
117-214

School of 
Computer Science

Principles of Software Construction:     
Objects, Design, and Concurrency

Managing change (3)

Charlie Garrod Bogdan Vasilescu



217-214

Administrivia

• Homework 6 checkpoint deadline yesterday (Monday, April 30th)
• Homework 6 due Wednesday, May 2nd 
• Final exam Monday May 7th 5:30-8:30 PH 100
• Review session Saturday May 5th 2pm WH 5403



317-214

Key concepts from Thursday



417-214

Aside: Which files to manage

• All code and noncode files
– Java code
– Build scripts
– Documentation

• Exclude generated files (.class, …)
• Most version control systems have a mechanism to exclude files 

(e.g., .gitignore)



517-214

BRANCH WORKFLOWS
https://www.atlassian.com/git/tutorials/comparing-workflows

https://www.atlassian.com/git/tutorials/comparing-workflows


617-214

1. Centralized workflow

• Central repository to serve as 
the single point-of-entry for all 
changes to the project

• Default development branch is 
called master
– all changes are committed into 

master
– doesn’t require any other 

branches



717-214

Example



817-214

Example



917-214

Example



1017-214

Example

git push origin master



1117-214

Example

git push origin master



1217-214

git push origin master

error: failed to push some refs to '/path/to/repo.git' hint: 
Updates were rejected because the tip of your current branch is 
behind hint: its remote counterpart. Merge the remote changes 
(e.g. 'git pull') hint: before pushing again. hint: See the 
'Note about fast-forwards' in 'git push --help' for details.



1317-214

Example

git pull --rebase 
origin master



1417-214



1517-214

Example



1617-214

Example

git rebase --continue



1717-214

Example



1817-214

2. Git Feature Branch Workflow

• All feature development should take place in a dedicated 
branch instead of the master branch

• Multiple developers can work on a particular feature without 
disturbing the main codebase
– master branch will never contain broken code (enables CI)
– Enables pull requests (code review)



1917-214

Example

git checkout -b marys-feature master

git status 
git add <some-file> 
git commit



2017-214

Example

git push -u origin marys-feature



2117-214

Example

git push



2217-214

Example



2317-214

Example



2417-214

Example - Merge pull request

git checkout master 
git pull 
git pull origin marys-feature 
git push



2517-214

3. Gitflow Workflow

• Strict branching model designed around the project release
– Suitable for projects that have a scheduled release cycle

• Branches have specific roles and interactions
• Uses two branches

– master stores the official release history; tag all commits in 
the master branch with a version number

– develop serves as an integration branch for features



2617-214

GitFlow feature branches (from develop)



2717-214

GitFlow release branches (eventually into master)

no new features after this 
point—only bug fixes, docs, 
and other release tasks



2817-214

GitFlow hotfix branches
used to quickly patch 
production releases



3317-214

Summary

• Version control has many advantages
– History, traceability, versioning
– Collaborative and parallel development

• Collaboration with branches
– Different workflows

• From local to central to distributed version control



3417-214

DEVELOPMENT AT SCALE



3517-214

Releasing at scale in industry

• Facebook: https://atscaleconference.com/videos/rapid-release-
at-massive-scale/

• Google: https://www.slideshare.net/JohnMicco1/2016-0425-
continuous-integration-at-google-scale
– https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-

google.html

• Why Google Stores Billions of Lines of Code in a Single 
Repository: https://www.youtube.com/watch?v=W71BTkUbdqE

• F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale: 
https://www.youtube.com/watch?v=X0VH78ye4yY

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY


3617-214

Pre-2017 release management model at Facebook



3717-214

Diff lifecycle: local testing



3817-214

Diff lifecycle: CI testing (data center)



3917-214

Diff lifecycle: diff ends up on master



4017-214

Release every two weeks



4117-214

Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day); 
10 pushes/day



4217-214

Aside: Key idea – fast to deploy, slow to release

Dark launches at Instagram

● Early: Integrate as soon as possible. Find bugs early. Code can 
run in production about 6 months before being publicly 
announced (“dark launch”).

● Often: Reduce friction. Try things out. See what works. Push 
small changes just to gather metrics, feasibility testing. Large 
changes just slow down the team. Do dark launches, to see 
what performance is in production, can scale up and down. 
"Shadow infrastructure" is too expensive, just do in production.

● Incremental: Deploy in increments. Contain risk. Pinpoint 
issues.



4317-214

Aside: Feature Flags

Typical way to implement a dark launch.

