Principles of Software Construction:
Objects, Design, and Concurrency

Introduction to Java

Charlie Garrod Chris Timperley

&(kwnogiv Mellon University
School of Computer Science
[J
institute for
I S SOFTWARE
RESEARCH

L . .
17-214 S
RRRRRRR H

Administrivia

* No smoking
* Homework 1 due next Thursday 11:59 p.m.
— Everyone must read and sign our collaboration
policy
* First reading assignment due Tuesday
— Effective Java Items 15 and 16

L . .
17-214 2 [v
RRRRRRR H

Key concepts from Tuesday

* |Introduction to this course (17-214)
— Object-oriented programming (via Java)
— Design
— Design
— Design
— Concurrency

(]
institute f
17-214 O | S (B
RRRRRRR H

Key concepts from Tuesday

https://travis-ci.org/images/logos/TravisCl-Mascot-1.pni
https://www.unixmen.com/use-git-commands-linux-terminal/
https://bit.ly/2ZAnuPf\

https://qithub.qgithubassets.com/images/modules/logos_page/Octocat.pn
https://junit.org/junit4/images/junit5-banner.png

[]
institute F
17-214 a L
RESEARCH

https://travis-ci.org/images/logos/TravisCI-Mascot-1.png
https://www.unixmen.com/use-git-commands-linux-terminal/
https://bit.ly/2ZAnuPf%5C
https://github.githubassets.com/images/modules/logos_page/Octocat.png

Java is ever

MIHELRAF\

JAVA EDITION

8l -

]
y A N
& -

! 480"

TIOBE Index for August 2019 E

August Headline: Silly season in the programming language world

Nothing much has changed during July in the TIOBE index. In the top 10 only Objective-C and SQL have swapped positions. We need a magnifying glass
to see some other noteworthy changes: Rust went from #33 to #28, TypeScript from #41 to #35 and Julia from #50 to #39. It is also interesting to note
that Kotlin doesn't seem to come closer to the top 20. This month it even lost 2 positions: from #43 to #45.

The TIOBE Programming Community index is an indicator of the popularity of programming languages. The index is updated once a month. The ratings
are based on the number of skilled engineers world-wide, courses and third party vendors. Popular search engines such as Google, Bing, Yahoo!,
Wikipedia, Amazon, YouTube and Baidu are used to calculate the ratings. It is important to note that the TIOBE index is not about the best
programming language or the language in which most lines of code have been written

The index can be used to check whether your programming skills are still up to date or to make a strategic decision about what programming language
should be adopted when starting to build a new software system. The definition of the TIOBE index can be found here.

Aug 2019 Aug 2018 Change Programming Language Ratings Change
1 1 Java 16.028% -0.85%
2 2 Cc 15.154% +0.19%
3 4 A Python 10.020% +3.03%
4 3 v C++ 6.057% -1.41%
5 6 ~ C# 3.842% +0.30%

https://www.tiobe.com/tiobe-index/

institute f
17-214 5 SOFTWARE
RESEARCH

Outline

Hello World!

II. The type system
I1l. Quick ‘n’ dirty I/O
V. Collections

V. Methods common to all Objects

17-214 I

The “simplest” Java Program

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

(]
institute f
17-214 7 ‘s“ététT“vtveAr‘?é
RESEARCH

The “simplest” Java Program

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

Complication: You must use a class even if you aren’t
doing OO programming.

(]
institute f
17-214 8 ‘s“ététT“vtveAr‘?é
RESEARCH

The “simplest” Java Program

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

® Every application must provide a main method
® Entry point to the program
e Always “public static void main”

17-214

9

institute for
SOFTWARE
RESEARCH

The “simplest” Java Program

class HelloWorld {
public static void main(String[] args) {
o world!");

Return type

Indicates whether method is shared by
whole class or is different for each
instance.

Specifies who can “see” the method.

insti f
17-214 10 e o
RESEARCH

The “simplest” Java Program

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

Complication: main must declare command-line
arguments even if it doesn’t use them.

[)
insti f
17-214 11 e o
RESEARCH

The “simplest” Java Program

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

Uses the System class from the core library to print
"Hello world!" to standard output (console).

