Principles of Software Construction:
Objects, Design, and Concurrency

All GoF Design Patterns

Charlie Garrod Bogdan Vasilescu

School of
Computer Science

kel
institute for
I S SOFTWARE
RESEARCH

- institute for
17-214 1 soffdast

Administrivia

* Final exam Monday May 7t 5:30-8:30 PH 100
* Review session Saturday May 5t 2pm WH 5403

-
Institute tor
17-214 2 soffdast

Key concepts from Thursday

o institute for
17-214 3 ioff

GitFlow branch workflow

v0.1 I | v0.2 | v1.0

institute for

sk 4 Bk

(V)]

Coping with scale at Facebook

Lines Committed Per Developer Per Day
200

150

100

-« +Android
w—i0S

Growth of the size of the
Android and iOS dev teams

N N 2 2 > > O S S ©
o \ o S ,LQ‘\ ‘,.LQ'\ \‘1’0‘\ \‘,LQ\ c,LQ‘\ (\,LQX (\,LQ‘& \19‘\ ‘01’0‘&
¥ W <@ o o oe® po WO K% o2 W Yo W <@

institute for
17-214 5 sor s

MONOREPO VS MANY REPOS

= \rwulnlut«'[!
17-214 6 LIYN sormvake

What is a monolithic repository (monorepo)?

* Asingle version control repository containing multiple
— Projects
— Applications
— Libraries

e often using a common build system.

17-214 2015 talk by Benjamin Eberlei . B

RESEARCH

Monorepos in industry

Google (computer science version

17-214

Join ACM About Communications ACM Resources Alerts & Feeds

COMMUNICATIONS

OF THE

ACM

Home / Magazine Archive / July 2016 (Vol. 59, No. 7) / Why Google Stores Billions of Lines of Code in a Single... / Full Text

CONTRIBUTED ARTICLES

| CURRENTISSUE | NEWS | BLOGS | OPINION | RESEARCH PRACTICE

SIGN IN

Search pe
P—

CAREERS | ARCHIVE | VIDEOS

Why Google Stores Billions of Lines of Code in a Single

Repository

By Rachel Potvin, Josh Levenberg

Communications of the ACM, Vol. 59 No. 7, Pages 78-87

10.1145/2854146
Comments (3)

VIEW AS: gﬂD q,ﬂ SHARE: | [(5@6 E

Early Google employees decided to work with a shared codebase
managed through a centralized source control system. This
approach has served Google well for more than 16 years, and
today the vast majority of Google's software assets continues to
be stored in a single, shared repository. Meanwhile, the number
of Google software developers has steadily increased, and the size
of the Google codebase has grown exponentially (see Figure 1). As
a result, the technology used to host the codebase has also
evolved significantly.

Back to Top

L Avs Tnnimhta

SIGN IN for Full Access

» Forgot Password?
» Create an ACM Web Account

SIGN IN

ARTICLE CONTENTS:
Introduction

Key Insights
Google-Scale
Background
Analysis

AMarnativas

institute for
8 i S SOFTWARE
RESEARCH

Monorepos in industry

Scaling Mercurial at Facebook

17-214

n Code

Open Source Platforms v Infrastructure Systems v Hardware Infrastructure v Video & VR v Artificial Intelligence v

@® 7 January 2014 ® INFRA - OPEN SOURCE ' PERFORMANCE - OPTIMIZATION

Scaling Mercurial at Facebook
* Durham Goode . Siddharth P Agarwal

With thousands of commits a week across hundreds of thousands of files, Facebook's main source
repository is enormous--many times larger than even the Linux kernel, which checked in at 17 million
lines of code and 44,000 files in 2013. Given our size and complexity—and Facebook's practice of
shipping code twice a day--improving our source control is one way we help our engineers move fast.

Choosing a source control system

Two years ago, as we saw our repository continue to grow at a staggering rate, we sat down and
extrapolated our growth forward a few years. Based on those projections, it appeared likely that our
then-current technology, a Subversion server with a Git mirror, would become a productivity
bottleneck very soon. We looked at the available options and found none that were both fast and
easy to use at scale.

