Principles of Software Construction:
Objects, Design, and Concurrency

Object-Oriented Programming in Java
and Functional Correctness

Charlie Garrod Chris Timperley

&(kwnogiv Mellon University
School of Computer Science
[J
institute for
I S SOFTWARE
RESEARCH

L . .
17-214 S
RRRRRRR H

Administrivia

* No smoking
e Office hours
* Homework 1 due Thursday 11:59 p.m.
— Everyone must read and sign our collaboration
policy
e Second reading assighment due next Tuesday
— Effective Java ltems 17 and 50

L . .
17-214 2 [v
RRRRRRR H

Key concepts from Thursday

* Bipartite type system — primitives & object refs
— Single implementation inheritance
— Multiple interface inheritance

e Easiest output —println, printf
e Easiest input — Command line args, Scanner
* Collections framework is powerful & easy to use

(]
institute f
17-214 O | S (B
RRRRRRR H

Outline

Object-oriented programming basics
Il. Information hiding

[1l. Contracts

o . .
17-214 a [§ sormvnxe
RRRRRRR H

Recap: Objects

* An object is a bundle of state and behavior
e State — the data contained in the object

— In Java, these are the fields of the object

* Behavior — the actions supported by the object
— In Java, these are called methods
— Method is just OO-speak for function
— Invoke a method = call a function

17-214 SSAL

Recap: Classes

* Every object has a class
— A class defines methods and fields
— Methods and fields collectively known as members

* Class defines both type and implementation
— Type = where the object can be used
— Implementation = how the object does things

* Loosely speaking, the methods of a class are its
Application Programming Interface (API)
— Defines how users interact with instances

(]
institute f
17-214 6 [
RRRRRRR H

A more complex example

class Complex {

private final double re; // Real Part
private final double im; // Imaginary

public Complex(double re, double im) {

this.re = re;
this.im = im;

}

public double realPart() {
public double imaginaryPart() {
public double r() {
public double theta() {

public Complex add(Complex c) {

return
return
return
return

Part

)RE

re; }

im; }

Math.sqrt(re * re + im * im); }
Math.atan(im / re); }

return new Complex(re + c.re, im + c.im);
}
public Complex subtract(Complex c) { ... }
public Complex multiply(Complex c) { ... }
public Complex divide(Complex c) { ...}
}
17-214 ;[

A more complex example

class Complex {

private final double re; // Real Part
private final double im; // Imaginary

public Complex(double re, double im) {

this.re = re;
this.im = im;

}

public double realPart() {
public double imaginaryPart() {
public double r() {
public double theta() {

public Complex add(Complex c) {

return
return
return
return

Part

)RE

re; }

im; }

Math.sqrt(re * re + im * im); }
Math.atan(im / re); }

return new Complex(re + c.re, im + c.im);
}
public Complex subtract(Complex c) { ... }
public Complex multiply(Complex c) { ... }
public Complex divide(Complex c) { ...}
}
17-214 s [t

A more complex example

class Complex {

private final double re; // Real Part
private final double im; // Imaginary

public Complex(double re, double im) {

this.re = re;
this.im = im;

}

public double realPart() {
public double imaginaryPart() {
public double r() {
public double theta() {

public Complex add(Complex c) {

return
return
return
return

Part

)RE

re; }

im; }

Math.sqrt(re * re + im * im); }
Math.atan(im / re); }

return new Complex(re + c.re, im + c.im);
}
public Complex subtract(Complex c) { ... }
public Complex multiply(Complex c) { ... }
public Complex divide(Complex c) { ...}
}
17-214 o [st

A more complex example

class Complex {

private final double re; // Real Part
private final double im; // Imaginary

public Complex(double re, double im) {

this.re = re;
this.im = im;

}

public double realPart() {
public double imaginaryPart() {
public double r() {
public double theta() {

public Complex add(Complex c) {

return
return
return
return

Im
A
Part
B B Z=X+ 1Y
ya
C
: > Ke
X
re; }
im; }

Math.sqrt(re * re + im * im); }
Math.atan(im / re); }

return new Complex(re + c.re, im + c.im);
}
public Complex subtract(Complex c) { ... }
public Complex multiply(Complex c) { ... }
public Complex divide(Complex c) { ...}
}
17-214 0 [Hl &