[)
insti f
17-214 12 e o
RESEARCH

Execution is a bit complicated

Source Code Bytecode Java Virtual Machine
(HelloWorld. java) (HelloWorld.class) (JVM)
T e compiled to executed by
: , system.out.println("Hello world!"); : ;jp #7 (
: invokespecial #8 .
> o St
: 9
—

$ javac HelloWorld $ java HelloWorld Java

http://images.slideplayer.com/21/6322821/slides/slide_9.jpg
https://www.jonbell.net/wp-content/uploads/2015/10/Screen-Shot-2015-10-08-at-2.16.41-PM.png
https://www.theverge.com/2012/10/18/3524036/0s-x-update-removes-java-web-browsers

insti f
17-214 13 R
RESEARCH

http://images.slideplayer.com/21/6322821/slides/slide_9.jpg
https://www.jonbell.net/wp-content/uploads/2015/10/Screen-Shot-2015-10-08-at-2.16.41-PM.png
https://www.theverge.com/2012/10/18/3524036/os-x-update-removes-java-web-browsers

It’s not all so bad!

* Has many good points to balance shortcomings
* Some verbosity is not a bad thing

— Can reduce errors and increase readability
* Modern IDEs eliminate much of the pain

— Type psvm instead of public static void main
* Managed runtime has many advantages

— Safe, flexible, enables garbage collection

* [t may not be best language for Hello World...
— But Java is very good for large-scale programming!

- institute for
17-214 14 JRYY o

Outline

Hello World!
II. The type system

I1l. Quick ‘n’ dirty I/O
V. Collections

V. Methods common to all objects

17-214 I

Java type system

Primitive Types

int long short
char boolean byte
float double

e Dirt cheap
e On stack, exist only when used
e No identity other than value

17-214

Classes, interfaces, arrays,
enums, annotations, strings,
exceptions

e More expensive
® On heap, garbage collected
e Identity is distinct from value

institute for
16 I S SOFTWARE
RESEARCH

True or false?

ﬂ'_Foo.”;

((_FOOJ);

int x = 5; String x = “foo”; String x
int y = 5; String y
System.out.println(x == y); System.out.println(x == y); System.out.println(x == y);

X; String y

17-214 17 e o
RESEARCH

True or false?

ﬂ'_Foo.”;

((_FOOJ);

int x = 5; String x = “foo”; String x
int y = 5; String y = Xx; String y
System.out.println(x == y); System.out.println(x == y); System.out.println(x == y);

17-214 18 e o
RESEARCH

True or false?

ﬂ'_Foo.”;

((_FOOJ);

int x = 5; String x = “foo”; String x
int y = 5; String y = Xx; String y
System.out.println(x == y); System.out.println(x == y); System.out.println(x == y);

17-214 19 e o
RESEARCH

True or false?

ﬂ'_Foo.”;

((_FOOJ);

int x = 5; String x = “foo”; String x
int y = 5; String y = Xx; String y
System.out.println(x == y); System.out.println(x == y); System.out.println(x == y);

17-214 20 e o
RESEARCH

ldentity vs. value

X == Yy compares the identity of X and y

* for primitives: identity = value
 for objects: identity = address on the heap

X.equals(y) compares the contents of x and y

String x = “fo00”;

String y = “foo”;

System.out.println(x == y); // false
System.out.println(x.equals(y)); // true

[)
17-214 21 e o
RESEARCH

Primitive types

e int 32-bit signed integer

* long 64-bit signed integer

* byte 8-bit signhed integer

e short 16-bit signed integer

e char 16-bit unsigned integer/character

e float 32-bit IEEE 754 floating point number
e double 64-bit IEEE 754 floating point number
 boolean Boolean value: true or false

- institute ror
17-214 22 [Py sormse

Warning: Deficient primitive types

* byte, short —use int instead!
— byte is broken —should have been unsigned

e float —use double instead!
— Provides too little precision

* Only compelling use case is large arrays,
especially in resource-constrained environments

- institute ror
17-214 23 [BYf sormse

Objects

* All non-primitives are represented by objects.
* An object is a bundle of state and behavior

e State — the data contained in the object
— In Java, these are the fields of the object

* Behavior — the actions supported by the object
— In Java, these are called methods