Our code base has grown organically and its internal dependencies are very complex. We could have
spent a lot of time making it more modular in a way that would be friendly to a source control tool, but
there are a number of benefits to using a single repository. Even at our current scale, we often make

large changes throughout our code base, and having a single repository is useful for continuous

Recommended

Scaling memcached at Facebook

Flashcache at Facebook: From
2010 to 2013 and beyond

9

institute for
SOFTWARE
RESEARCH

Monorepos in industry

Microsoft claim the largest git repo on the planet

17-214

Server & Tools Blogs > Developer Tools Blogs > Brian Harrys blog

Executive Bloggers

Visual Studio DevOps Languages .NET Platform

Development

Brian Harrys blog

Everything you want to know about Visual Studio ALM and Farming

The largest Git repo on the planet

05/24/2017 by Brian Harry MS / 59 Comments

€1 Share 2.2k 3213 _

It's been 3 months since | first wrote about our efforts to scale Git to extremely large projects and teams with an effort we called “Git Virtual
File System”. As a reminder, GVFS, together with a set of enhancements to Git, enables Git to scale to VERY large repos by virtualizing both the
.git folder and the working directory. Rather than download the entire repo and checkout all the files, it dynamically downloads only the
portions you need based on what you use.

Alot has happened and | wanted to give you an update. Three months ago, GVFS was still a dream. | don’t mean it didn't exist - we had a
concrete implementation, but rather, it was unproven. We had validated on some big repos but we hadn't rolled it out to any meaningful
number of engineers so we had only conviction that it was going to work. Now we have proof.

Today, | want to share our results. In addition, we're announcing the next steps in our GVFS journey for customers, including expanded open
sourcing to start taking contributions and improving how it works for us at Microsoft, as well as for partners and customers.

Windows is live on Git
Over the past 3 months, we have largely completed the rollout of Git/GVFS to the Windows team at Microsoft.

As a refresher, the Windows code base is approximately 3.5M files and, when checked in to a Git repo, results in a repo of about 300GB.

Signin

Data Development

Visual Studio

Download Visual Studio @
Download TFS @
Visual Studio Team Services

Search

Search MSDN with Bing jol

Search this blog ® Search all blogs

Subscribe Blog via Email

Subscribe to this blog and receive
notifications of new posts by email.

Email Address

Subscribe! Unsubscribe
A.

Rack tn
-

institute for
SOFTWARE
1 0 RESEARCH

17-214

Ll foursquare / fsqio

<> Code

Issues 20

Monorepos in open-source

foresquare public monorepo

Pull requests 0 Projects 0 Wiki Insights

A monorepo that holds all of Foursquare's opensource projects

pants foursquare

P 538 commits

monorepo

mongodb rogue scala

¥ 1branch © 2 releases

® Watch v

42 16 contributors

Branch: master v

New pull request

Create new file

@ mateor committed with mateor Upgrade Fsq.io Travis config to use mongodb3.0+ (#780)

il 3rdparty

i build-support
I scripts/fsqio
i sic

il test

B .dockerignore
B .gitignore

B .travisyml

[E] BUILD.opensource
[E) BUILD.tools
B CLAmd

[E) CONTRIBUTING.md

2016 talk by FABIEN POTENCIER

Update the testinfra deployed file (#748)

Monolithic lvy resolve commit (#530)

Add a check for the current file before deleting (#709)

Add installation instructions to pom

Spindle: Make ThriftParserTest actually depend on its input (#735)
Update fsqio/fsqio Dockerfile and add one for fsqgio/twofishes
Update upkeep to no longer clobber global variables
Upgrade Fsq.io Travis config to use mongodb3.0+ (#780)
Monolithic Ivy resolve commit (#530)

Drop a BUILD.tools in Fsq.io.

Move deployed files to consolidated directory.

Post a CONTRIBUTING.md.

80

Upload files

% Star = 120 ¥ Fork 19

&fs Apache-2.0
I |

Find file Clone or download ~

Latest commit 494b379 on 1 Aug

3 months ago
3 months ago
3 months ago
3 months ago
3 months ago

2 years ago
10 months ago
3 months ago
3 months ago
8 months ago

2 years ago

2 vears aao

11

institute for
SOFTWARE
RESEARCH

Monorepos in open-source

The @) Symfony monorepo
43 projects, 25 000 commits, and 400 000 LOC

https://github.com/symfony/symfony

Bridge/

5 sub-projects
Bundle/

5 sub-projects
Component/

33 independent sub-projects like Asset, Cache,
CssSelector, Finder, Form, HttpKernel, Ldap,

Routing, Security, Serializer, Templating,
Translation, Yaml, ...

