Principles of Software Construction:
Objects, Design, and Concurrency

Part 3: Concurrency

Introduction to concurrency

Charlie Garrod Chris Timperley

Carnegie Mellon University
School of Computer Science
[J

institute for
I S SOFTWARE
RESEARCH

[]

institute for
- SOFTWARE
17 2 14 1 RESEAI;\CH

Administrivia

e Homework 5 team sign-up deadline Thursday
— Team sizes, presentation slots...

 Midterm exam in class Thursday (31 October)
— Review session Wednesday, 30 October, 6-8 p.m. in HH B131

* Next required reading due Tuesday
— Java Concurrency in Practice, Sections 11.3 and 11.4

* Homework 5 frameworks discussion

°

institute for

- SOFTWARE
17-214 2

Key concepts from last Thursday

°
institute for

- SOFTWARE
17 214 3 RESEAI;\CH

Challenges of working as a team: Aligning expectations

« How do we make decisions?

°
institute for

- SOFTWARE
17 214 4 RESEAI;\CH

Use simple branch-based development

Master

\4

™

Create a new branch for each feature.

e allows parallel development

® no dealing with half-finished code

® no merge conflicts!

17-214

Commits on Oct 20, 2019

Added file checking methods to FileSystem (#28) ..
@ ChrisTimperley committed yesterday v/

Commits on Oct 19, 2019

Implemented basic filesystem API (#27) -
& ChrisTimperley committed 2 days ago v/

Added workaround for shell calls without both stdout and stderr (¥26) ..
@ ChrisTimperley committed 2 days ago v/

Added Container class for holding Docker container details (#24) ..

@ ChrisTimperley committed 3 days ago v/

Commits on Oct 13, 2019

Added DockerDaemon for maintaining connnections to daemon (fixes #21) (... .-

@ ChrisTimperley committed 8 days ago v/

Added environ method to Shell (#20) ..
& ChrisTimperley committed 9 days ago v/

Added basic popen to shell (fixes #6) (#19) ..
@ ChrisTimperley committed 9 days ago v/

Add encoding and text parameters to Shell commands (fixes #9) (#17) ..

@ ChrisTimperley committed 9 days ago v/

Verified

Verified

Verified

Verified

Verified

Verified

Verified

Verified

E da32eda

E | 73d331e

B | 06aa0se

B | osceles
Bl 79adse7
B | 4493af4

B | cf79374

B cefilac

Every commit to “master” should pass

your Cl checks.

build ' passing

5

institute for
SOFTWARE
RESEARCH

<

<

<

<

<

<

<

<

Semester overview

* |ntroduction to Java and O-O
* Introduction to design

— Design goals, principles, patterns

* Designing classes
— Design for change
— Design for reuse
e Designing (sub)systems
— Design for robustness
— Design for change (cont.)
* Design case studies
* Design for large-scale reuse

e Explicit concurrency

17-214

Crosscutting topics:

— Modern development tools:
IDEs, version control, build

automation, continuous
integration, static analysis

— Modeling and specification,
formal and informal

— Functional correctness: Testing,
static analysis, verification

institute for
6 | S SOFTWARE
RESEARCH

Today: Concurrency, motivation and primitives

* The backstory

— Motivation, goals, problems, ...
* Concurrency primitives in Java

 Coming soon (not today):
— Higher-level abstractions for concurrency
— Program structure for concurrency
— Frameworks for concurrent computation

°
institute for

- SOFTWARE
17-214 7

Power requirements of a CPU

 Approx.: Capacitance * Voltage? * Frequency
* Toincrease performance:

— More transistors, thinner wires

* More power leakage: increase V
— Increase clock frequency F

e Change electrical state faster: increase V

* Dennard scaling: As transistors get smaller, power density is
approximately constant...
— ...until early 2000s

