
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction to Design Patterns

Charlie Garrod Chris Timperley

217-214

Administrivia

• Homework 1 feedback in your GitHub repository

• Homework 2 due tonight 11:59 p.m.

• Homework 3 available tomorrow

• Optional reading due today: Effective Java Items 18, 19, and 20
– Required reading due next Tuesday: UML & Patterns Ch 9 and 10

317-214

Key concepts from Tuesday

417-214

Delegation vs. inheritance summary

• Inheritance can improve modeling flexibility

• Usually, favor composition/delegation over inheritance
– Inheritance violates information hiding

– Delegation supports information hiding

• Design and document for inheritance, or prohibit it
– Document requirements for overriding any method

517-214

Continued: instanceof

• Operator that tests whether an object is of a given class
public void doSomething(Account acct) {
 long adj = 0;
 if (acct instanceof CheckingAccount) {
 checkingAcct = (CheckingAccount) acct;

 adj = checkingAcct.getFee();
 } else if (acct instanceof SavingsAccount) {
 savingsAcct = (SavingsAccount) acct;

 adj = savingsAcct.getInterest();
 }
 …
}

• Advice: avoid instanceof if possible
– Never(?) use instanceof in a superclass to check type against subclass

Do not
do this.
This code
is bad.

617-214

Continued: instanceof

• Operator that tests whether an object is of a given class
public void doSomething(Account acct) {
 long adj = 0;
 if (acct instanceof CheckingAccount) {
 checkingAcct = (CheckingAccount) acct;

 adj = checkingAcct.getFee();
 } else if (acct instanceof SavingsAccount) {
 savingsAcct = (SavingsAccount) acct;

 adj = savingsAcct.getInterest();
 } else if (acct instanceof InterestCheckingAccount) {
 icAccount = (InterestCheckingAccount) acct;
 adj = icAccount.getInterest();
 adj -= icAccount.getFee();
 }
 …
}

Do not
do this.
This code
is bad.

717-214

Continued: Use polymorphism to avoid instanceof

public interface Account {

 …
 public long getMonthlyAdjustment();

}

public class CheckingAccount implements Account {

 …
 public long getMonthlyAdjustment() {

 return getFee();

 }

}

public class SavingsAccount implements Account {

 …
 public long getMonthlyAdjustment() {

 return getInterest();

 }

}

817-214

Continued: Use polymorphism to avoid instanceof

public void doSomething(Account acct) {
 long adj = 0;
 if (acct instanceof CheckingAccount) {
 checkingAcct = (CheckingAccount) acct;

 adj = checkingAcct.getFee();
 } else if (acct instanceof SavingsAccount) {
 savingsAcct = (SavingsAccount) acct;

 adj = savingsAcct.getInterest();
 }
 …
}

Instead:
 public void doSomething(Account acct) {

 long adj = acct.getMonthlyAdjustment();
 …
}

917-214

Today

• UML class diagrams

• Introduction to design patterns
– Strategy pattern

– Command pattern

• Design patterns for reuse:
– Template method pattern

– Iterator pattern (probably next week)

– Decorator pattern (next week)

1017-214

Religious debates…

"Democracy is the worst form of government,
except for all the others…"

-- (allegedly) Winston Churchill

1117-214

UML: Unified Modeling Language

1217-214

UML: Unified Modeling Language

1317-214

UML: Unified Modeling Language

1417-214

UML: Unified Modeling Language

1517-214

UML: Unified Modeling Language

1617-214

UML in this course

• UML class diagrams

• UML sequence diagrams

1717-214

UML class diagrams (interfaces and inheritance)

public interface Account {
 public long getBalance();
 public void deposit(long amount);
 public boolean withdraw(long amount);
 public boolean transfer(long amount, Account target);
 public void monthlyAdjustment();
}

public interface CheckingAccount extends Account {
 public long getFee();
}

public interface SavingsAccount extends Account {
 public double getInterestRate();
}

public interface InterestCheckingAccount
 extends CheckingAccount, SavingsAccount {
}

1817-214

public abstract class AbstractAccount
implements Account {

protected long balance = 0;
public long getBalance() {

return balance;
}
abstract public void
monthlyAdjustment();
// other methods…

}

public class CheckingAccountImpl
extends AbstractAccount
implements CheckingAccount {

public void monthlyAdjustment() {
balance -= getFee();

}
public long getFee() { … }

}

UML class diagrams (classes)