2016 talk by FABIEN POTENCIER

Common build system

Bazel from Google

Contribute Blog GitHub

GETI

Pants from Twitter

Spee

and1
Bazel ¢ G g 5
etting Starte o
oy R Pants: A fast, scalable build system
depenc E Setting Up Pants
executi 3 Tutorial T
increm le o

Common Tasks Pants is a build system designed for codebases that:

V Pants Basics « Are large and/or growing rapidly.
« Consist of many subprojects that share a significant amount of code.
B Why Use Pants?
« Have complex dependencies on third-party libraries.
P.
ants Concepts « Use a variety of languages, code generators and frameworks.
BUILD files
Target Addresses
Third-Party Dependencies Pants supports Java, Scala, Python, C/C++, Go, Javascript/Node, Thrift, Protobuf and Android
Pants Options code. Adding support for other languages, frameworks and code generators is straightforward.
Invoking Pants Pants is a collaborative open-source project, built and used by Twitter, Foursquare, Square, Medium and other companies.

Reporting Server

IDE Support Gettmg Started

JUM « Installing Pants

JVM Projects with Pants « SetlingUpiRants

JVM 3Brdparty Pattern el gncriel

Scala Support

Publishing Artifacts Cookbook

Pants for Maven Experts The Common Tasks documentation is a practical, solutions-oriented guide to some of the Pants tasks that you're most likely to carry out on a daily basis.

institute for
17-214 S R

RESEARCH

Some advantages of monorepos

o institute for
17-214 14 soffdast

High Discoverability For Developers

» Developers can read and explore the whole codebase

» grep, IDEs and other tools can search the whole codebase

» |IDEs can offer auto-completion for the whole codebase

» Code Browsers can links between all artifacts in the codebase

passion for soffware quality
Copyright Qafoo GmbH; All Rights Reserved

. institute for
17-214 15 it

Code-Reuse is cheap

Almost zero cost in introducing a new library

» Extract library code into a new directory/component
> Use library in other components

> Profit!
paossion for soffware quality

. institute for
17-214 16 sorrwat

Refactorings in one commit

Allow large scale refactorings with one single,
atomic, history-preserving commit

» Extract Library/Component
» Rename Functions/Methods/Components
» Housekeeping (phpcs-fixer, Namespacing, ...)

0000
o008
=~ Jofoo

passion for soffware quality

Copyright Qafoo GmbH; All Rights Reserved

. institute for
17-214 17 sorrwat

Another refactoring example

* Make large backward incompatible changes easily... especially
if they span different parts of the project

* For example, old APIs can be removed with confidence
— Change an APl endpoint code and all its usages in all projects in one
pull request

. institute for
17-214 18 soffdast

Some more advantages

e Easy continuous integration and code review for changes
spanning several projects

* (Internal) dependency management is a non-issue

* Less context switching for developers

 Code more reusable in other contexts

* Access control is easy

. institute for
17-214 19 soffdast

Some downsides

* Require collective responsibility for team and developers

* Require trunk-based development
— Feature toggles are technical debt (recall financial services example)

* Force you to have only one version of everything

e Scalability requirements for the repository

* (Can be hard to deal with updates around things like security
issues

* Build and test bloat without very smart build system

* Slow VCS without very smart system

* Permissions?

= H\‘v\ll('[)
17-214 20 sor ALt

Summary

* Configuration management
— Treat infrastructure as code
— Git is powerful

* Release management: versioning, branching, ...
e Software development at scale requires a lot of infrastructure

— Version control, build managers, testing, continuous integration,
deployment, ...

* It’s hard to scale development

— Move towards heavy automation (DevOps)
* Continuous deployment increasingly common

* Opportunities from quick release, testing in production, quick
rollback

= H\‘v\ll('[)
17-214 21 sor ALt

Today: /

4
‘b

P
=
—
=
o
(‘\
=
Z
=
Z
m
W
=
m
<
-0
7
ﬁ\
=
m
W
7
~
=
Z
Z
[
@,
0O
e
rd
—
-~
—
Z
0
7z
m
z
m
w

30
+ Published 1994 :
e 23 Patterns %«E |
* Widely known 3

institute for
17-214 22 sormse

Why?
* GOF book is seminal and canonical list of well-known patterns

* At least know where to look up when somebody mentions the
“Bridge pattern”