Class usage example

public class ComplexUser {
public static void main(String args[]) {
Complex c¢ = new Complex(-1, 0);
Complex d = new Complex(Q, 1);

Complex e = c.add(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
e = c.multiply(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");

}

When you run this program, it prints

-1.0 + 1.01
-0.0 + -1.01

17-214 11

institute for
SOFTWARE
RESEARCH

Interfaces and implementations

* Multiple implementations of APl can coexist
— Multiple classes can implement the same API
— They can differ in performance and behavior

* In Java, an APl is specified by interface or class
— Interface provides only an API

— Class provides an APl and an implementation
— A class can implement multiple interfaces

- institute ror
17-214 12 JRYf o

An interface to go with our class

public interface Complex {
// No constructors, fields, or implementations!

double realPart();
double imaginaryPart();
double r();

double theta();

Complex add(Complex c);
Complex subtract(Complex c);
Complex multiply(Complex c);
Complex divide(Complex c);

An interface defines but does not implement API

[)
insti f
17-214 13 e o
RESEARCH

Modifying class to use interface

class OrdinaryComplex implements Complex {

final double re; // Real Part

final double im; // Imaginary Part

public OrdinaryComplex(double re, double im) {

this.re = re;
this.im = im;

}

public double realPart() {
public double imaginaryPart() {
public double r() {
public double theta() {

public Complex add(Complex c) {

return
return
return
return

re; }

im; }

Math.sqrt(re * re + im * im); }
Math.atan(im / re); }

return new OrdinaryComplex(re + c.realPart(), im + c.imaginaryPart());

}
public Complex subtract(Complex c) { ... }
public Complex multiply(Complex c) { ... }
public Complex divide(Complex c) { ...}
}
17-214 e [S

Modifying client to use interface

public class ComplexUser {
public static void main(String args[]) {
Complex ¢ = new OrdinaryComplex(-1, 0);
Complex d = new OrdinaryComplex(@, 1);

Complex e = c.add(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
e = c.multiply(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");

}

When you run this program, it still prints

-1.0 + 1.01
-0.0 + -1.01

[)
insti f
17-214 15 e o
RESEARCH

Interface permits multiple
implementations

class PolarComplex implements Complex {
final double r;
final double theta;

public PolarComplex(double r, double theta) {
this.r = r;
this.theta = theta;

}

public double realPart() { return r * Math.cos(theta) ; }

public double imaginaryPart() { return r * Math.sin(theta) ; }

public double r() { return r; }

public double theta() { return theta; }

public Complex add(Complex c) { ... } // Completely different impls
public Complex subtract(Complex c) { ...}

public Complex multiply(Complex c) { ...}

public Complex divide(Complex c) { ... }

}

insti f
17-214 16 e o
RESEARCH

Interface decouples client from
implementation

public class ComplexUser {
public static void main(String args[]) {
Complex ¢ = new PolarComplex(Math.PI, 1), // -1
Complex d = new PolarComplex(Math.PI/2, 1); // 1

Complex e = c.plus(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
e = c.times(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");

}

When you run this program, it STILL prints

-1.0 + 1.01
-0.9 + -1.01
17-214 17

institute for
SOFTWARE
RESEARCH

Why multiple implementations?

* Different performance
— Choose implementation that works best for your use

* Different behavior
— Choose implementation that does what you want

— Behavior must comply with interface spec
(“contract”)

e Often performance and behavior both vary

— Provides a functionality — performance tradeoff
— Example: HashSet, TreeSet

- institute ror
17-214 18 JRYf o

Java interfaces and classes

* A type defines a family of objects
— Each type offers a specific set of operations
— Objects are otherwise opaque

* Interfaces vs. classes
— Interface: specifies expectations
— Class: delivers on expectations (the implementation)

- institute ror
17-214 19 JRYY o

Classes as types

* Classes do define types
— Public class methods usable like interface methods
— Public fields directly accessible from other classes

* But generally prefer the use of interfaces

— Use interface types for variables and parameters
unless you know a single implementation will suffice
* Supports change of implementation
* Prevents dependence on implementation details

Set<Criminal> senate = new HashSet<>(); // Do this...
HashSet<Criminal> senate = new HashSet<>(); // Not this

[)
insti f
17-214 20 e o
RESEARCH

Check your understanding

interface Animal {
void vocalize();
}

class Dog implements Animal {
public void vocalize() { System.out.println("Woof!"); }
}

class Cow implements Animal {
public void vocalize() { moo(); }
public void moo() { System.out.println("Moo!"); }

}

What Happens?

