Principles of Software Construction:
Objects, Design, and Concurrency

Managing change (3)

Charlie Garrod Bogdan Vasilescu

School of
Computer Science

kel
institute for
I S SOFTWARE
RESEARCH

o institute for
17-214 1 soffdast

Administrivia

e Homework 6 due Wednesday, May 2nd
* Final exam Monday May 7th 5:30-8:30 PH 100
* Review session Saturday May 5t 2pm WH 5403

. institute for
17-214 2 soffdast

Key concepts from Thursday

o institute for
17-214 3 ioff

Aside: Which files to manage

 All code and noncode files

— Java code
— Build scripts
— Documentation

* Exclude generated files (.class, ...)

* Most version control systems have a mechanism to exclude files
(e.g., .gitignore)

. institute for
17-214 4 soffdast

BRANCH WORKFLOWS

https://www.atlassian.com/qgit/tutorials/comparing-workflows

-
Institute tor
17-214 | S [ot

https://www.atlassian.com/git/tutorials/comparing-workflows

1. Centralized workflow

* Central repository to serve as
the single point-of-entry for all
changes to the project

* Default development branch is

called master
— all changes are committed into
master
— doesn’t require any other
branches

17-214

6

institute for
SOFTWARE
RESEARCH

Example

John works on his feature

-
institute for
17-214 7 sorrwat

Example

Mary works on her feature

17-214 o e o
RESEARCH

Example

John publishes his feature

-
institute for
17-214 o NY§ sormwake

Example

John publishes his feature

git push origin master

[
& & &

- institute for
17-214 10 sorrwat

Example

Mary tries to publish her feature

git push origin master

& & &

- institute for
17-214 11 it

error: failed to push some refs to '/path/to/repo.git’' hint:
Updates were rejected because the tip of your current branch 1is
behind hint: its remote counterpart. Merge the remote changes
(e.g. 'git pull') hint: before pushing again. hint: See the
"Note about fast-forwards' in 'git push --help' for details.

Mary tries to publish her feature

git push origin master

& & &

- institute for
17-214 12 ioff

Example

Mary rebases on top of John's commit(s)

git pull --rebase
origin master

& & &

- institute for
17-214 13 soffdast

Mary’s Repository

™ ™

~—_"

_ @ Py institute for
17-214 14

-—

Example

Mary resolves a merge conflict

. institute for
17-214 15 sor s

Example

Mary’s Repository

\%

Pause here for
merge resolution

git rebase --continue ‘ Master \

= institute for
17-214 16 SOt

Example

Mary successfully publishes her feature

17-214 17 [H s

2. Git Feature Branch Workflow

* Allfeature development should take place in a dedicated
branch instead of the master branch
* Multiple developers can work on a particular feature without

disturbing the main codebase
— master branch will never contain broken code (enables Cl)
— Enables pull requests (code review)

- institute for
17-214 18 Sy

Example

17-214

Mary begins a new feature

git
git
git
git

checkout -b marys-feature master

status
add <some-file>
commit

-
institute for
SOFTWARE
19 RESEARCH

Example

Mary goes to lunch

& & &

git push -u origin marys-feature

=
S
2

f

-
Institute for
17-214 20 soffdast

Example

Mary finishes her feature

F()[

= institute
17-214 21 SOt

Example

Bill receives the pull request

& & &

institute for

17-214 22 SOt

Example

Mary makes the changes
S

9,

A S,

b

. institute for
17-214 23 sorrt

Example - Merge pull request

Mary publishes her feature
O O O
oo/

git checkout master

git pull

git pull origin marys-feature
git push

- institute for
17-214 24 Ly

Master

Develop

v0.1

v0.2

3. Gitflow Workflow

v1.0

Q O«

O O

e Strict branching model designed around the project release
— Suitable for projects that have a scheduled release cycle

* Branches have specific roles and interactions

e Uses two branches

— master stores the official release history; tag all commits in
the master branch with a version number
— develop serves as an integration branch for features