* Heat output is proportional to power input

°
institute for

- SOFTWARE
17-214 8

One option: fix the symptom

* Dissipate the heat

institute for
17-214 o SO

One option: fix the symptom

* Better: Dissipate the heat with liquid nitrogen
— Overclocking by Tom's Hardware's 5 GHz project

i,
http://www.tomshardware.com/reviews/5-ghz-project,731-8.html
17-214 10

institute for
I S SOFTWARE
RESEARCH

Processor characteristics over time

Dotted line extrapolations by C. Moore

Transistors
(thousands)

Single-thread
Performance
(SpeciINT)

Typical Power
(Watts)

Number of
Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and piotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten

17-214

11

institute for
SOFTWARE
RESEARCH

Concurrency then and now

* In the past, multi-threading just a convenient abstraction
— GUI design: event dispatch thread
— Server design: isolate each client's work
— Workflow design: isolate producers and consumers

* Now: required for scalability and performance

[J
institute for
17-214 12 SO

We are all concurrent programmers

* Javaisinherently multithreaded
* To utilize modern processors, we must write multithreaded code

* Good news: a lot of it is written for you
— Excellent libraries exist (java.util.concurrent)

* Bad news: you still must understand fundamentals
— ...to use libraries effectively
— ...to debug programs that make use of them

[J
institute for
17-214 13 SO

Aside: Concurrency vs. parallelism, visualized

* Concurrency without parallelism:

e Concurrency with parallelism:

[J
institute for
17-214 14 SO

Basic concurrency in Java

* Aninterface representing a task
public interface Runnable {
void run();

¥

* Aclass to execute a task in a thread
public class Thread {
public Thread(Runnable task);
public void start();
public void join();

17-214

15

institute for
SOFTWARE
RESEARCH

Example: Money-grab (1)

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;
}
public long balance() {
return balance;

¥

[J
institute for
17-214 16 SO

Example: Money-grab (2)

public static void main(String[] args) throws InterruptedException

{
BankAccount bugs = new BankAccount(100);

BankAccount daffy = new BankAccount(100);

Thread bugsThread = new Thread(()-> {
for (int i = 0; 1 < 1 000 _000; i++)
transferFrom(daffy, bugs, 100);
})s

Thread daffyThread = new Thread(()-> {
for (int 1 = 0; 1 < 1 000 _000; i++)
transferFrom(bugs, daffy, 100);

})s

bugsThread.start(); daffyThread.start();
bugsThread.join(); daffyThread.join();
System.out.println(bugs.balance() + daffy.balance());

institute for
17-214 17 SO

What went wrong?

* Daffy & Bugs threads had a race condition for shared data
— Transfers did not happen in sequence

* Reads and writes interleaved randomly

— Random results ensued

[J
institute for
17-214 18 SO

The challenge of concurrency control

* Not enough concurrency control: safety failure
— Incorrect computation

 Too much concurrency control: liveness failure

— Possibly no computation at all (deadlock or livelock)

[J
institute for
17-214 19 SO

Shared mutable state requires concurrency control

* Three basic choices:
1. Don't mutate: share only immutable state
2. Don't share: isolate mutable state in individual threads
3. If you must share mutable state: limit concurrency to achieve safety

[J
institute for
17-214 20 SO

An easy fix:

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static synchronized void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;
}
public synchronized long balance() {
return balance;

¥

[J
institute for
17-214 21 SO

Concurrency control with Java's intrinsic locks

 synchronized (lock) { .. }
— Synchronizes entire block on object 1ock; cannot forget to unlock
— Intrinsic locks are exclusive: One thread at a time holds the lock
— Intrinsic locks are reentrant: A thread can repeatedly get same lock

[J
institute for
17-214 22 SO

Concurrency control with Java's intrinsic locks

 synchronized (lock) { .. }
— Synchronizes entire block on object 1ock; cannot forget to unlock
— Intrinsic locks are exclusive: One thread at a time holds the lock
— Intrinsic locks are reentrant: A thread can repeatedly get same lock

 synchronized on aninstance method
— Equivalentto synchronized (this) { .. } for entire method

