
117-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Managing change (2)

Charlie Garrod Bogdan Vasilescu

217-214

Administrivia

• Homework 6 checkpoint deadline (Monday, April 30th)
• Homework 6 due Wednesday, May 2nd

• Final exam Monday May 7th 5:30-8:30 PH 100
• Review session Saturday May 5th WH 5403

317-214

Key concepts from Tuesday

417-214

Components of Modern CM

Version Control: Branches/Forks/Workflows
Task and Build managers
Build machines, virtual environments (dev stacks)
Package managers
Containers, VMs, in the Cloud
Deployment – Infrastructure as Code.
Data migration

Other issues: orchestration, inventory, compliance

517-214

Semantic Versioning for Releases

• Given a version number MAJOR.MINOR.PATCH, increment the:
– MAJOR version when you make incompatible API changes,
– MINOR version when you add functionality in a backwards-compatible

manner, and
– PATCH version when you make backwards-compatible bug fixes.

• Additional labels for pre-release and build metadata are
available as extensions to the MAJOR.MINOR.PATCH format.

http://semver.org/

617-214

GIT BASICS

Graphics by https://learngitbranching.js.org

717-214

1) git merge bugFix (into master)
Three ways to move work around between branches

817-214

git checkout bugfix; git merge master (into bugFix)

917-214

2) git rebase master
Move work from bugFix directly onto master

1017-214

git checkout master; git rebase bugFix
But master hasn't been updated, so:

1117-214

3) git cherry-pick C2 C4
Copy a series of commits below current location

1217-214

Activity:

1317-214

git reset HEAD~1
HEAD is the symbolic
name for the currently
checked out commit

Ways to undo work (1)

1417-214

git revert HEAD
git reset does not work
for remote branches

Ways to undo work (2)

1517-214

Activity:

1617-214

Highly recommended

https://git-scm.com/book/en/v2

• (second) most useful life skill
you will have learned in 214

1717-214

TYPES OF VERSION CONTROL

1817-214

Centralized version control

• Single server that
contains all the
versioned files

• Clients check out/in
files from that central
place

• E.g., CVS, SVN
(Subversion), and
Perforce

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

1917-214

Distributed version control

• Clients fully mirror the
repository
– Every clone is a full

backup of all the data
• E.g., Git, Mercurial,

Bazaar

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

2117-214

Activity

• In pairs, discuss advantages and disadvantages of centralized
(e.g., SVN) vs decentralized (e.g., git) version control

2217-214

Aside: Internals SVN (left) vs. Git (right)

• SVN stores changes to a base
version of each file

• Version numbers (1, 2, 3, …)
are increased by one after
each commit

• Git stores each version as a
snapshot

• If files have not changed, only a
link to the previous file is
stored

• Each version is referred by the
SHA-1 hash of the contents

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

2317-214

Aside: Git process

© Scott Chacon “Pro Git”

2617-214

Aside: Git object graph

© Scott Chacon “Pro Git”

2717-214

Aside: Which files to manage

• All code and noncode files
– Java code
– Build scripts
– Documentation

• Exclude generated files (.class, …)
• Most version control systems have a mechanism to exclude files

(e.g., .gitignore)

3417-214

Summary

• Version control has many advantages
– History, traceability, versioning
– Collaborative and parallel development

• Locking vs. merging and merge conflicts
• Collaboration with branches
• From local to central to distributed version control