= H\‘vlll('[)
17-214 24 sor ALt

17-214

states\

strategies
/ sharing j
terminal

Strategy sharing symbols

Mediator

State

defining

algorithm's

seps~—____]

Prototype [

Template Method

/———J Memento Proxy
saving state Ad
{ terati apter
Builder 0 Iterat\cn
Iterator avolding Brid
‘\ creating hysteresis ge
composites
enumerat;ng
children
adding composed
respons:bﬂrﬂes—\ using Command
to objects
/-— Composite
Decorator sharing \ i N
composites adding dehnmgls defining
traversa A
l operations | the chain
: defining fai
Flyweight grammar \" Visitor
changing skin
versus guts
adding
sharing Interpreter |———— operations Chain of Responsibility

complex

dependency _____|
management Observer

e Often uses

configure factory
dynamically

\

Abstract Factory

single
instance

SIngl':on /

single — |

instance

™ Factory Method

implement using

Facade

=

institute for
SOFTWARE
RESEARCH

Pattern Name

* Intent —the aim of this pattern
* Use case — a motivating example

* Key types —the types that define pattern

— Italic type name indicates abstract class; typically this is an interface when
the pattern is used in Java

* JDK - example(s) of this pattern in the JDK

= H\‘vlll('[)
17-214 28 sor ALt

|. Creational Patterns

. Abstract factory
Builder

Factory method
. Prototype

. Singleton

17-214

Problem:

* Want to support multiple platforms with our
code. (e.g., Mac and Windows)

 We want our code to be platform independent

e Suppose we want to create W1 ndow with
setTi1le(String text) and repaint()

—How can we write code that will create the
correct Window for the correct platform,
without using conditionals?

17-214 2 [BH s

Abstract Factory Pattern

«Clients
GUIBuilder

+ buildWindow(Abstracti'idgetF actony) : void

whbstractF actonyx
AbstractWidget Factory

+

createindow) : Window

wConcreteFactone
MsWindowsWidget Factory

wConcreteF actony
Mac0SXWidget Factory

+ createWindow) : Window +

createind o) Window

Main
[+ main(String[J): void
whbstractP roducts
Wi nd ooy
+ =zetTitle(String) : wvoid
+ repaint): woid
«ConcreteProducts «ConcreteProducts
M SWindows Mac OS5 XWindow
+ setTitle(String) : void + zetTitle(String) : void
+ repaint]): void + repaint): void

17-214

institute for
33 I S SOFTWARE
LA RESEARCH

Abstract Factory

* Intent — allow creation of families of related
objects independent of implementation

e Use case — look-and-feel in a GUI toolkit
— Each L&F has its own windows, scrollbars, etc.

* Key types — Factory with methods to create each
family member, Products

e IDK—not common

17-214 se [0 40

Problem:

* How to handle all combinations of fields when constructing?

public class User {
private final String firstName; //required
private final String lastName; //required
private final int age; //optional
private final String phone; //optional
private final String address; //optional

institute for
17-214 35 soffdast

Solution 1

public User(String firstName, String lastName) {
this(firstName, lastName, 0);

}

public User(String firstName, String lastName, int age) {
this(firstName, lastName, age, "");

}

public User(String firstName, String lastName, int age, String phone) {
this(firstName, lastName, age, phone, "");

}

public User(String firstName, String lastName, int age, String phone, String address) {
this.firstName = firstName;
this. lastName = lastName;
this.age = age;
this.phone = phone;
this.address = address;

 Bad (code becomes harder to read and maintain with many
attributes)

-
institute for

17-214 https://jlordiales.me/2012/12/13/the-builder-pattern-in-practice/ 36 RELEARCH

Solution 2: default no-arg constructor plus setters and
getters for every attribute

public class User {
private String firstName; // required
private String lastName; // required
private int age; // optional
private String phone; // optional

private String address; //optional public int getAge() {
return age;

public String getFirstName() { }

return firstName; public void setAge(int age) {
} this.age = age;
public void setFirstName(String firstName) { }

this.firstName = firstName; public String getPhone() {
} _ _ return phone;
public String getLastName() { }

return lastName; public void setPhone(String phone) {

} :
public void setLastName(String lastName) { } this.phone = phone;
this. lastName = lastName; ,)
} public String getAddress() {
return address;
}
e Bad (potentially inconsistent public void setAddress(String address) {
this.address = address;
state, mutable) }