— Method is just OO-speak for function
— Invoke a method = call a function

- institute ror
17-214 24 [BYf sormose

Classes

* Every object has a class
— A class defines methods and fields
— Methods and fields collectively known as members

* Class defines both type and implementation

— Type = where the object can be used
— Implementation = how the object does things

* Loosely speaking, the methods of a class are its

Application Programming Interface (API)
— Defines how users interact with its instances

- institute ror
17-214 25 [BYf sormse

The class hierarchy

The root is Object
All classes except Object have one parent class
A class is an instance of all its superclasses

Object
*&0(\66 e*te”ds

A

SpUalXd

/:\ extends
jde
~+
Q

G

r QUMainBiD

insti f
17-214 26 R
RESEARCH

Implementation inheritance

e Aclass:
— Inherits visible fields and methods from its superclasses
— Can override methods to change their behavior

* Overriding method implementation must obey
contract(s) of its superclass(es)
— Ensures subclass can be used anywhere superclass can
— Liskov Substitution Principle (LSP)

17-214 27 SO

Interface types

* Defines a type without an implementation
* Much more flexible than class types

— An interface can extend one or more others
— A class can implement multiple interfaces

interface Comparator {
boolean compare(int i, int j);

class AscendingComparator implements Comparator {
public boolean compare(int i, int j) { return i < j; }

class DescendingComparator implements Comparator {
public boolean compare(int i, int j) { return i > j; }
}

[)
insti f
17-214 28 e o
RESEARCH

Java arrays

* Conceptually represented as an object
— Provides . length, runtime bounds-checking

String[] answers = new String[42];
if (answers.length == 42) {
answers[42] = "no"; // ArrayIndexOutOfBoundsException

}

[)
insti f
17-214 29 e o
RESEARCH

Java enums

* Like C enumerations, but represented as an object
— Provides many object-oriented features, type safety, ...

enum Planet { MERCURY, VENUS, EARTH, MARS,
JUPITER, SATURN, URANUS, NEPTUNE; }

Planet location = ...;
if (location.equals(Planet.EARTH)) {
System.out.println("Honey, I'm home!");

¥

[
institute f
17-214 30 SOFTWARE
RESEARCH

Java annotations

* Annotations mark code without any immediate functional effect
(e.g., @Override, @Deprecated, @SuppressWarnings)

class Bicycle {

@Override
public String toString() {
return ...;

}

17-214 31 SO

Boxed primitives

Primitive Types

int long short Integer Long Short
char boolean byte Character Boolean Byte
float double < Float Double

unboxing

e Allows primitives to be used in contexts requiring objects

o canonical use case is collections (e.g., HashSet<Integer>)
e Don’t used boxed primitives unless you must!
® Language does autoboxing and auto-unboxing

o blurs but does not remove distinction -- use carefully!

institute f
17-214 32 SOFTWARE
RESEARCH

Prefer primitives to boxed primitives

public class BoxOfTricks {
public static Integer n;

public static void main(String [] args) {
if (n == 0)
System.out.println(“That looks okay?”);
else
System.out.println(“I think not.”);

[)
17-214 33 e o
RESEARCH

Prefer primitives to boxed primitives

public class BoxOfTricks {
public static Integer n = null;

public static void main(String [] args) {
if (n == @) // throws NullPointerException
System.out.println(“That looks okay?”);
else
System.out.println(“I think not.”);

For more examples, see Effective Java, Item 61.

17-214 34

. . .
institute for

I S SOFTWARE
RESEARCH

What does this fragment print?

int[] a = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int i;

int suml = ©;

for (1 = 0; 1 < a.length; i++) {
suml += a[i];

int j;

int sum2 = 0O;

for (j = ©; 1 < a.length; j++) {
sum2 += al[j];

}

System.out.println(suml - sum2);

[)
17-214 35 e o
RESEARCH

Maybe not what you expect!

int[] a = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int 1i;

int suml = ©;

for (i = 0; i < a.length; i++) {
suml += a[i];

}

int j;

int sum2 = 0;

for (j = ©; i < a.length; j++) { // Copy/paste error!
sum2 += al[j];

¥

System.out.println(suml - sum2);

You might expect it to print O, but it prints 55

[)
17-214 36 e o
RESEARCH

You could fix it like this...