17-214

-
institute for
25 SOFTWARE
RESEARCH

GitFlow feature branches (from develop)

N2 \ 2 N2
O O
® ®

Py institute for
17-214 26 sor Tt

GitFlow release branches (eventually into master)

v0.1 v0.2

N2

v
e
(O

no new features after this
point—only bug fixes, docs,
and other release tasks

= institute for
17-214 27 SOt

. _ used to quickly patch
GitFlow hotfix branches production releases

v0.1 v0.2 v1.0

(V)]

PPy nstitute for
17-214 28 for s

Summary

* Version control has many advantages
— History, traceability, versioning
— Collaborative and parallel development

e Collaboration with branches

— Different workflows

* From local to central to distributed version control

= \rwulnlut«'[!
17-214 33 SOt

DEVELOPMENT AT SCALE

o institute for
17-214 I | S [[

Releasing at scale in industry

* Facebook: https://atscaleconference.com/videos/rapid-release-
at-massive-scale/

* Google: https://www.slideshare.net/JohnMicco1/2016-0425-
continuous-integration-at-google-scale
— https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-
google.html
* Why Google Stores Billions of Lines of Code in a Single
Repository: https://www.youtube.com/watch?v=W71BTkUbdgE

 F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale:
https://www.youtube.com/watch?v=X0VH78ye4yY

o institute for
17-214 35 soffdast

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY

Pre-2017 release management model at Facebook

o institute for
17-214 36 soffdast

Diff lifecycle: local testing

B Tools/xctool/xctool/xctool/Version.m View Options ¥

#import "Version.h"

NSString * const XCToolVersionString = @"0.2.1"; NSString * const XCToolVersionString = @"0

BBRESl ExampleTest (0.050s)

OK (1 test, 4 assertions)

—

Test and lint locally

institute for
17-214 37 soffdast

Diff lifecycle: Cl testing (data center)

.

V,
J'JJ;‘/*’ " "
v v, y,

Sandcastle ’ F

App and Build
Configuration Matrix

o 2 for
titu
38
RESEARCH

Diff lifecycle: diff ends up on master

88888 8,80
@
v v

Continuous Continuous

Dogfooding

-
institute for
39 SOFTWARE
RESEARCH

Release every two weeks

www.facebook.com

1week of development

1week of development

Master

Release
branch

A 4

Stabilize

Release branch

Tuesday
(“weekly”)

40

Every weekday (3x)

institute for
SOFTWARE
RESEARCH

Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day);
10 pushes/day

0 Push-Blocking Alerts
1005 prod Push-Blocking Tasks Flytrap
Crash Bot for WWW Anomaly
Emergency Button Alerts

2% prod Push-Blocking Alerts
Push-Blocking Tasks
Emergency Button

employees

Master

-
institute for
41 SOFTWARE
RESEARCH

Aside: Key idea — fast to deploy, slow to release

Dark launches at Instagram

o Early: Integrate as soon as possible. Find bugs early. Code can
run in production about 6 months before being publicly
announced (“dark launch”).

o Often: Reduce friction. Try things out. See what works. Push
small changes just to gather metrics, feasibility testing. Large
changes just slow down the team. Do dark launches, to see
what performance is in production, can scale up and down.
"Shadow infrastructure" is too expensive, just do in production.

e Incremental: Deploy in increments. Contain risk. Pinpoint
issues.

= H\‘v\ll('[)
17-214 a2 sor ALt

Aside: Feature Flags

Typical way to implement a dark launch.

pet survey

<toggle name = "petSurvey™=
code for pending feature...
<loggle=

petSurvey: true | false

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html

http://martinfowler.com/bliki/FeatureToggle.html

institute for
17-214 43 sorrwat

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html
http://martinfowler.com/bliki/FeatureToggle.html

Issues with feature flags

Feature flags are “technical debt”

Example: financial services company went bankrupt in 45
minutes.

http://dougseven.com/2014/04/17/knightmare-a-devops-
cautionary-tale/

- institute for
17-214 a4 soffdast

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

Diff lifecycle: in production

What'’s in a weekly branch cut? (The limits of branches)