}

-
institute for

17-214 https://jlordiales.me/2012/12/13/the-builder-pattern-in-practice/ 37 RELEARCH

SOIution 3 public static class UserBuilder {

private final String firstName;
private final String lastName;
private int age;

private String phone;

private String address;

public class User {
private final String firstName; // required
private final String lastName; // required
private final int age; // optional
private final String phone; // optional

private final String address; // optional public UserBuilder(String firstName,

String lastName) {

private User(UserBuilder builder) { this.firstName = firstName;
this.firstName = builder.firstName; this.lastName = lastName;
this. lastName = builder. lastName; }
this.age = builder.age;
this.phone = builder.phone; public UserBuilder age(int age) {
this.address = builder.address; this.age = age;
} return this;
}

public String getFirstName() { ... }
public UserBuilder phone(String phone) {
public String getLastName() { ... } this.phone = phone;
return this;

public int getAge() { ... } }
public String getPhone() { ... } // ..
public String getAddress() { ... } public User getUser() {
return new
User.UserBuilder("Jhon", "Doe")
.age(30)

.phone("1234567")
.address("Fake address 1234")
Lbuild();

= institute for
17-214 https://jlordiales.me/2012 } m RESEARCH

Builder

* Intent — separate construction of complex object from
representation so same creation process can create
different representations

* use case — converting rich text to various formats
* types — Builder, ConcreteBuilders, Director, Products
* JDK—java.lang.StringBuilder, java.lang.StringBuffer

17-214 2 [

Factory Method

* |ntent — abstract creational method that lets subclasses
decide which class to instantiate

e Use case — creating documents in a framework

* Key types — Creator, which contains abstract method to
create an instance

 JDK—-Iterable.iterator()

17-214 22 [

Prototype

* Intent — create an object by cloning another
and tweaking as necessary

e Use case — writing a music score editor in a graphical
editor framework

* Key types — Prototype
e JDK — Cloneable, but avoid (except on arrays)
— Java and Prototype pattern are a poor fit

17-214 a3 [HE

Problem:
* Ensure there is only a single instance of a class

(e.g., java.lang.Runtime)
* Provide global access to that class

= H\‘v\ll('[)
17-214 a4 sor ALt

Singleton

* Intent — ensuring a class has only one instance

e Use case — GoF say print queue, file system,
company in an accounting system

— Compelling uses are rare but they do exist
* Key types — Singleton

* JDK—-java.lang.Runtime.getRuntime(),
java.util.Collections.emptylList()

e Used for instance control

17-214 os [0 4

Singleton Illustration

public class Elvis {
public static final Elvis ELVIS = new Elvis();
private Elvis() { }

// Alternative implementation
public enum Elvis {
ELVIS;

sing(Song song) { ... }
playGuitar(Riff riff) { ... }
eat(Food food) { ... }

take(Drug drug) { ... }

o institute for
17-214 a6 soffdast

These were the creational patterns

. Abstract factory
Builder

Factory method
Prototype

Al S

Singleton

= mululut«'[!
17-214 a7 ISIN s

Il. Structural Patterns

. Adapter
Bridge

. Composite
Decorator
~acade
-lyweight

N o v AN e

Proxy

17-214

Adapter

 Intent — convert interface of a class into one that
another class requires, allowing interoperability

17-214

Jse case — numerous, e.g., arrays vs. collections
Key types — Target, Adaptee, Adapter

JIDK—=Arrays.asList(T[])

Example: There are two types of thread schedulers, and
two types of operating systems or "platforms".

17-214

ThreadScheduler

L

PreemptiveThreadScheduler

TimeSlicedThreadScheduler

P

L’F\ l

I I

UnixPTS

WindowsPTS UnixTSTS

WindowsTSTS

image source: https://sourcemaking.com

50

institute for
SOFTWARE
RESEARCH

Problem: we have to define a class for each permutation
of these two dimensions

ThreadShceduler

PreemptiveThreadScheduler

P
a

TimeSlicedThreadScheduler

-

UnixPTS

WindowsPTS UnixTSTS

JVM_PTS

* How would you redesign this?

17-214

WindowsTSTS

JVM_TSTS

image source: https://sourcemaking.com

s [Hi

institute for
SOFTWARE
RESEARCH

Bridge Pattern: Decompose the component's interface
and implementation into orthogonal class hierarchies.