int[] a = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int 1i;

int suml = ©;

for (1 = 0; 1 < a.length; i++) {
suml += a[i];

int j;

int sum2 = 09;

for (j = ©; j < a.length; j++) {
sum2 += al[j];

¥

System.out.println(suml - sum2); // Now prints @, as expected

17-214 37 e o
RESEARCH

But this fix is far better...

int suml = ©;
for (int i = 0; i < a.length; i++) {
suml += a[i];

}

int sum2 = 0;
for (int i = @0; i < a.length; i++) {
sum2 += al[i];

}

System.out.println(suml - sum2); // Prints ©

e Reduces scope of index variable to loop
* Shorter and less error prone

[)
17-214 38 e o
RESEARCH

This fix is better still!

int suml = ©;
for (int x : a) {
suml += X;

}

int sum2 = 0;
for (int x : a) {
sum2 += X;

}

System.out.println(suml - sum2); // Prints ©

* Eliminates scope of index variable entirely!
* Even shorter and less error prone

[)
17-214 39 e o
RESEARCH

Lessons from the quiz

* Minimize scope of local variables [EJ Item 57]
— Declare variables at point of use

* |nitialize variables in declaration

e Use common idioms

* Watch out for bad smells in code
— Such as index variable declared outside loop

17-214 a0 YR it

RRRRRRRR

Outline

Hello World!

II. The type system
I1l. Quick ‘n’ dirty I/O
V. Collections

V. Methods common to all objects

17-214 I

Output

e Unformatted

System.
System.
System.
System.
System.

17-214

out
out
out
out
out

.println("Hello World");
.println("Radius: " + r);
.println(r * Math.cos(theta));
.println();

print("*");

42

institute for
SOFTWARE
RESEARCH

Aside: Overloaded Methods

System.out.println(r * Math.cos(theta));

System.out.println();

17-214

void

void

void

void

void

void

void

void

void

void

println()
Terminates the current line by writing the line separator string.

println(boolean x)
Prints a boolean and then terminate the line.

println(char x)
Prints a character and then terminate the line.

println(char[] x)
Prints an array of characters and then terminate the line.

println(double x)
Prints a double and then terminate the line.

println(float x)
Prints a float and then terminate the line.

println(int x)
Prints an integer and then terminate the line.

println(long x)
Prints a long and then terminate the line.

println(Object x)

Prints an Object and then terminate the line.
println(String x)

Prints a String and then terminate the line.

43

institute for
SOFTWARE
RESEARCH

Output

e Unformatted

System.
System.
System.
System.
System.

out
out
out
out
out

.println("Hello World");
.println("Radius: " + r);
.println(r * Math.cos(theta));
.println();

print("*");

e Formatted

System.out.printf(“Radius: %d%n”, r); // better!
System.out.printf("%d * %d = %d%»n", a, b, a * b); // Varargs

17-214

institute for
44 | S SOFTWARE
RESEARCH

Command line input example

Echoes all command line arguments

class Echo {
public static void main(String[] args) {
for (String arg : args) {
System.out.print(arg + " ");

}
¥

$ java Echo The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

[
institute f
17-214 45 SOFTWARE
RESEARCH

Command line input with parsing

Prints GCD of two command line arguments

class Gcd {
public static void main(String[] args) {
int i = Integer.parselnt(args[0]);
int j = Integer.parselnt(args[1]);
System.out.println(gcd(i, j));
}

static int gcd(int i, int j) {
return i == 0 ? j : gcd(j % i, 1i);
}
}

$ java Gcd 11322 35298
666

[
institute f
17-214 46 SOFTWARE
RESEARCH

Scanner input

Counts the words on standard input

class Wc {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long result = 0;
while (sc.hasNext()) { // whitespace delimiter
sc.next(); // consume token

result++;
}
System.out.println(result);
¥
¥
$ java Wc < Wc.java
32

[
institute f
17-214 47 SOFTWARE
RESEARCH

Outline

Hello World!

II. The type system
I1l. Quick ‘n’ dirty I/O
V. Collections

V. Methods common to all objects

17-214 I

Java Collections

* A collection is an object that represents a group
of objects.

e Java Collections Framework:
— Interfaces for common abstract data structures
— Classes that implement those data structures

— Includes algorithms (e.g., searching, sorting).