* synchronized on a static method in class Foo
— Equivalentto synchronized (Foo.class) { .. } for entire method

[J
institute for
17-214 23 SO

Another example: serial number generation

public class SerialNumber {
private static long nextSerialNumber = 0;
public static long generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException {
Thread threads[] = new Thread[5];
for (int i = @0; 1 < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1 000 000; j++)
generateSerialNumber();

})s
threads[i].start();

¥
for(Thread thread : threads) thread.join();

System.out.println(generateSerialNumber());

[J
institute for
17-214 24 SO

Aside: Hardware abstractions

* Supposedly: Process
— Thread state shared in memory Thread Thread
\ /

* A (slightly) more accurate view:

— Separate state stored in registers and caches, even if shared

Process

Thread Thread

“~ Pl

o
institute for
17-214 25 SO

Atomicity

* An action is atomic if it is indivisible
— Effectively, it happens all at once
* No effects of the action are visible until it is complete
* No other actions have an effect during the action

* |nJava, integer increment is not atomic

1. Load data from variable i
it+; is actually 2. Increment data by 1

3. Store data to variable i

[J
institute for
17-214 26 SO

Again, the fix is easy

public class SerialNumber {
private static int nextSerialNumber = 0;
public static synchronized int generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException{
Thread threads[] = new Thread[5];
for (int i = @0; 1 < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1 000 000; j++)
generateSerialNumber();

})s
threads[i].start();

¥
for(Thread thread : threads) thread.join();

System.out.println(generateSerialNumber());

[J
institute for
17-214 27 SO

Some actions are atomic

Precondition: Thread A: Thread B:

int 1 = 7; 1 = 42; ans = i;

 What are the possible values for ans?

[J
institute for
17-214 28 SO

Some actions are atomic

Precondition: Thread A: Thread B:

int 1 = 7; 1 = 42; ans = i;

 What are the possible values for ans?

iz

o
institute for
17-214 29 SO

Some actions are atomic

Precondition: Thread A: Thread B:

int 1 = 7; 1 = 42; ans = i;

 What are the possible values for ans?

iz

iz

* InJava:
— Reading an int variable is atomic
— Writing an int variable is atomic

— Thankfully, al’153_ is not possible

o
institute for
17-214 30 SO

Bad news: some simple actions are not atomic

* Consider a single 64-bit 1long value

— Concurrently:

* Thread A writing high bits and low bits
* Thread B reading high bits and low bits

Precondition: Thread A: Thread B:
long 1 = 10000000000; 1 = 42; ans = 1i;
ans: (10000000000)
(42)

ans.:

ans: (10000000042 or ...)

o
institute for
17-214 31 SO

Yet another example: cooperative thread termination

public class StopThread {
private static boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested)
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(42);
stopRequested = true;

[J
institute for
17-214 32 SO

What went wrong?

* In the absence of synchronization, there is no guarantee as to
when, if ever, one thread will see changes made by another

* JVMs can and do perform this optimization:
while (!done)

/* do something */ ;

becomes:
if (ldone) Process
while (true)
/* do something */ ; Thread Thread

- Pl

[J
institute for
17-214 33 SO

How do you fix it?

public class StopThread {
private static boolean stopRequested;
private static synchronized void requestStop() {
stopRequested = true;
}

private static synchronized boolean stopRequested() {
return stopRequested;
}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested())
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(42);
requestStop();

institute for
17-214 34 SO

A better(?) solution

public class StopThread {
private static volatile boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested)
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(42);
stopRequested = true;

institute for
17-214 35 SO

Summary

Like it or not, you’re a concurrent programmer

|deally, avoid shared mutable state

— If you can’t avoid it, synchronize properly

Even atomic operations require synchronization
— e.g., stopRequested = true

Some things that look atomic aren’t (e.g., val++)

[J
institute for
17-214 36 SO

