
117-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

All GoF Design Patterns

Charlie Garrod Bogdan Vasilescu

217-214

Administrivia

• Final exam Monday May 7th 5:30-8:30 PH 100
• Review session Saturday May 5th 2pm WH 5403

317-214

Key concepts from Thursday

417-214

GitFlow branch workflow

517-214

Coping with scale at Facebook
Lines Committed Per Developer Per Day

Growth of the size of the
Android and iOS dev teams

617-214

MONOREPO VS MANY REPOS

717-214

What is a monolithic repository (monorepo)?

• A single version control repository containing multiple
– Projects
– Applications
– Libraries

• often using a common build system.

2015 talk by Benjamin Eberlei

817-214

Monorepos in industry

Google (computer science version)

917-214

Monorepos in industry

Scaling Mercurial at Facebook

1017-214

Monorepos in industry

Microsoft claim the largest git repo on the planet

1117-214

Monorepos in open-source

2016 talk by FABIEN POTENCIER

foresquare public monorepo

1217-214

The monorepo

https://github.com/symfony/symfony

Bridge/

 5 sub-projects

Bundle/

 5 sub-projects

Component/

 33 independent sub-projects like Asset, Cache,

 CssSelector, Finder, Form, HttpKernel, Ldap,

 Routing, Security, Serializer, Templating,

 Translation, Yaml, ...

43 projects, 25 000 commits, and 400 000 LOC

Monorepos in open-source

2016 talk by FABIEN POTENCIER

1317-214

Common build system

Bazel from Google

Buck from Facebook

Pants from Twitter

1417-214

Some advantages of monorepos

1517-214

High Discoverability For Developers

I Developers can read and explore the whole codebase
I
grep, IDEs and other tools can search the whole codebase

I IDEs can offer auto-completion for the whole codebase
I Code Browsers can links between all artifacts in the codebase

1617-214

Code-Reuse is cheap

Almost zero cost in introducing a new library

I Extract library code into a new directory/component
I Use library in other components
I Profit!

1717-214

Refactorings in one commit

Allow large scale refactorings with one single,
atomic, history-preserving commit

I Extract Library/Component
I Rename Functions/Methods/Components
I Housekeeping (phpcs-fixer, Namespacing, ...)

1817-214

Another refactoring example

• Make large backward incompatible changes easily... especially
if they span different parts of the project

• For example, old APIs can be removed with confidence
– Change an API endpoint code and all its usages in all projects in one

pull request

1917-214

Some more advantages

• Easy continuous integration and code review for changes
spanning several projects

• (Internal) dependency management is a non-issue
• Less context switching for developers
• Code more reusable in other contexts
• Access control is easy

2017-214

Some downsides

• Require collective responsibility for team and developers
• Require trunk-based development

– Feature toggles are technical debt (recall financial services example)
• Force you to have only one version of everything
• Scalability requirements for the repository
• Can be hard to deal with updates around things like security

issues
• Build and test bloat without very smart build system
• Slow VCS without very smart system
• Permissions?

2117-214

Summary

• Configuration management
– Treat infrastructure as code
– Git is powerful

• Release management: versioning, branching, …
• Software development at scale requires a lot of infrastructure

– Version control, build managers, testing, continuous integration,
deployment, …

• It’s hard to scale development
– Move towards heavy automation (DevOps)

• Continuous deployment increasingly common
• Opportunities from quick release, testing in production, quick

rollback

2217-214

• Published 1994
• 23 Patterns
• Widely known

Today:

2417-214

Why?

• GOF book is seminal and canonical list of well-known patterns

• At least know where to look up when somebody mentions the
“Bridge pattern”

2517-214

2817-214

Pattern Name

• Intent – the aim of this pattern
• Use case – a motivating example
• Key types – the types that define pattern

– Italic type name indicates abstract class; typically this is an interface when
the pattern is used in Java

• JDK – example(s) of this pattern in the JDK

3117-214

I. Creational Patterns

1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

3217-214

Problem:

• Want to support multiple platforms with our
code. (e.g., Mac and Windows)

• We want our code to be platform independent
• Suppose we want to create Window with
setTile(String text) and repaint()
–How can we write code that will create the

correct Window for the correct platform,
without using conditionals?

