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Administrivia

• Homework 6 checkpoint deadline yesterday (Monday, April 30th)
• Homework 6 due Wednesday, May 2nd 
• Final exam Monday May 7th 5:30-8:30 PH 100
• Review session Saturday May 5th 2pm WH 5403
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Key concepts from Thursday
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Aside: Which files to manage

• All code and noncode files
– Java code
– Build scripts
– Documentation

• Exclude generated files (.class, …)
• Most version control systems have a mechanism to exclude files 

(e.g., .gitignore)
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BRANCH WORKFLOWS
https://www.atlassian.com/git/tutorials/comparing-workflows

https://www.atlassian.com/git/tutorials/comparing-workflows
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1. Centralized workflow

• Central repository to serve as 
the single point-of-entry for all 
changes to the project

• Default development branch is 
called master
– all changes are committed into 

master
– doesn’t require any other 

branches
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Example
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Example
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Example
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Example

git push origin master
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Example

git push origin master



1217-214

git push origin master

error: failed to push some refs to '/path/to/repo.git' hint: 
Updates were rejected because the tip of your current branch is 
behind hint: its remote counterpart. Merge the remote changes 
(e.g. 'git pull') hint: before pushing again. hint: See the 
'Note about fast-forwards' in 'git push --help' for details.
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Example

git pull --rebase 
origin master
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Example
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Example

git rebase --continue
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Example
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2. Git Feature Branch Workflow

• All feature development should take place in a dedicated 
branch instead of the master branch

• Multiple developers can work on a particular feature without 
disturbing the main codebase
– master branch will never contain broken code (enables CI)
– Enables pull requests (code review)
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Example

git checkout -b marys-feature master

git status 
git add <some-file> 
git commit
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Example

git push -u origin marys-feature
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Example

git push
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Example
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Example



2417-214

Example - Merge pull request

git checkout master 
git pull 
git pull origin marys-feature 
git push
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3. Gitflow Workflow

• Strict branching model designed around the project release
– Suitable for projects that have a scheduled release cycle

• Branches have specific roles and interactions
• Uses two branches

– master stores the official release history; tag all commits in 
the master branch with a version number

– develop serves as an integration branch for features



2617-214

GitFlow feature branches (from develop)
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GitFlow release branches (eventually into master)

no new features after this 
point—only bug fixes, docs, 
and other release tasks
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GitFlow hotfix branches
used to quickly patch 
production releases
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Summary

• Version control has many advantages
– History, traceability, versioning
– Collaborative and parallel development

• Collaboration with branches
– Different workflows

• From local to central to distributed version control
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DEVELOPMENT AT SCALE
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Releasing at scale in industry

• Facebook: https://atscaleconference.com/videos/rapid-release-
at-massive-scale/

• Google: https://www.slideshare.net/JohnMicco1/2016-0425-
continuous-integration-at-google-scale
– https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-

google.html

• Why Google Stores Billions of Lines of Code in a Single 
Repository: https://www.youtube.com/watch?v=W71BTkUbdqE

• F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale: 
https://www.youtube.com/watch?v=X0VH78ye4yY

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY
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Pre-2017 release management model at Facebook
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Diff lifecycle: local testing
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Diff lifecycle: CI testing (data center)



3917-214

Diff lifecycle: diff ends up on master
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Release every two weeks
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Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day); 
10 pushes/day
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Aside: Key idea – fast to deploy, slow to release

Dark launches at Instagram

● Early: Integrate as soon as possible. Find bugs early. Code can 
run in production about 6 months before being publicly 
announced (“dark launch”).

● Often: Reduce friction. Try things out. See what works. Push 
small changes just to gather metrics, feasibility testing. Large 
changes just slow down the team. Do dark launches, to see 
what performance is in production, can scale up and down. 
"Shadow infrastructure" is too expensive, just do in production.

● Incremental: Deploy in increments. Contain risk. Pinpoint 
issues.
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Aside: Feature Flags

Typical way to implement a dark launch.