1. Animal a = new Animal();
a.vocalize();

2. Dog d = new Dog();
d.vocalize();

3. Animal b = new Cow();
b.vocalize();

4. b.moo();

o
17-214 21 e o
RESEARCH

Outline

Object-oriented programming basics
Il. Information hiding

[1l. Contracts

[
institute f
17-214 22 SOFTWARE
RESEARCH

Information hiding

 Single most important factor that distinguishes a
well-designed module from a bad one is the degree
to which it hides internal data and other
implementation details from other modules

* Well-designed code hides all implementation
details
— Cleanly separates APl from implementation
— Modules communicate only through APIs
— They are oblivious to each others’ inner workings

* Known as information hiding or encapsulation
 Fundamental tenet of software design [Parnas, ‘72]

- institute ror
17-214 23 [BYf sormse

Benefits of information hiding

* Decouples the classes that comprise a system
— Allows them to be developed, tested, optimized,
used, understood, and modified in isolation
* Speeds up system development
— Classes can be developed in parallel
* Eases burden of maintenance
— Classes can be understood more quickly and
debugged with little fear of harming other modules
* Enables effective performance tuning
— “Hot” classes can be optimized in isolation
* Increases software reuse
— Loosely-coupled classes often prove useful in other
contexts

- institute ror
17-214 24 [BYf sormose

Information hiding with interfaces

* Declare variables using interface types
* Client can use only interface methods
* Fields not accessible from client code
e But this only takes us so far

— Client can access non-interface members directly
— In essence, it’s voluntary information hiding

- institute for
17-214 | S [y

Mandatory Information hiding
visibility modifiers for members

* private — Accessible only from declaring class

* package-private — Accessible from any class in
the package where it is declared
— Technically known as default access
— You get this if no access modifier is specified

* protected — Accessible from package and also
from subclasses

 public — Accessible from anywhere

- institute ror
17-214 26 [BYf sorme

Hiding interior state in OrdinaryComplex

class OrdinaryComplex implements Complex {
private double re; // Real Part
private double im; // Imaginary Part

public OrdinaryComplex(double re, double im) {
this.re = re;
this.im = im;

}

public double realPart() { return re; }

public double imaginaryPart() { return im; }

public double r() { return Math.sqrt(re * re + im * im); }
public double theta() { return Math.atan(im / re); }

public Complex add(Complex c) {
return new OrdinaryComplex(re + c.realPart(), im + c.imaginaryPart());
}
public Complex subtract(Complex c) { ... }
public Complex multiply(Complex c) { ... }
public Complex divide(Complex c) { ...}

insti f
17-214 27 e o
RESEARCH

Discussion

* You know the benefits of private fields
* What are the benefits of private methods?

- institute ror
17-214 28 [BYf sormse

Best practices for information hiding

e Carefully design your API

* Provide only functionality required by clients
— All other members should be private

* You can always make a private member public
later without breaking clients

— But not vice-versa!

17-214 SSinR

ftware engineer. Googler. Father. Occasional

[J
. . F
17-214 30 SOFTWARE
RESEARCH

The best APl is the thinnest

Hidden from Hidden from
service* client service* provider

Service*
implementation

* service = object,
subsystem, ...

[
institute f
17-214 31 SOFTWARE
RESEARCH

Outline

Object-oriented programming basics
Il. Information hiding

[1l. Contracts

- institute ror
17-214 32 [Yf sorme

Contracts

 Agreement between provider and users of an object

* Includes
— Interface specification (types)
— Functionality and correctness expectations
— Performance expectations

 What the method does, not how it does it
— Interface (APIl), not implementation

= Institute For
17-214 33 SOt

Who's to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

What should happen if there is no path between Tom or Anne?

= Institute For
17-214 34 SOt

Who's to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> ArrayOutOfBoundsException

= Institute For
17-214 35 SOt

Who's to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> -1

ste f

17-214 36 sorTiage

Who's to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> 0

ste f

17-214 37 sorTiage

Who's to blame?

class Algorithms {

/**
* This method finds the
* shortest distance between to
* vertices. It returns -1 if
* the two nodes are not
* connected. */

int shortestDistance(...) {...}

17-214

Who's to blame?