Weekly web branch

10000

0
13-Jan 13-Jun 13-Nov 14-Mar 14-Aug 15-Jan 15-May 15-Sep 16-Feb 16=Jun

-
institute for
SOFTWARE
46 RESEARCH

Post-2017 release management model at Facebook

Quasi-continuous web release

Google: similar story. HUGE code base

Google repository statistics

Total number of files*
Number of source files
Lines of code

Depth of history

Size of content

Commits per workday

1 billion

9 million

2 billion

35 million commits
86 terabytes

45 thousand

*The total number of files includes source files copied into release branches, files that are deleted at the latest revision, configuration files, documentation, and supporting data files

50

institute for
SOFTWARE
RESEARCH

Exponential growth

Millions of changes committed (cumulative)

1/1/2000 1/1/2005 1/1/2010 1/1/2015

2016 numbers
Google Speed and Scale

e >30,000 developers in 40+ offices
e 13,000+ projects under active development

e 30k submissions per day (1 every 3 seconds)

e All builds from source

e 30+ sustained code changes per minute with 90+ peaks
e 50% of code changes monthly

e 150+ million test cases / day, > 150 years of test / day

e Supports continuous deployment for all Google teams!

Google Confidential and Proprietary

17-214 s2 [0 s

Google code base vs Linux kernel code base

Some perspective

e 15 million lines of code in 40 thousand files (total)

e 15 million lines of code in 250 thousand files changed per week,
by humans
e 2 billion lines of code, in 9 million source files (total)

-
institute for
53
L RESEARCH

How do they do it?

- institute for
17-214 54 soffdast

1. Lots of (automated) testing

Google workflow

Sync user
workspace
to repo

=

Write code

"

Code
review

=

Commit

e All code is reviewed before commit (by humans and automated tooling)

e Each directory has a set of owners who must approve the change to their
area of the repository

e Tests and automated checks are performed before and after commit
e Auto-rollback of a commit may occur in the case of widespread breakage

55

institute for
SOFTWARE
RESEARCH

2. Lots of automation

Additional tooling support

Critique Code review

CodeSearch* Code browsing, exploration, understanding, and archeology
Tricorder** Static analysis of code surfaced in Critique, CodeSearch
Presubmits Customizable checks, testing, can block commit

TAP Comprehensive testing before and after commit, auto-rollback

Rosie Large-scale change distribution and management

* See "How Developers Search for Code: A Case Study”, In European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, 2015

** See "Tricorder: Building a program analysis ecosystem”. In International Conference on Software Engineering (ICSE), 2015

institute for
56 I S SOFTWARE
L RESEARCH

3. Smarter tooling

e Build system
 \ersion control

- institute for
17-214 57 soffdast

3a. Build system

- institute for
17-214 58 soffdast

Google Standard Continuous Build System

Triggers builds in continuous cycle
Cycle time = longest build + test cycle
Tests many changes together

Which change broke the build?

Change 1 Change 2 Change 3

Test One Test One
Test Two Test Two

17-214 59 LIEIN e

Google

e Triggers tests on every change
e Uses fine-grained dependencies
e Change 2 broke test 1

17-214

Google Continuous Build System

Change 1 Change 2 Change 3

Test One

Test Two

Test One
Test Two
1 1
— >

I [I

Test One Test One :

Test Two Test Two

: : '
| 1 |
| 1 |
| 1 |

60

SOF TWARE
RESEARCH

Google Continuous Integration Display

‘”‘

~ Current Status \ Grid ~ Test Log | Coverage Project Maintenance I Project Health (beta)
| C | History Falledtﬂmkeuv| Search target | << Head < Mewer CLs 30805794 - 30804822 Older>
Showing 12 of 1166 targets: Failed / Broken Remove all filters
30805794 30805731 30803729 30805717 30805645 30805578 30803553 30803504 30803495 30805465 30805343 30805322 30803308 30803298 30805279 30805270 30805264 30803233 30803119 30805108 30805099 308035021 30804936 30804921 30804890 ﬁT:md
Changellst and submit time: 14 s s s s s s Uhs 14 es 14 es 14 s 14 s s s U s s s 14 s 14 es 14 s 14 s s s s s

