Principles of Software Construction:
Objects, Design, and Concurrency

Introduction to Design Patterns

Charlie Garrod Chris Timperley

&(kwnogiv Mellon University
School of Computer Science
[J
institute for
I S SOFTWARE
RESEARCH

L . .
17-214 S
RRRRRRR H

Administrivia

Homework 1 feedback in your GitHub repository

Homework 2 due tonight 11:59 p.m.

Homework 3 available tomorrow

Optional reading due today: Effective Java Iltems 18, 19, and 20
— Required reading due next Tuesday: UML & Patterns Ch 9 and 10

(]
institute f
17-214 2 ‘s“é?%“@?é
RESEARCH

Key concepts from Tuesday

(]
institute f
17-214 3 SOFTWARE
RESEARCH

Delegation vs. inheritance summary

* Inheritance can improve modeling flexibility

* Usually, favor composition/delegation over inheritance
— Inheritance violates information hiding
— Delegation supports information hiding

* Design and document for inheritance, or prohibit it

— Document requirements for overriding any method

(]
institute f
17-214 4 ‘s“é?%“@?é
RESEARCH

Continued: instanceof

* Operator that tests whether an object is of a given class

public void doSomething(Account acct) {
long adj = 0;

if (acct %ns’cancemC Check?ngAccount) { Do not
checkingAcct = (CheckingAccount) acct; i
adj = checkingAcct.getFee(); do this.
} else if (acct instanceof SavingsAccount) { .
savingsAcct = (SavingsAccount) acct; ThIS COde

adj = savingsAcct.getInterest(); is bad.

e Advice: avoid instanceof if possible
— Never(?) use instanceof in a superclass to check type against subclass

institute f
17-214 5 SOFTWARE
RESEARCH

Continued: instanceof

* Operator that tests whether an object is of a given class

public void doSomething(Account acct) {
long adj = 0;

if (acct instanceof CheckingAccount) { Do not

checkingAcct = (CheckingAccount) acct;

adj = checkingAcct.getFee(); dO thiS.
} else if (acct instanceof SavingsAccount) { .
savingsAcct = (SavingsAccount) acct; ThIS COde
adj = savingsAcct.getInterest(); iS bad.

} else if (acct instanceof InterestCheckingAccount) {
icAccount = (InterestCheckingAccount) acct;
adj = icAccount.getInterest();
adj -= icAccount.getFee();

institute f
17-214 6 SOFTWARE
RESEARCH

Continued: Use polymorphism to avoid instanceof

public interface Account {

public long getMonthlyAdjustment();

public class CheckingAccount implements Account {

public long getMonthlyAdjustment() {
return getFee();

public class SavingsAccount implements Account {

public long getMonthlyAdjustment() {
return getInterest();

institute f
17-214 7 SOFTWARE
RESEARCH

Continued: Use polymorphism to avoid instanceof

QUblic void doSomething(Account acct) {
10™sadj = 0;
if (acct~igstanceof CheckingAccous {
checkingAcctss (CheckingAeeBunt) acct;
adj = checkingA 2 Fee();
} else if (acct i anceOt™QavingsAccount) {
savingsA = (SavingsAccoun acct;

add”c savingsAcct.getInterest();

Instead:
public void doSomething(Account acct) {
long adj = acct.getMonthlyAdjustment();

(]
institute f
17-214 8 SOFTWARE
RESEARCH

Today

 UML class diagrams

* Introduction to design patterns

— Strategy pattern
— Command pattern

* Design patterns for reuse:
— Template method pattern

— lterator pattern (probably next week)
— Decorator pattern (next week)

institute f
17-214 9 SOFTWARE
RESEARCH

Religious debates...

"Democracy is the worst form of government,
except for all the others..."

-- (allegedly) Winston Churchill

[)
insti f
17-214 10 e o
RESEARCH

UML: Unified Modeling Language

class Library Domain Model)