17-214

ThreadScheduler

PreemptiveThreadScheduler

ThreadScheduler_Implementation

i

TimeSlicedThreadScheduler

UnixPTS

WindowsPTS

JVM_PTS

image source: https://sourcemaking.com

2 [H

institute for
SOFTWARE
RESEARCH

Bridge

* Intent —decouple an abstraction from its
implementation so they can vary independently

* Use case — portable windowing toolkit
* Key types — Abstraction, Implementor

e JDK—JDBC, Java Cryptography Extension (JCE), Java
Naming & Directory Interface (JNDI)

* Adapter vs Bridge:

— Adapter makes things work together after they're designed;
Bridge makes them work before they are.

— Bridge is designed up-front to let the abstraction and the
implementation vary independently. Adapter is retrofitted to
make unrelated classes work together.

17-214 sa [i

Composite

* Intent — compose objects into tree structures. Let
clients treat primitives & compositions uniformly.

* Use case — GUI toolkit (widgets and containers)

* Key type — Component that represents both
primitives and their containers

* JDK—-javax.swing.JComponent

17-214 s7 [

Decorator

* Intent — attach features to an object dynamically
e Use case — attaching borders in a GUI toolkit

* Key types — Component, implement by decorator
and decorated

* JDK—Collections (e.g., Synchronized
wrappers), java. 10 streams, Swing components,
unmodifiableCollection

17-214 ss [sorvini

Facade

* Intent — provide a simple unified interface to a
set of interfaces in a subsystem

— GoF allow for variants where the complex
underpinnings are exposed and hidden

e Use case — any complex system; GoF use compiler
* Key types — Facade (the simple unified interface)
* JIDK—-java.util.concurrent.Executors

17-214 so [sorvini

Facade lllustration

Subsystem classes

Facade

L

17-214

60

institute for
SOFTWARE
RESEARCH

Facade example

17-214

Customer service Facade

!

Y

Order fullfillment

Billing

v

Shipping

61

institute for
SOFTWARE
RESEARCH

Problem: Imagine implementing a forest of individual
trees in a realtime game

A

£

A

MESH

BARK

=
PARANS
POSITION

| MESH

BARK

LEAVES

LERVES

PARAMS

PoSITION

PARRAMS

MESH

BARK

LEAVES

POLSITION

PARAMS
POSITION

Source: http://gameprogrammingpatterns.com/flyweight.html

17-214

-
institute for
62 I S SOFTWARE
RESEARCH

Trick: most of the fields in these objects are the same
between all of those instances

17-214

A

&

2

A

PARAMS
POSITION

PARAMS
PasITION

L__X

PARANS
POHSITION

S AT

PAR AMS
PASITIAEN

f_J

MODEL

MESH

BARL

LEAVES

Source: http://gameprogrammingpatterns.com/flyweight.html

63

-
institute for
RESEARCH

Flyweight

* [ntent — use sharing to support large numbers
of fine-grained objects efficiently

e Use case — characters in a document
e Key types — Flyweight (instance-controlled!)

— Some state can be extrinsic to reduce number of instances

* JDK — String literals (JVM feature)

17-214 6s [sorvini

Flyweight lllustration

17-214

"-u\.\\

S

o character

: //'*” objects

11 1 mam ro‘;”
P et objects

.

e column
%\.._/” object

-
institute for
65 i S SOFTWARE
RESEARCH

Proxy

* Intent — surrogate for another object
* Use case — delay loading of images till needed
* Key types — Subject, Proxy, RealSubject

* Gof mention several flavors
— virtual proxy — stand-in that instantiates lazily
— remote proxy — local representative for remote obj
— protection proxy — denies some ops to some users
— smart reference — does locking or ref. counting, e.g.

e JDK — collections wrappers

* Decorator vs Proxy:
— Decorator adds responsibilities to object (w/t inheritance).
— Proxy is used to “control access” to an object.

o institute for
17-214 66 soffdast

Proxy lllustrations

Virtual Proxy

(aTextDocument)

anImageProxy |

[mage = g LfiIeName ®--- j -- *{::::age }
| in memory | | on disk I
Smart Reference Remote Proxy
SynchronizedList Arraylist I

o institute for
17-214 67 soffdast

These were the structural patterns

. Adapter
Bridge

. Composite
Decorator
~acade
-lyweight

N o v AN e

Proxy

17-214 os [HI0 4t

Ill. Behavioral Patterns

1. Chain of Responsibility
2. Command

3. Interpreter

4. Iterator

5. Mediator

6. Memento

7. Observer

3. State

9. Strategy

10. Template method
11. Visitor

17-214 o [sorvini

Chain of Responsibility

* [ntent — avoid coupling sender to receiver by
passing request along until someone handles it

