Exception	e)	{	
								exception	=	e;	
				}	
});	
	
	
	
	
	
																																																				*YMMV	(It’s	a	race	condition)	
	
	

Now	it	sometimes	passes*	



31 17-214 

The	moral	

•  JUnit	does	not	well-support	concurrent	tests	
–  You	might	get	a	false	sense	of	security	

•  Concurrent	clients	beware…	



32 17-214 

Puzzler:	“Ping	Pong”	

public	class	PingPong	{	
				public	static	synchronized	void	main(String[]	a)	{	
								Thread	t	=	new	Thread(	()	->	pong()	);	
								t.run();	
								System.out.print("Ping");	
				}	
	
				private	static	synchronized	void	pong()	{	
								System.out.print("Pong");	
				}	
}	



33 17-214 

What	does	it	print?	

public	class	PingPong	{	
				public	static	synchronized	void	main(String[]	a)	{	
								Thread	t	=	new	Thread(	()	->	pong()	);	
								t.run();	
								System.out.print("Ping");	
				}	
	
				private	static	synchronized	void	pong()	{	
								System.out.print("Pong");	
				}	
}	

(a)	PingPong	
(b)	PongPing	
(c)	It	varies	



34 17-214 

What	does	it	print?	

(a)	PingPong	
(b)	PongPing	
(c)	It	varies	
	
	
	
	
	
	
	
	
	
Not	a	multithreaded	program!	



35 17-214 

Another	look	

public	class	PingPong	{	
				public	static	synchronized	void	main(String[]	a)	{	
								Thread	t	=	new	Thread(	()	->	pong()	);	
								t.run();		//	An	easy	typo!	
								System.out.print("Ping");	
				}	
	
				private	static	synchronized	void	pong()	{	
								System.out.print("Pong");	
				}	
}	



36 17-214 

How	do	you	fix	it?	

public	class	PingPong	{	
				public	static	synchronized	void	main(String[]	a)	{	
								Thread	t	=	new	Thread(	()	->	pong()	);	
								t.start();	
								System.out.print("Ping");	
				}	
	
				private	static	synchronized	void	pong()	{	
								System.out.print("Pong");	
				}	
}	

Now	prints	PingPong	



37 17-214 

The	moral	

•  Invoke	Thread.start,	not	Thread.run	
•  java.lang.Thread	should	not	have	implemented	Runnable	



38 17-214 

Summary	

•  Concurrent	programming	can	be	hard	to	get	right	
–  Easy	to	introduce	bugs	even	in	simple	examples	

•  Coming	soon:	
–  Higher-level	abstractions	for	concurrency	
–  Program	structure	for	concurrency	
–  Frameworks	for	concurrent	computation	