Math.sqgrt(-5);

> 0

L J
Institute ror
17-214 39 | |NYf sormas

Who’s to blame?

/**
* Returns the correctly rounded positive square root of a
* {@code double} value.
* Special cases:
* <1i>If the argument is NaN or less than zero, then the
* result is NaN.
* <1i>If the argument is positive infinity, then the result
* is positive infinity.
* <1i>If the argument is positive zero or negative zero, then
* the result is the same as the argument.
* Otherwise, the result is the {@code double} value closest to
* the true mathematical square root of the argument value.
*
* @param a a value.
* @return the positive square root of {@code a}.
*

If the argument is NaN or less than zero, the result is NaN.

*
~

public static double sgrt(double a) { ...}

A\
institute for

17-214 a0 | |BYf o

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

» Reads up to len bytes of data from the input stream into an array of bytes. An

attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

» If len is zero, then no bytes are read and O is returned; otherwise, there is an

» The first byte read is stored into element b[off]

attempt to read at least one byte. If no byte is available because the stream is at
end ob file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

the next one into b[off+1], and so
on. The number of bytes read is, at most, equai to len. Let k be the number of
bytes actually read; these bytes will be stored in

elements b[off] throughb[off+k-1], leaving

elements b[off+k] through b[off+len-1] unaffected.

» In every case, elements b[0] through b[off] and

elements b[ot’f+|en] through b[b.length-1] are unaffected.

« Throws:
» IOException - If the first byte cannot be read for any reason other than end of file,

or if the input stream has been closed, or if some other I/O error occurs.

« NullPointerException - If b is null.
» IndexOutOfBoundsException - If off is negative, len is negative, or len is greater

17-214

than b.length - off

A\
institute for

SOFTWARE
41 I S r RESEARCH

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

» Reads up to len bytes of data

- Specification of return

attempt is made to read as ma ¥ Case-by-case spec
The number of bytes actually - len=010 return O

until input data is available, e . len>0 && eof] return -1

» If len is zero, then no bytes ar - len>0 && 'eof Oreturn >0

- The first byte read is stored in

attempt to read at least one b)
end of file, the value -1 is retuf 8 2 E [d AT 1] Lol oy (S8 B WS o] f<Te

into b. - What parts of the array are not affected

on. The number of bytes read
bytes actually read; these b}/t
elements b[off] throughb[off+
elements b[off+k] through b[c

» In every case, elements b[0] through b[off] and

+ Throws:

elements b[of’f+len] through b[b.length-1] are unaffected.

- Multiple error cases, each with a

- I0Exception - If the first byte precondition

or if the input stream has beer i ¥ e [11e [T J 1] a1y (SR o= h (o] 3 [3 o) [

« NullPointerException - If b is n throws clause

» IndexOutOfBoundsException -

17-214

than b.length - off

-
- S institute for
SOFTWARE
42 RESEARCH

Specifications

* Contains
— Functional behavior
— Erroneous behavior
— Quality attributes (performance, scalability, security, ...)

* Desirable attributes
— Complete
* Does not leave out any desired behavior
— Minimal
* Does not require anything that the user does not care about
— Unambiguous
* Fully specifies what the system should do in every case the user cares about
— Consistent
* Does not have internal contradictions
— Testable
* Feasible to objectively evaluate
— Correct
* Represents what the end-user(s) need

-
institute for

17-214 R | S [Espys

Functional Specification

States method’s and caller’s responsibilities

Analogy: legal contract
— If you pay me this amount on this schedule...
— | will build a with the following detailed specification
— Some contracts have remedies for nonperformance

Method contract structure

— Preconditions: what method requires for correct operation
— Postconditions: what method establishes on completion

— Exceptional behavior: what it does if precondition violated

* Defines what it means for implementation to be correct

& Institute For
17-214 44 SOt

Functional Specification

o
wn
~—t
Q)
—t
()
(Vp]

-

[]
>
-
QL
@]
J{

— | wil : ation
— Som cedies for nonperformance

Method contract structure

— Preconditions: what method requires for correct operation
— Postconditions: what method establishes on completion