* Use case — context-sensitive help facility
e Key types — RequestHandler
 JDK—-ClassLoader, Properties

* Exception handling could be considered a form
of Chain of Responsibility pattern

17-214 7o [s

Command

* [ntent — encapsulate a request as an object,
letting you parameterize one action with
another, queue or log requests, etc.

e Use case — menu tree
* Key type — Command (Runnable)

 JDK—-Common! Executor framework, etc.

public static void main(String[] args) {
SwingUtilities.invokeLater(() -> new Demo().setVisible(true));
}

= H\‘v\ll('[)
17-214 71 sor ALt

Interpreter

* [ntent — given a language, define class hierarchy
for parse tree, recursive method to interpret it

* Use case —regular expression matching,
compiler

* Key types — Expression, NonterminalExpression,
TerminalExpression

e JDK—no uses I’'m aware of

— Our expression evaluator (HW?2) is a classic example

* Necessarily uses Composite pattern!

= H\‘v\ll('[)
17-214 72 sor ALt

lterator

* Intent — provide a way to access elements of a
collection without exposing representation

* Use case — collections
* Key types — Iterable, Iterator

— But GoF discuss internal iteration, too
 JDK — collections, for-each statement, etc.

= H\‘v\ll('[)
17-214 73 sor ALt

Problem:

17-214

Mediator Pattern

17-214

Mediator

* [ntent — define an object that encapsulates how
a set of objects interact, to reduce coupling.

—(n) couplings instead of O(n?)

* Use case — dialog box where change in one
component affects behavior of others

* Key types — Mediator, Components
* JDK—-Unclear

17-214 ol (S [Er

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

public class Editor {

//state
public String editorContents;

public void setState(String contents) {
this.editorContents = contents;

Provide save and restoreToState methods
Hint: define custom type (Memento)

-
institute for
78 SOFTWARE
RESEARCH

17-214

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

public class Editor {

//state

public String editorContents;

public void setState(String contents) {
this.editorContents = contents;

}

public EditorMemento save() {
return new EditorMemento(editorContents);

}

public void restoreToState(EditorMemento memento) {
editorContents = memento.getSavedState();

SOFTWARE

- institute for
17-214 https://dzone.com/articles/design-patterns-memento 79 Ay

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

public class EditorMemento {
private final String editorState;
public EditorMemento(String state) {
editorState = state;
}
public String getSavedState() {
return editorState;

- institute for
17-214 80 soffdast

Memento

* Intent — without violating encapsulation, allow client to
capture an object’s state, and restore later

* Use case —when you need to provide an undo
mechanism in your applications, when the internal
state of an object may need to be restored at a later
stage (e.g., text editor)

e Key type — Memento (opaque state object)
* JDK — none that I’'m aware of (not serialization)

17-214 s1 [sorvini

Observer

* Intent — let objects observe the behavior of
other objects so they can stay in sync

* Use case — multiple views of a data object in a GUI
e Key types — Subject (“Observable”), Observer

— GoF are agnostic on many details!
* JDK—-Swing, left and right

17-214 s2 (I 0

Problem: allow object to behave in different ways
depending on internal state

class Document
string state
[/ s
method publish
switch (state
"draft"
state = "moderation"
break
"moderation”
if (currentUser.role == 'admin'
state = "published"
break
"published"
// Do nothing.

[/ aaa

- institute for
17-214 83 soffdast

interface State {
void publish(Document wrapper);

¥
class Document class Document {
string state; private State currentState;
R
method publish() { public Document() {
switch (state) { currentState = new Draft();
"draft": }
state = "moderation";
break: public void set_state(State s) {
"moderation": currentState = s;
if (currentUser.role == 'admin') ¥
state = "published"
break: public void publish() {
"oublished" : currentState.publish(this);
// Do nothing. }
Y }
o
;/ o class Draft implements State {

public void publish(Document wrapper) {
wrapper.set_state(new Moderation());

/] ses

institute for
17-214 https://sourcemaking.com/design_patterns/state/java/1 84 RESEARCH

State

* Intent —allow an object to alter its behavior when internal state
changes. “Object will appear to change class.”

e Use case — TCP Connection (which is stateful)
* Key type — State (Object delegates to state!)
 JDK - none that I’'m aware of

e State can be considered as an extension of Strategy
* Both patterns use composition to change the behavior of the
main object by delegating the work to the helper objects.