* algorithms are polymorphic: can be used on many
different implementations of collection interfaces.

[
institute f
17-214 49 SOFTWARE
RESEARCH

Primary collection interfaces

Glection < Map >

- institute ror
17-214 50 [BYf sormse

Implementations of Set

implements

-

[HashSet] [LinkedHashSet] [TreeHashSet] [EnumSet]

[)
insttute F
17-214 51 SOFTWARE
RESEARCH

Collections usage example 1

Squeeze duplicate words out of command line

public class Squeeze {
public static void main(String[] args) {
Set<String> s = new LinkedHashSet<>();
for (String word : args)
s.add(word);
System.out.println(s);

¥
}

$ java Squeeze I came I saw I conquered
[I, came, saw, conquered]

[
institute f
17-214 52 SOFTWARE
RESEARCH

Collections usage example 2

Print unigue words in lexicographic order

public class Lexicon {
public static void main(String[] args) {
Set<String> s = new TreeSet<>();
for (String word : args)
s.add(word);
System.out.println(s);

¥
}

$ java Lexicon I came I saw I conquered
[I, came, conquered, saw]

[
institute f
17-214 53 SOFTWARE
RESEARCH

Collections usage example 3

Print index of first occurrence of each word

class Index {
public static void main(String[] args) {
Map<String, Integer> index = new TreeMap<>();

// Iterate backwards so first occurrence wins

for (int i = args.length - 1; i >= 0; i--)
index.put(args[i], 1i);

System.out.println(index);

¥

$ java Index if it is to be it is up to me to do it
{be=4, do=11, if=0, is=2, it=1, me=9, to=3, up=7}

[
institute f
17-214 54 SOFTWARE
RESEARCH

Warning: Arrays are not collections

* Arrays and collections don’t mix

— If you try to mix them and get compiler warnings,
take them seriously

* Generally speaking, prefer collections to arrays
— See Effective Java ltem 28 for details

- institute ror
17-214 55 [IYf sormse

More information on collections

 For much more information on collections,
see the annotated outline:

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/|
ava/util/doc-files/coll-index.html

* For more info on any library class, see javadoc
— Search web for <fully qualified class name> 12
— e.g., java.util.scanner 12

- institute ror
17-214 s6 [IYf sormse

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/doc-files/coll-index.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/doc-files/coll-index.html

Outline

Hello World!
II. The type system

I1l. Quick ‘n’ dirty I/O
V. Collections

V. Methods common to all objects

17-214 el

Methods common to all objects

 How do collections know how to test objects for
equality?
* How do they know how to hash and print them?

* The relevant methods are all present on Object
— equals - returns true if the two objects are “equal”

— hashCode - returns an int that must be equal for equal
objects, and is likely to differ on unequal objects

— toString - returns a printable string representation

15-214 ss [sorvone

Object implementations

* Provide identity semantics

— equals(Object o) -returns true if o refers to
this object

— hashCode() - returns a near-random int that
never changes over the object lifetime

— toString() - returns a nasty looking string
consisting of the type and hash code
* For example: java.lang.0Object@659e0bfd

A\
Institute ror
15-214 CRN | S [Feayes

Overriding Object implementations

* No need to override equals and hashCode if
you want identity semantics

— When in doubt, don't override them
— It's easy to get it wrong

* Nearly always override toString
— println invokes it automatically
— Why settle for ugly?

.
Institute ror
15-214 60 |ISYQ sormace

Overriding toString

Overriding toString is easy and beneficial

final class PhoneNumber {
private final short areaCode;
private final short prefix;
private final short lineNumber;

@Override public String toString() {
return String.format("(%03d) %03d-%04d",
areaCode, prefix, lineNumber);

}

Number jenny = ...;
System.out.println(jenny);
Prints: (707) 867-5309

-
institute for

15-214 61 [N sormax

Summary

e Java is well suited to large programs; small ones
may seem a bit verbose

* Bipartite type system — primitives & object refs
* A few simple I/O techniques will get you started
* Collections framework is powerful & easy to use

- institute ror
17-214 62 [BYf sormse