1917-214

UML you should know

• Interfaces vs. classes

• Fields vs. methods

• Relationships:
– "extends" (inheritance)

– "implements" (realization)

– "has a" (aggregation)

– non-specific association

• Visibility: + (public) - (private) # (protected)

• Basic best practices…

2017-214

• Best used to show the big picture
– Omit unimportant details

• But show they are there: …
• Avoid redundancy

– e.g., bad:

 good:

UML advice

2117-214

Today

• UML class diagrams

• Introduction to design patterns
– Strategy pattern

– Command pattern

• Design patterns for reuse:
– Template method pattern

– Iterator pattern

– Decorator pattern (next week)

2217-214

One design scenario

• Amazon.com processes millions of orders each year, selling in 75
countries, all 50 states, and thousands of cities worldwide.
These countries, states, and cities have hundreds of distinct sales
tax policies and, for any order and destination, Amazon.com
must be able to compute the correct sales tax for the order and
destination.

2317-214

Another design scenario

• A vision processing system must detect lines in an image. For
different applications the line detection requirements vary. E.g.,
for a vision system in a driverless car the system must process 30
images per second, but it's OK to miss some lines in some
images. A face recognition system can spend 3-5 seconds
analyzing an image, but requires accurate detection of subtle
lines on a face.

2417-214

A third design scenario

• Suppose we need to sort a list in different orders…

interface Order {
 boolean lessThan(int i, int j);
}

final Order ASCENDING = (i, j) -> i < j;
final Order DESCENDING = (i, j) -> i > j;

static void sort(int[] list, Order cmp) {
 …
 boolean mustSwap =
 cmp.lessThan(list[i], list[j]);
 …
}

2517-214

Design patterns

“Each pattern describes a
problem which occurs over and
over again in our environment,
and then describes the core of the
solution to that problem, in such a
way that you can use this solution
a million times over, without ever
doing it the same way twice”
 – Christopher Alexander,
 Architect (1977)

2617-214

How not to discuss design (from Shalloway and Trott)

• Carpentry:
– How do you think we should build these drawers?

– Well, I think we should make the joint by cutting straight down into the
wood, and then cut back up 45 degrees, and then going straight back
down, and then back up the other way 45 degrees, and then going
straight down, and repeating…

2717-214

How not to discuss design (from Shalloway and Trott)

• Carpentry:
– How do you think we should build these drawers?

– Well, I think we should make the joint by cutting straight down into the
wood, and then cut back up 45 degrees, and then going straight back
down, and then back up the other way 45 degrees, and then going
straight down, and repeating…

• Software Engineering:
– How do you think we should write this method?

– I think we should write this if statement to handle … followed by a while
loop … with a break statement so that…

2817-214

Discussion with design patterns

• Carpentry:
– "Is a dovetail joint or a miter joint better here?"

• Software Engineering:
– "Is a strategy pattern or a template method better here?"

2917-214

History: Design Patterns (1994)

3017-214

Elements of a design pattern

• Name

• Abstract description of problem

• Abstract description of solution

• Analysis of consequences

3117-214

Strategy pattern

• Problem: Clients need different variants of an algorithm

• Solution: Create an interface for the algorithm, with an
implementing class for each variant of the algorithm

• Consequences:
– Easily extensible for new algorithm implementations

– Separates algorithm from client context

– Introduces an extra interface and many classes:

• Code can be harder to understand

• Lots of overhead if the strategies are simple

3217-214

Patterns are more than just structure

• Consider: A modern car engine is constantly monitored by a
software system. The monitoring system must obtain data from
many distinct engine sensors, such as an oil temperature sensor,
an oxygen sensor, etc. More sensors may be added in the
future.

3317-214

Different patterns can have the same structure

Command pattern:

• Problem: Clients need to execute some (possibly flexible)
operation without knowing the details of the operation

• Solution: Create an interface for the operation, with a class (or
classes) that actually executes the operation

• Consequences:
– Separates operation from client context

– Can specify, queue, and execute commands at different times

– Introduces an extra interface and classes:

• Code can be harder to understand

• Lots of overhead if the commands are simple

3417-214

Design pattern conclusions

• Provide shared language

• Convey shared experience

• Can be system and language specific

3517-214

Summary

• Use UML class diagrams to simplify communication

• Design patterns…
– Convey shared experience, general solutions

– Facilitate communication

• Specific design patterns for reuse:
– Strategy

– Command