— Strategy makes these objects completely independent

— State allows state objects to alter the current state of the context with
another state, making them interdependent

- institute for
17-214 86 o

Strategy

* Intent — represent a behavior that parameterizes
an algorithm for behavior or performance

* Use case — line-breaking for text compositing
* Key types — Strategy
* JDK—-Comparator

17-214 ss [0 i

Template Method

* [ntent — define skeleton of an algorithm or data
structure, deferring some decisions to subclasses

e Use case — application framework that lets
plugins implement all operations on documents

* Key types — AbstractClass, ConcreteClass

* JDK — skeletal collection impls (e.g.,
AbstractlList)

17-214 so [HI0 i

Problem:

* |t should be possible to define a new operation
for (some) classes of an object structure without
changing the classes.

— Example: Calculate shipping for different
regions for all items in shopping cart. Be able
to add new shipping cost formulas without
changing existing code.

17-214 oo [HH i

The Visitable interface

1 //Element interface

2 public interface Visitable{
3 public void accept(Visitor visitor);
4}

[

//concrete element

2 public class Book implements Visitable({
3 private double price;

4 private double weight;

5

6 //accept the visitor

7 public void accept(Visitor vistor) {
8 visitor.visit(this);

9 }

10 public double getPrice() {

11 return price;

12}

13 public double getWeight() {

14 return weight;

15)}

16 }

institute for
17-214 https://dzone.com/articles/design-patterns-visitor 91 RESEARCH

20}
1/-214

public interface Visitor({

public void visit(Book book); The V|S|tor |nterface

//visit other concrete items
public void visit(CD cd);
public void visit(DVD dvd);

public class PostageVisitor implements Visitor {

private double totalPostageForCart;
//collect data about the book
public void wvisit(Book book) {
//assume we have a calculation here related to weight and price
//free postage for a book over 10
if (book.getPrice() < 10.0) {
totalPostageForCart += book.getWeight() * 2;

//add other visitors here
public void visit(CD cd) {...}
public void wvisit(DVD dvd) {...}

//return the internal state

public double getTotalPostage() {
return totalPostageForCart;

m institute for
= SOFTWARE
9 2 — RESEARCH

Driving the visitor

1 public class ShoppingCart {

2 //normal shopping cart stuff

3 private ArrayList<Visitable> items;

4 public double calculatePostage() {

5 //create a visitor

6 PostageVisitor visitor = new PostageVisitor();
7 //iterate through all items

8 for(Visitable item: items) {

9 item.accept(visitor);

10 }

11 double postage = visitor.getTotalPostage();
12 return postage;

13}

14}

insl;t.}J\t’;’ f&)Er
17-214 93

Visitor

17-214

cinterfacex
Visitor

Client

+ visitElement{ConcreteElement) : void

i

cinterfacex
Element

Concrete Visitor

+ visitElement{ConcreteElement) : void

+

acceptVisiton : void

Concrete Element

+

accepitVisitor) : void

94

institute for
SOFTWARE
RESEARCH

Visitor

* Intent —represent an operation to be performed on elements of
an object structure (e.g., a parse tree). Visitor lets you define a
new operation without modifying the type hierarchy.

* Use case —type-checking, pretty-printing, etc.

* Key types — Visitor, ConcreteVisitors, all the element types that
get visited

* JDK—none that I’'m aware of; very common in compilers

= H\‘v\ll('[)
17-214 95 sor ALt

These were the behavioral patterns

Chain of Responsibility
Command
Interpreter
Iterator

Mediator
Memento
Observer

State

Strategy

10 Template method
11. Visitor

LN EWNE

17-214 oo [EI0 i

All GoF Design Patterns

1. Abstract
factory

Builder

Factory
method

Prototype
Singleton
Adapter
Bridge

0 N o Uk

Composite

17-214

10.
11.
12.

13

14
15
16
17
18

Decorator
~acade
-lyweight

Proxy

. Chain of
Responsibility

. Command

. Interpreter

. [terator

. Mediator

. Memento

19. Observer

20. State

21. Strategy

22. Template
method

23. Visitor