— Exceptional behavior: what it does if precondition violated

Defines what it means for implementation to be correct

17-214 as | [H i

Formal Specifications

/*@ requires len >= @ && array != null && array.length == len;
@ ensures \result ==
@ (\sum int j; © <= j & j < len; array[j]);
@*/

int total(int array[], int len);

of formal speciﬁcations:

e
me checks (almost) for fre

-fication
| verificatiof
ormirlnatic analysis tools

Advantagé

* runﬂ ;
x pasis for
x assisting auto

17-214 46 ‘ e

RESEARCH

Runtime Checking of Specifications with Assertions

/*@ requires len >= 0 && array != null && array.length == len;
@ ensures \result ==
@ (\sum int j; © <= j && j < len; array[j]);
@*/

float sum(int array[], int len) {
assert len >= 0;
assert array.length == len;
float sum = 0.0;
int 1 = 0;
while (i < len) {

sum = sum + array[i]; i =1 + 1;

) Enable assertions
assert sum ...;

return sum; WIt|:‘I -ea flag, e.g.:
} > Java -ea Mailn

17-214 A7 et b

RESEARCH

Runtime Checking of Specifications with Exceptions

/*@ requires len >= 0 && array != null && array.length == len;
@ ensures \result ==
@ (\sum int j; © <= j && j < len; array[j]);
@*/

float sum(int array[], int len) {
if (len < @ || array.length != len)
throw IllegalArgumentException(...);
float sum = 0.0;
int 1 = 0;
while (i < len) {

sum = sum + array[i]; i =1 + 1;

}
return sum; Check arguments even when
} assertions are disabled.
Good for robust libraries!

17-214 a8 et b

RESEARCH

Specifications in the real world

Javadoc
/**
* Returns the element at the specified position of this 1list.
* Postcondition
* <p>This method is <i>not</i> guaranteed to run in constant time?
* In some implementations, it may run in time proportional to the
* element position.
k
* @param index position of element to return; must be non-negative and
* less than the size of this list.
* @return the element at the specified position of this list
* @throws IndexOutOfBoundsException if the index is out of range
X

({@code index < @ || index >= this.size()})

E get(int index);

institute for
17-214 a9 sorionss

Javadoc contents

* Document

Every parameter
Return value
Every exception (checked and unchecked)

What the method does, including
* Purpose
* Side effects
* Any thread safety issues
* Any performance issues

* Do not document implementation details

17-214

50

institute for
SOFTWARE
RESEARCH

Contracts and Interfaces

* All objects implementing an interface must adhere to the
interface’s contracts
— Objects may provide different implementations for the same specification

— Subtype polymorphism: Client only cares about interface, not about the
implementation

p.getX() s.read()

=> Design for Change

= Institute For
17-214 51 SOt

Functional correctness

* Compiler ensures types are correct
 Static analysis tools recognize common problems ("bug patterns")

= Institute For
17-214 52 SOt

CheckStyle

17-214

%E CartesianPoint.java &2

public final class CartesianPoint {

e private int X,Y;

|

'} = CartesianPoint(int x, int y) {
this.X=x;

this.Y = y;

BlTaskL 8 = B
T « 1%_-:"?:? Cy

~

® Connect Mylyn

Connect to your task
and ALM tools or cre;

H
g=outlin 8 = O
B e public int GetY() { r— i
return Y; = !132‘ |\ W e
} <
€ public int getX() { v 9F cartesianPoint
return X; N
} iﬁu X:int
8 Y. ink
S Pro X @ Jav [& Dec 4#’'Sea Bl Co gPro [mCov & His ¥ Bug Z¢call HaAana = B
~
0 errors, 9 warnings, 0 others
Description ResoJ
v & Checkstyle Problem (9 items)
& ''is not followed by whitespace. Carte
& '="is not followed by whitespace. Carte
& '="is not preceded with whitespace. Carte
& File contains tab characters (this is the first instance). Carte
& Name 'GetY' must match pattern '*[a-z][a-zA-Z0-9]*S". Carte
& Name 'X' must match pattern '*[a-z][a-zA-Z0-9]*S". Carte
& Name'Y' must match pattern '*[a-z][a-zA-Z0-9]*$". Carte!
= BN 2 A AL i 1 Carkni

wirikahla CSmark Incerk QA

SpotBugs

17-214

r

@ - 0 Kiva cHiWsFBRelReence/srgliests/Notinlotlojava REclipseiow Help
o 1 - Sl S I S L I I > B
GO AP e @ T