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html

http://martinfowler.com/bliki/FeatureToggle.html

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html
http://martinfowler.com/bliki/FeatureToggle.html
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Issues with feature flags

Feature flags are “technical debt”
Example: financial services company went bankrupt in 45 
minutes.
http://dougseven.com/2014/04/17/knightmare-a-devops-
cautionary-tale/

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
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Diff lifecycle: in production
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What’s in a weekly branch cut? (The limits of branches)
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Post-2017 release management model at Facebook
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Google: similar story. HUGE code base
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Exponential growth
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Google Confidential and Proprietary

● >30,000 developers in 40+ offices

● 13,000+ projects under active development

● 30k submissions per day (1 every 3 seconds)

● Single monolithic code tree with mixed language code

● Development on one branch - submissions at head

● All builds from source

● 30+ sustained code changes per minute with 90+ peaks

● 50% of code changes monthly

● 150+ million test cases / day, > 150 years of test / day

● Supports continuous deployment for all Google teams!

Speed and Scale
2016 numbers
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Google code base vs Linux kernel code base
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How do they do it?
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1. Lots of (automated) testing
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2. Lots of automation
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3. Smarter tooling

• Build system
• Version control
• …
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3a. Build system
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Google Confidential and Proprietary

Standard Continuous Build System
● Triggers builds in continuous cycle
● Cycle time = longest build + test cycle
● Tests many changes together
● Which change broke the build?
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Google Confidential and Proprietary

● Triggers tests on every change
● Uses fine-grained dependencies 
● Change 2 broke test 1

Google Continuous Build System
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Google Confidential and Proprietary

Continuous Integration Display
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Google Confidential and Proprietary

● Identifies failures sooner

● Identifies culprit change precisely

○ Avoids divide-and-conquer and tribal knowledge

● Lower compute costs using fine grained dependencies 

● Keeps the build green by reducing time to fix breaks

● Accepted enthusiastically by product teams

● Enables teams to ship with fast iteration times

○ Supports submit-to-production times of less than 36 

hours for some projects

Benefits
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Google Confidential and Proprietary

● Requires enormous investment in compute resources (it 
helps to be at Google) grows in proportion to:
○ Submission rate
○ Average build + test time
○ Variants (debug, opt, valgrind, etc.)
○ Increasing dependencies on core libraries
○ Branches

● Requires updating dependencies on each change
○ Takes time to update - delays start of testing

Costs
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Which tests to run?
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Scenario 1: a change modifies common_collections_util
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Scenario 1: a change modifies common_collections_util
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Scenario 1: a change modifies common_collections_util
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Scenario 1: a change modifies common_collections_util



6917-214

Scenario 2: a change modifies the youtube_client
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Scenario 2: a change modifies the youtube_client
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3b. Version control

• Problem: even git can get slow at Facebook scale
– 1M+ source control commands run per day
– 100K+ commits per week
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3b. Version control

• Solution: redesign version control 
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3b. Version control
• Solution: redesign version control 

– Query build system's file monitor, Watchman, to see which files have 
changed
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3b. Version control
• Solution: redesign version control 

– Query build system's file monitor, Watchman, to see which files have 
changed à 5x faster “status” command
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3b. Version control
• Solution: redesign version control 

– Sparse checkouts??? (remember,  git is a distributed VCS)
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3b. Version control
• Solution: redesign version control 

– Sparse checkouts:
– Change the clone and pull commands to download only the commit 

metadata, while omitting all file changes (the bulk of the download) 
– When a user performs an operation that needs the contents of files (such 

as checkout), download the file contents on demand using existing 
memcache infrastructure
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3b. Version control
• Solution: redesign version control 

– Sparse checkouts à 10x faster clones and pulls
– Change the clone and pull commands to download only the commit 

metadata, while omitting all file changes (the bulk of the download) 
– When a user performs an operation that needs the contents of files (such 

as checkout), download the file contents on demand using existing 
memcache infrastructure
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4. Monolithic repository
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Monolithic repository – no major use of branches for 
development
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Did it work? Yes. Sustained productivity at Facebook
Lines Committed Per Developer Per Day 

Growth of the size of the 
Android and iOS dev teams 
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Summary

• Configuration management
– Treat infrastructure as code
– Git is powerful

• Release management: versioning, branching, …
• Software development at scale requires a lot of infrastructure

– Version control, build managers, testing, continuous integration, 
deployment, …

• It’s hard to scale development
– Move towards heavy automation (DevOps)

• Continuous deployment increasingly common
• Opportunities from quick release, testing in production, quick 

rollback