3317-214

Abstract Factory Pattern

3417-214

Abstract Factory

• Intent – allow creation of families of related
objects independent of implementation

• Use case – look-and-feel in a GUI toolkit
– Each L&F has its own windows, scrollbars, etc.

• Key types – Factory with methods to create each
family member, Products

• JDK – not common

3517-214

Problem:

• How to handle all combinations of fields when constructing?

3617-214

Solution 1

• Bad (code becomes harder to read and maintain with many
attributes)

https://jlordiales.me/2012/12/13/the-builder-pattern-in-practice/

3717-214

Solution 2: default no-arg constructor plus setters and
getters for every attribute

• Bad (potentially inconsistent
state, mutable)

https://jlordiales.me/2012/12/13/the-builder-pattern-in-practice/

3817-214

Solution 3

https://jlordiales.me/2012/12/13/the-builder-pattern-in-practice/

4117-214

Builder

• Intent – separate construction of complex object from
representation so same creation process can create
different representations

• use case – converting rich text to various formats
• types – Builder, ConcreteBuilders, Director, Products
• JDK – java.lang.StringBuilder, java.lang.StringBuffer

4217-214

Factory Method

• Intent – abstract creational method that lets subclasses
decide which class to instantiate

• Use case – creating documents in a framework
• Key types – Creator, which contains abstract method to

create an instance
• JDK – Iterable.iterator()

4317-214

Prototype

• Intent – create an object by cloning another
and tweaking as necessary

• Use case – writing a music score editor in a graphical
editor framework

• Key types – Prototype
• JDK – Cloneable, but avoid (except on arrays)
– Java and Prototype pattern are a poor fit

4417-214

Problem:

• Ensure there is only a single instance of a class
(e.g., java.lang.Runtime)

• Provide global access to that class

4517-214

Singleton

• Intent – ensuring a class has only one instance
• Use case – GoF say print queue, file system,

company in an accounting system
– Compelling uses are rare but they do exist

• Key types – Singleton
• JDK – java.lang.Runtime.getRuntime(),

java.util.Collections.emptyList()
• Used for instance control

4617-214

Singleton Illustration

public class Elvis {
public static final Elvis ELVIS = new Elvis();
private Elvis() { }
...

}

// Alternative implementation
public enum Elvis {

ELVIS;

sing(Song song) { ... }

playGuitar(Riff riff) { ... }

eat(Food food) { ... }

take(Drug drug) { ... }
}

4717-214

These were the creational patterns

1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

4817-214

II. Structural Patterns

1. Adapter
2. Bridge
3. Composite
4. Decorator
5. Façade
6. Flyweight
7. Proxy

4917-214

Adapter

• Intent – convert interface of a class into one that
another class requires, allowing interoperability

• Use case – numerous, e.g., arrays vs. collections
• Key types – Target, Adaptee, Adapter
• JDK – Arrays.asList(T[])

5017-214

Example: There are two types of thread schedulers, and
two types of operating systems or "platforms".

image source: https://sourcemaking.com

5117-214

Problem: we have to define a class for each permutation
of these two dimensions

image source: https://sourcemaking.com

• How would you redesign this?

5217-214

Bridge Pattern: Decompose the component's interface
and implementation into orthogonal class hierarchies.

image source: https://sourcemaking.com

5417-214

Bridge

• Intent – decouple an abstraction from its
implementation so they can vary independently

• Use case – portable windowing toolkit

• Key types – Abstraction, Implementor
• JDK – JDBC, Java Cryptography Extension (JCE), Java

Naming & Directory Interface (JNDI)

• Adapter vs Bridge:
– Adapter makes things work together after they're designed;

Bridge makes them work before they are.