Project Status:

EEEEEEE

Affected targets: Faded: | Faled:d Faded. 2 Faded: Faded: Faded: 1 Passed: 1 Faled: | Faded:Z Faded: 2 Faded: 1 Faded: 1 Faied: Faded: Faded: 1 Faded: 1 Passed: 14 Faded: 3 Passed: 266 Passed: 1 Passed: 250 Passed: 265 Passed: 250 Passed: 166 Faded: 1
Passed: 766 Passed: 528 Passed: 471 Passed: 183 Passed: 740 Passed: 226 Passed: 474 Passed: 113 Timed out: 1 Passed: 30 Passed: 175 Passed: 193 Passed: 254 Passed: 203 Passed: 254 Passed: 248 Passed: 273
Passed: 163

a
=)

o
o

=
=)

| icigi

F

v

j fcig# SEE -
v F v %

Y Y

<

II

I
I

NN EONDN

I

Google Confidential and Proprietary

17-214 o1 LEMN i

Google Benefits

e I|dentifies failures sooner
e l|dentifies culprit change precisely
o Avoids divide-and-conquer and tribal knowledge
e Lower compute costs using fine grained dependencies
e Keeps the build green by reducing time to fix breaks
e Accepted enthusiastically by product teams
e Enables teams to ship with fast iteration times
o Supports submit-to-production times of less than 36

hours for some projects

17-214 62 [IMN sor

Google Costs

e Requires enormous investment in compute resources (it

helps to be at Google) grows in proportion to:
o Submission rate

o Average build + test time

o Variants (debug, opt, valgrind, etc.)

o Increasing dependencies on core libraries

o Branches

e Requires updating dependencies on each change
o Takes time to update - delays start of testing

17-214 63 lﬂl SOF TWARE

L. RESEARCH

Which tests to run?

GMAIL BUZZ

Test Target: Test targets:

name: //depot/gmail_client_tests name: //depot/buzz_server_tests
name: //depot/gmail_server_tests name: //depot/buzz_client_tests

buzz_client_tests @il_client_te@ Qmail_server_testD @_sewer_t@

DS /

gmail_server

youtube ch@ gmail_client N futube server
E common_collections_util

= wstitute for
17-214 64 sortnte

buzz_server

Scenario 1: a change modifies common_collections_ util

buzz_client_tests gmail_client_tests gmail_server_tests buzz_server_tests

buzz_client ' buzz_server

youtube_client gmail_client gmail_server youtube_server

When a change modifying common_collections_util
common_collections utilis = < - ol

submitted. "

institute for
17-214 65 Ly

Scenario 1: a change modifies common_collections_ util

buzz_client_tests gmail_client_tests gmail_server_tests buzz_server_tests
[R’

buzz_client ’ buzz_server

youtube_client gmail_client Q)utube_seer

When a change modifying common_collections_util
common_collections_util is = < = —

submitted.

institute for
17-214 66 Ly

Scenario 1: a change modifies common_collections_ util

buzz_client_tests Qmail_client_t@ @il_server_t@ buzz_server_tests
/ /

youtube_client gmail_client @utube_seer
N

When a change modifying common_collections_util
common_collections_util is :> < = =

submitted.

institute for
17-214 67 Ly

Scenario 1: a change modifies common_collections_ util

All tests are affected! Both Gmail and Buzz projects need to be updated

buzz_client_tests Qmail_client_testD @il_sewer_t@ buzz_server_t@
[/ /

N

S

_youtube _ cllent _gmail_client_> < youtube_server >

When a change modifying common_collections_util /

common_collections_util i IS
submitted.

institute for
17-214 I S [Feadts

Scenario 2: a change modifies the youtube_client

buzz_client_tests gmail_client_tests gmail_server_tests buzz_server_tests

buzz_client buzz_server

youtube_client gmail_client gmail_server youtube_server

When a change modifying
youtube_client is submitted.

common_collections_util

institute for
17-214 69 sorfins

Scenario 2: a change modifies the youtube_client

Only buzz_client_tests are run and
only Buzz project needs to be updated.

buzz_client_tests\)

gmail_client_tests

gmail_client

youtube_client

When a change modifying
youtube_client is submitted.