«dataType» «dataType»
Book Address FullName
ISBN: String[o.. 1) {id} Author i i
name: String 1.4 dwrote 1.° «enumeration» «enumeration»
subject: String - " _| name: String {id} Language AccountState
overview: String biegraphy: String I .
publisher: String birthDate: Date E?egr:?: ?f:;:n
publicationDate: Date
lang: String German Closed
Spanish
[F Italian -
«enumeration»
Format
«entity» Book Item Paperback
barcode: String [0..1] {id} :j;‘i’:g;’g;
tag: RFID [0..1] {id} Audio CD
AMSBN: String[0..1] «entity» Account MP3 CD
Asubject: String < — PDF
title: String {redefines name} 0.12 borrowed number: {id} .
isRef Only: Bool = false history: History[0..*]
lang: Language {redefines lang} | 0-3 <« reserved opened: Date account
numberOfPages: Integer state: AccountState
format: Format
borrowed: Date accounts| *
NloanPeriod: Integer {readOnly}
/dueDate: Date {readOnly}
/isOverdue: Boolean = false 1
. * <> Library Patron
name: String /name: FullName
: <@ address: Address _ address: Address
° «use»_.~
b e
8 8
1 cinterface» [~
_________ D Search S~~~ __ «use» Librarian
Catalog = i T7~~_/name: FullName
~~~~~~~~~~ __--~"" | address: Address
el Y dinterface» | .- ~“«use» position: String
Manage

© uml-diagrams.org

11

institute for
SOFTWARE
RESEARCH



UML: Unified Modeling Language

Associate

17-214

Professor

Tenured

Citizen Male
Nationality Gender
b Person  pe—
Foreigner Female
Role
Professor =
Student Employee <=
Degree type
Registrar
Undergrad Masters PHD
Student Student Student

12

Professor

institute for
I S SOFTWARE
RESEARCH



UML: Unified Modeling Language

Event Request

:
Window: Event Request Calendar

[ [ [

I I I

I

renderForm() o —L
checkDate() -
d
isAvailable()
I
[available]
add()
> [newEmal JJ  Email Alert
[
I
I I
I I
I I
A newEvent L | Event

I L I I
I I
I I
I 1

X

insti f
17-214 13 R
RESEARCH



UML: Unified Modeling Language

Purchase
Stock

Provide Stock

<<include>>

w

Owner
Supplier
AN
N
<<include>>
AN
N
Quality
Control of
Stock
Manager

institute F
17-214 14 SOFTVARE
RESEARCH



UML:

17-214

Unified Modeling Language

UML 2.5 Diagram

’ Structure Diagram

Behavior Diagram ‘

A

’ Class Diagram F
‘ Object Diagram }—
I Package Diagram }—
Model Diagram ]
l Composite Structure }_
Diagra@

Internal Structure
Diagram

Collaboration Use
Diagram

Component Diagram J_

Manifestation Diagram ‘L

‘ Deployment Diagram }-—

Network Architecture ‘
Diagram

‘ Profile Diagram }—

iy

4' UseCase Diagram ‘
Information Flow ‘
Diagram |
—‘ Activity Diagram }:::1—
State Machine
Diagram

Behavioral State
Machine Diagram

|_[ Protocol State
Machine Diagram
H Interaction Diagram

A

1

1 Sequence Diagram 1

Communication
Diagram

;—[ Timing Diagram l

Interaction Overview
Diagram

© uml-diagrams.org

15

institute for
SOFTWARE
RESEARCH



UML in this course

 UML class diagrams
* UML sequence diagrams

[
institute for
17-2 14 16 SOFTWARE
RESEARCH



UML class diagrams (interfaces and inheritance)

public interface Account {

public
public
public
public
public

}

long getBalance();

void deposit(long amount);

boolean withdraw(long amount);

boolean transfer(long amount, Account target);
void monthlyAdjustment();

public interface CheckingAccount extends Account {

public
}

long getFee();

public interface SavingsAccount extends Account {

public
}

double getInterestRate();

public interface InterestCheckingAccount

}

17-214

extends CheckingAccount, SavingsAccount {

institute for
17 I S SOFTWARE
RESEARCH



UML class diagrams (classes)

public abstract class AbstractAccount
implements Account {
protected long balance = 9;
public long getBalance() {
return balance;

}

abstract public void
monthlyAdjustment();

// other methods...
}

public class CheckingAccountImpl
extends AbstractAccount
implements CheckingAccount {
public void monthlyAdjustment() {
balance -= getFee();