Ll v &l v i w o v |

[Q rick Acce \f’ s é"Java = Plug-in Development %5 Debug
[J] HelloTest.java iJ] ProgramPoint.ja 4] NoUnlock.java 8 ™ = 8 5
i g
El
@override ooy
public void run() { &
Lock localLock = new ReentrantLock();
1.lock(); oz
int a = 1; -
localLock.lock();
if (ar=2) {
1.unlock();
} else {
// do nothing
}
return;

1

*! Proble = ’ @ Javad [& Declar < Search & Consol 23 Call Hi Analysi ¥ Debug = 0O

0 errors, 12 warnings, 0 others
Description

i Iterator is a raw type. References to generic type Iterator<E> should be parameterized

‘s Iterator is a raw type. References to generic type Iterator<E> should be parameterized

& No required execution environment has been set

& plugin.ProgramPoint defines equals and uses Object.hashCode() [Troubling(14), High confidence]

@ tests.NoUnlock$T3.run() does not release lock on all paths [Troubling(12), High confidence]
& tests.NoUnlock$T4.run() might ignore java.lang.Exception [Troubling(14), High confidence]
Wi Type safety: Unchecked cast from Object to Map.Entry<String,ProgramPoint.LockState>

L= £k i) | ! ol

F Fram Nhiark Fa Man EnFrusQFrinn PranramPaink | arkQrakas

tests.NoUnlock$T3.run() does not release..| paths [Troubling(12), High confidence] !

&l

Functional correctness

* Compiler ensures types are correct

Static analysis tools recognize common problems ("bug patterns")

Formal verification
— Mathematically prove code matches its specification

* Testing

— Execute program with select inputs in a controlled environment

= Institute For
17-214 55 SOt

Formal verification vs. testing?

“Beware of bugs in the above code; | have only proved it
correct, not tried it.”
Donald Knuth, 1977

"Testing shows the presence, not the absence of bugs.”
Edsger W. Dijkstra, 1969

= Institute For
17-214 56 SOt

Formal verification vs. testing?

Consider java.util.Arrays.binarySearch:

1: public static int binarySearch(int[] a, int key) {
2: int low = ©;

3: int high = a.length - 1;

4:

5: while (low <= high) {

6: int mid = (low + high) / 2;

7: int midval = a[mid];

8:

9: if (midval < key)

10: low = mid + 1

11: else if (midval > key)

12: high = mid - 1;

13: else

14: return mid; // key found

15: }

16: return -(low + 1); // key not found.
17: }

-
institute for

17-214 57 |NYJ sormvae

Formal verification vs. testing?

Consider java.util.Arrays.binarySearch:

1: public static int binarySearch(int[] a, int key) {

2: int low = ©;

3: int high = a.length - 1;

4:

5: while (low <= high) {

6: int mid = (low + high) / 2;

7: int midval = a[mid];

8: N

9: if (midval < key) Fails it »
10 low = mid + 1 low + high > MAXINT (2°°-1)
11: else if (midval > key) Sum overflows to negative value
12: high = mid - 1;

13: else

14: return mid; // key found

15: }

16: return -(low + 1); // key not found.

17: }

-
institute for

17-214 58 |ISYJ sormvae

Comparing strategies for correctness

* Testing

Observable properties
Verify program for one execution

Manual development with automated
regression

Most practical approach now
Does not find all problems (unsound)

» Static Analysis

17-214

Analysis of all possible executions

Specific issues only with conservative
approx. and bug patterns

Tools available, useful for bug finding

Automated, but unsound and/or
incomplete

* Proofs (formal verification)

Any program property
Verify program for all
executions

Manual development with
automated proof checkers

Practical for small programs,
may scale up in the future

Sound and complete, but not
automatically decidable

Which strategies to
use in your project?

te f

A\
Institute ror
59 I S r SOFTWARE
RESEARCH

Manual testing

GENERIC TEST CASE: USER SENDS MMS WITH PICTURE ATTACHED.