\’6 &

common_collections_util

17-214

gmail_server_tests buzz_server_tests

,}{

buzz_server

/ \
F 4

gmail_server youtube_server

N

¥

institute for
I S SOFTWARE
L, RESEARCH

70

3b. Version control

* Problem: even git can get slow at Facebook scale
— 1M+ source control commands run per day
— 100K+ commits per week

Cloning with git: iOS Today

Many files
Deep history

Large “footprint” makes git slow

ios (git)

- institute for
17-214 71 soffdast

3b. Version control

* Solution: redesign version control

Enter Mercurial: Sparse Checkouts

Work on only the files you need. Enter Mercurial: Shallow History

Build system knows how to

check out more.
Work locally without complete history.

Need more history? ~/fbsource/.hg

Downloaded automatically on demand.

o institute for
17-214 72 soffdast

3b. Version control

* Solution: redesign version control

— Query build system's file monitor, Watchman, to see which files have
changed

o institute for
17-214 73 soffdast

3b. Version control

* Solution: redesign version control

— Query build system's file monitor, Watchman, to see which files have
changed - 5x faster “status” command

status diff, no changes diff, one change update to parent commit one
change

Time

m Watchman on ® Watchman off

17-214 74

3b. Version control

* Solution: redesign version control
— Sparse checkouts??? (remember, gitis a distributed VCS)

o institute for
17-214 75 soffdast

3b. Version control

* Solution: redesign version control
— Sparse checkouts:

— Change the clone and pull commands to download only the commit
metadata, while omitting all file changes (the bulk of the download)

— When a user performs an operation that needs the contents of files (such
as checkout), download the file contents on demand using existing
memcache infrastructure

. institute for
17-214 76 soffdast

3b. Version control

* Solution: redesign version control
— Sparse checkouts - 10x faster clones and pulls

— Change the clone and pull commands to download only the commit
metadata, while omitting all file changes (the bulk of the download)

— When a user performs an operation that needs the contents of files (such
as checkout), download the file contents on demand using existing
memcache infrastructure

remotefilelog
dGit

Time

“ Basic Hg

d

17-214 large rebase large pull clone e fo

RESEARCH

4. Monolithic repository

-
institute for
17-214 78 Ly

Monolithic repository — no major use of branches for
development

Trunk-based development

e Piper users work at “head”, a consistent view of the codebase

» All changes are made to the repository in a single, serial ordering
e There is no significant use of branching for development

» Release branches are cut from a specific revision of the repository

trunk / mainline
cherry pick

release branch

-
institute for
80 SOFTWARE
el RESEARCH

Did it work? Yes. Sustained productivity at Facebook

Lines Committed Per Developer Per Day
200

150

100

50 N
(:, /

yun 200 5ec 200 20430 2040 g 20021y 2003 49 2093 200

-« +Android
w—i0S

Growth of the size of the
Android and iOS dev teams

AN 1’0\‘\ 19\} ’LQ»\'L 1’0\'5 ’LQ»\"} 1’0&& 1’0&6 10»\‘) 10\6
o \! A\ \S N N C o o \! A
¥ W <@ o o oe® po WO K% o2 W Yo W <@

institute for
17-214 81 sorrwat

Summary

* Configuration management
— Treat infrastructure as code
— Git is powerful

* Release management: versioning, branching, ...
e Software development at scale requires a lot of infrastructure

— Version control, build managers, testing, continuous integration,
deployment, ...

* It’s hard to scale development

— Move towards heavy automation (DevOps)
* Continuous deployment increasingly common

* Opportunities from quick release, testing in production, quick
rollback

- mwut«'[)
17-214 108 sormae