– Bridge is designed up-front to let the abstraction and the
implementation vary independently. Adapter is retrofitted to
make unrelated classes work together.

5717-214

Composite

• Intent – compose objects into tree structures. Let
clients treat primitives & compositions uniformly.

• Use case – GUI toolkit (widgets and containers)
• Key type – Component that represents both

primitives and their containers
• JDK – javax.swing.JComponent

5817-214

Decorator

• Intent – attach features to an object dynamically
• Use case – attaching borders in a GUI toolkit
• Key types – Component, implement by decorator
and decorated

• JDK – Collections (e.g., Synchronized
wrappers), java.io streams, Swing components,
unmodifiableCollection

5917-214

Façade

• Intent – provide a simple unified interface to a
set of interfaces in a subsystem
–GoF allow for variants where the complex

underpinnings are exposed and hidden
• Use case – any complex system; GoF use compiler
• Key types – Façade (the simple unified interface)
• JDK – java.util.concurrent.Executors

6017-214

Façade Illustration

Façade

√√

√

√

√

√ √

Subsystem classes

6117-214

Façade example

6217-214

Problem: Imagine implementing a forest of individual
trees in a realtime game

Source: http://gameprogrammingpatterns.com/flyweight.html

6317-214

Trick: most of the fields in these objects are the same
between all of those instances

Source: http://gameprogrammingpatterns.com/flyweight.html

6417-214

Flyweight

• Intent – use sharing to support large numbers
of fine-grained objects efficiently

• Use case – characters in a document
• Key types – Flyweight (instance-controlled!)
– Some state can be extrinsic to reduce number of instances

• JDK – String literals (JVM feature)

6517-214

Flyweight Illustration

6617-214

Proxy

• Intent – surrogate for another object

• Use case – delay loading of images till needed

• Key types – Subject, Proxy, RealSubject

• Gof mention several flavors
– virtual proxy – stand-in that instantiates lazily
– remote proxy – local representative for remote obj
– protection proxy – denies some ops to some users
– smart reference – does locking or ref. counting, e.g.

• JDK – collections wrappers

• Decorator vs Proxy:

– Decorator adds responsibilities to object (w/t inheritance).

– Proxy is used to “control access” to an object.

6717-214

Proxy Illustrations

Virtual Proxy

Smart Reference Remote Proxy

SynchronizedList ArrayList

aTextDocument
image anImage

data

in memory on disk

anImageProxy
fileName

Client

Proxy

Server

6817-214

These were the structural patterns

1. Adapter
2. Bridge
3. Composite
4. Decorator
5. Façade
6. Flyweight
7. Proxy

6917-214

III. Behavioral Patterns

1. Chain of Responsibility
2. Command
3. Interpreter
4. Iterator
5. Mediator
6. Memento
7. Observer
8. State
9. Strategy
10. Template method
11. Visitor

7017-214

Chain of Responsibility

• Intent – avoid coupling sender to receiver by
passing request along until someone handles it

• Use case – context-sensitive help facility
• Key types – RequestHandler
• JDK – ClassLoader, Properties
• Exception handling could be considered a form

of Chain of Responsibility pattern

7117-214

Command

• Intent – encapsulate a request as an object,
letting you parameterize one action with
another, queue or log requests, etc.

• Use case – menu tree
• Key type – Command (Runnable)
• JDK – Common! Executor framework, etc.

public static void main(String[] args) {
SwingUtilities.invokeLater(() -> new Demo().setVisible(true));

}

7217-214

Interpreter

• Intent – given a language, define class hierarchy
for parse tree, recursive method to interpret it

• Use case – regular expression matching,
compiler

• Key types – Expression, NonterminalExpression,
TerminalExpression

• JDK – no uses I’m aware of
– Our expression evaluator (HW2) is a classic example

• Necessarily uses Composite pattern!