Step ID | User Action System Response
1 Go to Main Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mes- | Message Editor screen
sage” opens
4 Add Recipient Recipient 1s added
5 Select “Insert Picture” Insert Picture Menu opens
6 Select Picture Picture 1s Selected
7 Select “Send Message” Message 1s correctly sent

* Live system or a testing system?
* How to check output / assertions?
 What are the costs?

Are bugs reproducible?

& institute for
17-214 60 SorTiAl:

Automate testing

e Execute a program with specific inputs, check output for
expected values
e Set up testing infrastructure

e Execute tests regularly
— After every change

= Institute For
17-214 61 SOt

Unit testing

Tests for small units: methods, classes, subsystems
— Smallest testable part of a system

— Test parts before assembling them

— Intended to catch local bugs

Typically written by developers

Many small, fast-running, independent tests

Few dependencies on other system parts or environment

= Institute For
17-214 62 SOt

JUnit

* A popular, easy-to-use, unit-testing framework for Java

blems n Ju JUnit R O ¢ " BE QB B~ ¥ =
Finished after 0.012 seconds
Runs: 4/4 B Errors: 0 B Failures: 1 7
> fi edu.cmu.cs.cs214.hw1.tests.AlgorithmTest [Runner: JUnit 4] (0.000s) = Failure Trace | 25|
v & edu.cmu.cs.cs214.hwi.tests.AdjacencyMatrixTest [Runner: JUnit 4] (0.000 s) I

! java.lang.AssertionError: Expected exception: java.lang.NullPointerException
g
¢l basicNullTest2 (0.000 s)

> Ei] edu.cmu.cs.cs214.hwi.tests.AdjacencyListTest [Runner: JUnit 4] (0.000 s)

institute for
17-214 63 SorTiAl:

A JUnit example

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencylListTest {
@Test
public void testSanityTest(){

17-214

}

Graph gl = new AdjacencylListGraph(10);
Vertex s1 = new Vertex("A");

Vertex s2 = new Vertex("B");
assertEquals(true, gl.addVertex(sl));
assertEquals(true, gl.addVertex(s2));
assertEquals(true, gl.addEdge(sl, s2));
assertEquals(s2, gl.getNeighbors(sl)[0]);

@Test
public void test....

private int helperMethod...

64

institute for
SOFTWARE
RESEARCH

Selecting test cases

Werite tests based on the specification, for:
— Representative cases

— Invalid cases

— Boundary conditions

Write stress tests
— Automatically generate huge numbers of test cases

Think like an attacker
Other tests: performance, security, system interactions, ...

= Institute For
17-214 65 SOt

A testing example
/**

* computes the sum of the first Llen values of the array
k
* @param array array of integers of at Lleast lLength Len
* @param Len number of elements to sum up
* @return sum of the first Llen array values
* @throws NullPointerException 1if array is null
* @throws IndexOutOfBoundsException if Len > array.length
* @throws IllegalArgumentException i1f len < ©
*/
int partialSum(int array[], int len);

& institute for
17-214 66 SorTiAl:

A testing example
/**

* computes the sum of the first Llen values of the array
k
* @param array array of integers of at Lleast lLength Len
* @param Len number of elements to sum up
* @return sum of the first Llen array values
* @throws NullPointerException 1if array is null
* @throws IndexOutOfBoundsException if Len > array.length
* @throws IllegalArgumentException i1f len < ©
*/
int partialSum(int array[], int len);

* Test negative length

& institute for
17-214 67 SorTiAl:

A testing example
/>I<>I<

* computes the sum of the first Len values of the array
%

* @param array array of integers of at Lleast lLength Len

* @param Len number of elements to sum up

* @return sum of the first Llen array values

* @throws NullPointerException 1if array is null

* @throws IndexOutOfBoundsException if Len > array.length
* @throws IllegalArgumentException i1f lLen < @

*/
int partialSum(int array[], int len);

* Test negative length

* Test length > array.length

* Test length == array.length

* Test small arrays of length O, 1, 2

e Test null array

* Testlong array

e Stress test with randomly-generated arrays and lengths

< institute for
17-214 68 sorivns

Summary

* Interface-based designs handle change well
* Information hiding is crucial to good design

* Keep your API as thin as possible
* Test early and test often

- institute ror
17-214 69 [BYf sormse