}
public long getFee() { ... }

insti f
17-214 18 e o
RESEARCH



UML you should know

* |nterfaces vs. classes
 Fields vs. methods

* Relationships:

— "extends" (inheritance)

— "implements" (realization)

— "has a" (aggregation)

— non-specific association
e Visibility: + (public) - (private)
* Basic best practices...

17-214

# (protected)

19

institute for
SOFTWARE
RESEARCH



UML advice

* Best used to show the big picture
— Omit unimportant details
* But show they are there: ...

* Avoid redundancy
— e.g., bad:

Arr r‘ﬁhc

-‘v"l\js

-8 -

good:

[ )
insti f
17-214 20 e o
RESEARCH



Today

 UML class diagrams

* Introduction to design patterns

— Strategy pattern
— Command pattern

* Design patterns for reuse:
— Template method pattern

— lterator pattern
— Decorator pattern (next week)

insti f
17-214 21 e o
RESEARCH



One design scenario

 Amazon.com processes millions of orders each year, selling in 75
countries, all 50 states, and thousands of cities worldwide.
These countries, states, and cities have hundreds of distinct sales
tax policies and, for any order and destination, Amazon.com
must be able to compute the correct sales tax for the order and
destination.

[ )
insti f
17-214 22 e o
RESEARCH



Another design scenario

e Avision processing system must detect lines in an image. For
different applications the line detection requirements vary. E.g.,
for a vision system in a driverless car the system must process 30
images per second, but it's OK to miss some lines in some
images. A face recognition system can spend 3-5 seconds

analyzing an image, but requires accurate detection of subtle
lines on a face.

[ )
insti f
17-214 23 e o
RESEARCH



A third design scenario

e Suppose we need to sort a list in different orders...

interface Order {
boolean lessThan(int i, int j);

¥

final Order ASCENDING = (i, j) -> 1 < J;
final Order DESCENDING = (i, j) -> 1 > j;

static void sort(int[] list, Order cmp) {

boolean mustSwap =
cmp.lessThan(list[i], list[j]);

(]
institute f
17-214 24 sk
RESEARCH



Design patterns

“Each pattern describes a 183
problem which occurs over and
over again in our environment, A Pattern Language
and then describes the core of the - Towns Buildings Construction
solution to that problem, in such a
way that you can use this solution
a million times over, without ever
doing it the same way twice”

— Christopher Alexander,
Architect (1977)

Christopher Alexander

Sara Ishikawa - Murray Silverstein
wiTu

Max Jacobson - Ingrid Fiksdahl-King
Shlomo Angel

insti f
17-214 25 e o
RESEARCH



How not to discuss design (from Shalloway and Trott)

* Carpentry:
— How do you think we should build these drawers?

— Well, I think we should make the joint by cutting straight down into the
wood, and then cut back up 45 degrees, and then going straight back
down, and then back up the other way 45 degrees, and then going

straight down, and repeating...

[ )
insti f
17-214 26 e o
RESEARCH



How not to discuss design (from Shalloway and Trott)

* Carpentry:
— How do you think we should build these drawers?

— Well, I think we should make the joint by cutting straight down into the
wood, and then cut back up 45 degrees, and then going straight back
down, and then back up the other way 45 degrees, and then going

straight down, and repeating...

e Software Engineering:
— How do you think we should write this method?
— | think we should write this if statement to handle ... followed by a while
loop ... with a break statement so that...

[ )
insti f
17-214 27 e o
RESEARCH



Discussion with design patterns

* Carpentry:
— "Is a dovetail joint or a miter joint better here?"
* Software Engineering:
— "Is a strategy pattern or a template method better here?"

o
institute f
17-214 28 SOFTWARE
RESEARCH



History: Design Patterns (1994)

A
vy
z
=
=
73
A
s
74
=
z
v
=