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html

http://martinfowler.com/bliki/FeatureToggle.html

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html
http://martinfowler.com/bliki/FeatureToggle.html


4417-214

Issues with feature flags

Feature flags are “technical debt”
Example: financial services company went bankrupt in 45 
minutes.
http://dougseven.com/2014/04/17/knightmare-a-devops-
cautionary-tale/

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/


4517-214

Diff lifecycle: in production



4617-214

What’s in a weekly branch cut? (The limits of branches)



4817-214

Post-2017 release management model at Facebook



5017-214

Google: similar story. HUGE code base



5117-214

Exponential growth



5217-214

Google Confidential and Proprietary

● >30,000 developers in 40+ offices

● 13,000+ projects under active development

● 30k submissions per day (1 every 3 seconds)

● Single monolithic code tree with mixed language code

● Development on one branch - submissions at head

● All builds from source

● 30+ sustained code changes per minute with 90+ peaks

● 50% of code changes monthly

● 150+ million test cases / day, > 150 years of test / day

● Supports continuous deployment for all Google teams!

Speed and Scale
2016 numbers



5317-214

Google code base vs Linux kernel code base



5417-214

How do they do it?



5517-214

1. Lots of (automated) testing



5617-214

2. Lots of automation



5717-214

3. Smarter tooling

• Build system
• Version control
• …



5817-214

3a. Build system



5917-214

Google Confidential and Proprietary

Standard Continuous Build System
● Triggers builds in continuous cycle
● Cycle time = longest build + test cycle
● Tests many changes together
● Which change broke the build?



6017-214

Google Confidential and Proprietary

● Triggers tests on every change
● Uses fine-grained dependencies 
● Change 2 broke test 1

Google Continuous Build System



6117-214

Google Confidential and Proprietary

Continuous Integration Display



6217-214

Google Confidential and Proprietary

● Identifies failures sooner

● Identifies culprit change precisely

○ Avoids divide-and-conquer and tribal knowledge

● Lower compute costs using fine grained dependencies 

● Keeps the build green by reducing time to fix breaks

● Accepted enthusiastically by product teams

● Enables teams to ship with fast iteration times

○ Supports submit-to-production times of less than 36 

hours for some projects

Benefits



6317-214

Google Confidential and Proprietary

● Requires enormous investment in compute resources (it 
helps to be at Google) grows in proportion to:
○ Submission rate
○ Average build + test time
○ Variants (debug, opt, valgrind, etc.)
○ Increasing dependencies on core libraries
○ Branches

● Requires updating dependencies on each change
○ Takes time to update - delays start of testing

Costs



6417-214

Which tests to run?



6517-214

Scenario 1: a change modifies common_collections_util



6617-214

Scenario 1: a change modifies common_collections_util



6717-214

Scenario 1: a change modifies common_collections_util



6817-214

Scenario 1: a change modifies common_collections_util



6917-214

Scenario 2: a change modifies the youtube_client



7017-214

Scenario 2: a change modifies the youtube_client



7117-214

3b. Version control

• Problem: even git can get slow at Facebook scale
– 1M+ source control commands run per day
– 100K+ commits per week



7217-214

3b. Version control

• Solution: redesign version control 



7317-214

3b. Version control
• Solution: redesign version control 

– Query build system's file monitor, Watchman, to see which files have 
changed



7417-214

3b. Version control
• Solution: redesign version control 

– Query build system's file monitor, Watchman, to see which files have 
changed à 5x faster “status” command



7517-214

3b. Version control
• Solution: redesign version control 

– Sparse checkouts??? (remember,  git is a distributed VCS)



7617-214

3b. Version control
• Solution: redesign version control 

– Sparse checkouts:
– Change the clone and pull commands to download only the commit 

metadata, while omitting all file changes (the bulk of the download) 
– When a user performs an operation that needs the contents of files (such 

as checkout), download the file contents on demand using existing 
memcache infrastructure



7717-214

3b. Version control
• Solution: redesign version control 

– Sparse checkouts à 10x faster clones and pulls
– Change the clone and pull commands to download only the commit 

metadata, while omitting all file changes (the bulk of the download) 
– When a user performs an operation that needs the contents of files (such 

as checkout), download the file contents on demand using existing 
memcache infrastructure



7817-214

4. Monolithic repository



8017-214

Monolithic repository – no major use of branches for 
development



8117-214

Did it work? Yes. Sustained productivity at Facebook
Lines Committed Per Developer Per Day 

Growth of the size of the 
Android and iOS dev teams 



10817-214

Summary

• Configuration management
– Treat infrastructure as code
– Git is powerful

• Release management: versioning, branching, …
• Software development at scale requires a lot of infrastructure

– Version control, build managers, testing, continuous integration, 
deployment, …

• It’s hard to scale development
– Move towards heavy automation (DevOps)

• Continuous deployment increasingly common
• Opportunities from quick release, testing in production, quick 

rollback