7317-214

Iterator

• Intent – provide a way to access elements of a
collection without exposing representation

• Use case – collections
• Key types – Iterable, Iterator
–But GoF discuss internal iteration, too

• JDK – collections, for-each statement, etc.

7417-214

Problem:

7517-214

Mediator Pattern

7617-214

Mediator

• Intent – define an object that encapsulates how
a set of objects interact, to reduce coupling.
–!(n) couplings instead of !(n2)

• Use case – dialog box where change in one
component affects behavior of others

• Key types – Mediator, Components
• JDK – Unclear

7817-214

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

Provide save and restoreToState methods
Hint: define custom type (Memento)

7917-214 https://dzone.com/articles/design-patterns-memento

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

8017-214

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

8117-214

Memento

• Intent – without violating encapsulation, allow client to
capture an object’s state, and restore later

• Use case – when you need to provide an undo
mechanism in your applications, when the internal
state of an object may need to be restored at a later
stage (e.g., text editor)

• Key type – Memento (opaque state object)
• JDK – none that I’m aware of (not serialization)

8217-214

Observer

• Intent – let objects observe the behavior of
other objects so they can stay in sync

• Use case – multiple views of a data object in a GUI
• Key types – Subject (“Observable”), Observer
–GoF are agnostic on many details!

• JDK – Swing, left and right

8317-214

Problem: allow object to behave in different ways
depending on internal state

8417-214 https://sourcemaking.com/design_patterns/state/java/1

8617-214

State

• Intent – allow an object to alter its behavior when internal state
changes. “Object will appear to change class.”

• Use case – TCP Connection (which is stateful)

• Key type – State (Object delegates to state!)

• JDK – none that I’m aware of

• State can be considered as an extension of Strategy

• Both patterns use composition to change the behavior of the
main object by delegating the work to the helper objects.
– Strategy makes these objects completely independent

– State allows state objects to alter the current state of the context with
another state, making them interdependent

8817-214

Strategy

• Intent – represent a behavior that parameterizes
an algorithm for behavior or performance

• Use case – line-breaking for text compositing
• Key types – Strategy
• JDK – Comparator

8917-214

Template Method

• Intent – define skeleton of an algorithm or data
structure, deferring some decisions to subclasses

• Use case – application framework that lets
plugins implement all operations on documents

• Key types – AbstractClass, ConcreteClass
• JDK – skeletal collection impls (e.g.,
AbstractList)

9017-214

Problem:

• It should be possible to define a new operation
for (some) classes of an object structure without
changing the classes.
– Example: Calculate shipping for different

regions for all items in shopping cart. Be able
to add new shipping cost formulas without
changing existing code.

9117-214

The Visitable interface

https://dzone.com/articles/design-patterns-visitor

9217-214

The Visitor interface

9317-214

Driving the visitor

9417-214

Visitor

9517-214

Visitor

• Intent – represent an operation to be performed on elements of
an object structure (e.g., a parse tree). Visitor lets you define a
new operation without modifying the type hierarchy.

• Use case – type-checking, pretty-printing, etc.
• Key types – Visitor, ConcreteVisitors, all the element types that

get visited
• JDK – none that I’m aware of; very common in compilers

9617-214

These were the behavioral patterns

1. Chain of Responsibility
2. Command
3. Interpreter
4. Iterator
5. Mediator
6. Memento
7. Observer
8. State
9. Strategy
10. Template method
11. Visitor

9717-214

All GoF Design Patterns

1. Abstract
factory

2. Builder
3. Factory

method
4. Prototype
5. Singleton
6. Adapter
7. Bridge
8. Composite

9. Decorator
10. Façade
11. Flyweight
12. Proxy
13. Chain of

Responsibility
14. Command
15. Interpreter
16. Iterator
17. Mediator
18. Memento

19. Observer
20. State
21. Strategy
22. Template

method
23. Visitor