=<
=)
~
A
4
wn
7]
D
=
Z
Z
N
)
0
zZ
=
o
=
Z
0
7]
m
~
Z
=
o

WSk » PLULLED

SOPIUSSIAN @ uosuyof

_ 7

insttute F
17-214 29 SOFTWARE
RESEARCH



Elements of a design pattern

 Name

Abstract description of problem

Abstract description of solution

Analysis of consequences

[
institute f
17-214 30 SOFTWARE
RESEARCH



Strategy pattern

* Problem: Clients need different variants of an algorithm

* Solution: Create an interface for the algorithm, with an
implementing class for each variant of the algorithm

* Conseqguences:
— Easily extensible for new algorithm implementations
— Separates algorithm from client context
— Introduces an extra interface and many classes:
* Code can be harder to understand
* Lots of overhead if the strategies are simple

[
institute f
17-214 31 SOFTWARE
RESEARCH



Patterns are more than just structure

 Consider: A modern car engine is constantly monitored by a
software system. The monitoring system must obtain data from
many distinct engine sensors, such as an oil temperature sensor,
an oxygen sensor, etc. More sensors may be added in the
future.

[
institute f
17-214 32 SOFTWARE
RESEARCH



Different patterns can have the same structure

Command pattern:

* Problem: Clients need to execute some (possibly flexible)
operation without knowing the details of the operation

e Solution: Create an interface for the operation, with a class (or
classes) that actually executes the operation

* Conseqguences:
— Separates operation from client context
— Can specify, queue, and execute commands at different times
— Introduces an extra interface and classes:
e Code can be harder to understand
* Lots of overhead if the commands are simple

[
institute f
17-214 33 SOFTWARE
RESEARCH



Design pattern conclusions

* Provide shared language
e Convey shared experience
e Can be system and language specific

f Reusable
?iented Software

Elements
Object-O

Design Patterns
g
:

suyof

T SSPISSIA - UO:
wifSf o el

institute f
17-214 34 SOFTWARE
RESEARCH



Summary

* Use UML class diagrams to simplify communication
* Design patterns...

— Convey shared experience, general solutions
— Facilitate communication
e Specific design patterns for reuse:

— Strategy
— Command

institute f
17-214 35 SOFTWARE
RESEARCH



.

I__ﬁ_(( |‘n‘¥€( J"\((>> AC(O\JJ\+
+§fe+!)>q\6m(e(\ : ’or\j

+ p/ePOSi-‘l‘C.amcuﬂ]F : !orlj\

+ WI‘+1\G,TC\W (C‘ln-w\n‘} i (0'\\)) : Lo.clgqq

F s fe (ameat Toog ¥ bl Acaunt)  beolees
+ inonth (w/ /\djuntmem‘ ()

(&_\‘7\;%(7[(*(6.» m\é’t“'ﬁ Accomnt b (ke bae )Y .5qw?§5S Afco\«r\‘l__
] + .ﬁev“t__[nﬂres{RmLfO ¢ [/'An“e

[ *jeijée() A Iorg
- o E—— : ._
{ lw> I\Jrefes*cl\eclil\s_\Mlg

' {
—_

{

!
(
l
l
I
|
i
l
l
!
_

|

{

{

{ — (
tl b‘\osjﬂa& Accennt

‘ " H Eq\qft(’

x r_

|
l
l

reetBalance() o lon
9 Y
+ ﬂ/t"g?oSH’ (C‘t moat: )“\‘j)

|ttt
-—
' C\\ec\ds\j A c\m\':[mP\

+ me n’rHy ACBMSW!'NN\'(\)
+ﬂ{+ F@t’() s )”‘j




A wi.-wf) 1§ l‘ﬁ/gr\ ()XCiCH‘\/

e et one m‘f‘Plv\f\e.

— S A’\ qn‘r\)\qne \\c\g f‘)(ac‘H'
% A _wicg$ Q.@\ s wn‘:\\(j <, y

The wfn\ajg Wt a pr{wjre
Vqr\\a‘)lf ched W!hjfﬁ



na {jter ump@w,wlﬂ

| OdeSyshon ——rer

+83?rmﬁxm_,+§w : F,?AHTB,V ‘ ?Jb v

ojgn(ﬂprﬁ;ﬁ } ]xa_u:@r Ca Tw\rﬂpx
)l

+?31£_R~ A _ﬁi& ?l\A._:T +?z/w£.nﬁxm .T s




E—

| o Linkec$ace 77

| Visien ﬁ_,om@mz@ m& STem N L Jne bm+mm+% -

o v : - 4 ) ; RN
B +m&m+2i_,>& T?& HH?_MD “ DWXF,%V

—

> < N, ~,.> € bﬁw Lo\

menm fﬁ_,jm.@m +mﬂ.~gﬂl N

———e

+%¢LNTSQ,§XNH§XV : m_wqrﬁ.v,:mv .«LCFQI._VQT,BJNJ -




ey,
1

| ||,AA e ta va

— - m+3 b/
+Puo?ﬁé) m M

m.c ne :L,m S TL@Q w

_&.@n ﬁosl/rmxwﬂ

Conc ﬂm,,fm W*R‘Tw. U

éc o

ﬂ_,moj,iﬁj A J

+¢9Woﬁ_+f§m: J




Eagine Moniter

AA _,Df.,\; T Qw

ijmoh)

|0 Terpershye Srsec
J + ,3/;@ @ : Q.%t&




inter qﬁ @VV/.,

[ ommand
e

+ mmeLrw dv

| Clvent Condoct ﬁ

e

(

——— —— —— — e (llv
r— e

. \ (on niﬂﬁ%;m%@\

e & ¢

+4mxm?+mdt-v
_

Feoxecde( ) |




