
117-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Managing change

Charlie Garrod Bogdan Vasilescu

217-214

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,

Contracts, Unit Testing,
Design Patterns

Design for Reuse:
Inheritance, Delegation,

Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment,
Design Patterns,

GUI vs Core,
Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent

Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for
Concurrency

Intro to Java

Git, CI
Static Analysis

GUIsUML Lambdas and streams
More Git

DevOps
More design patternsPerformance

Design

317-214

Administrivia

• Homework 6 checkpoint deadline (Monday, April 30th)
• Homework 6 due Wednesday, May 2nd
• Final exam Monday May 7th 5:30-8:30 PH 100
• Review session Saturday May 5th

417-214

Key concepts from Carnival

517-214

Scenario

A customer wants a bug fix to software version 8.2.1, which was
released 2 years ago.

How to make sure we can fix, build, and release?

617-214

Configuration Management (CM)

Pressman:
“is a set of tracking and control activities that are initiated when

a software engineering projects begins and terminates when
software is taken out of operation”

Configuration management originates from the 50s, when spacecraft failures resulted
from undocumented changes.

717-214

The Modern World

Complex Source
Languages,
Directories,

Dependencies
Source Files

Data

Versioning
Branching

Many Tools
Compilers,

Linkers,
Code gens,
Translators

Traceability
Scalability
Configuring

Complex
Systems

Executables
Libraries

Dependencies
Config Files

Data

Consistency
Flexibility

Cloud
Deployment
Distributed

Data

Virtualization
Load Balancing

Security

Diverse User Base
Many Platforms
Product Lines

Shared Libraries

Security
Localization

817-214

The Modern World

• Which Version?
• How to recreate?
• How to fix?
• Where to apply the fix?
• How/when to

Redistribute?

917-214

Components of Modern CM

Version
Control
+

Workflows

Build
Managers

Package
Managers

Deployment
Managers

+
VMs/

Containers

App Markets
+

Update
Managers

1017-214

Configuration management as safety net

• Doing software development without CM is “working without
a safety net”

• Configuration management refers to both a process and a
technology
– The process encourages developers to work in such a way that

changes to code are tracked
• changes become “first class objects” that can be named, tracked,

discussed and manipulated
– The technology is any system that provides features to enable this

process

1117-214

Activity

In pairs, discuss other reasons why we may want configuration
management

Some reasons
• “Works for me”; difficulty onboarding new devs, installing

dependencies
• Audits: Discovery request on changes made to system (e.g. no

tracking in breathalyzer lawsuit)
• Product lines (Home, Business, Professional); different

customer types.
• Markets: Asia, Europe, America (Language + feature variance)
• Platforms: Windows, Mac OS, Android, iOS

1217-214

CM is a key part of DevOps (more later)

1317-214

Components of Modern CM

Version Control: Branches/Forks/Workflows
Task and Build managers
Build machines, virtual environments (dev stacks)
Package managers
Containers, VMs, in the Cloud
Deployment – Infrastructure as Code.
Data migration

Other issues: orchestration, inventory, compliance

1417-214

Config. management vs version control

• “version control” is “versioning” applied to a single file
while “configuration management” is “versioning”
applied to collections of files

1517-214

VERSION CONTROL WITH GIT

1617-214

A. GOAL: COLLABORATION ON FILES

1717-214

Collaborating on Files

• How to exchange files
– Send changes by email
– Manual synchronization at project meeting
– All files on shared network directory

• Permission models
– Each file has an owner; only person allowed to change it
– Everybody may change all files (collective ownership)

1817-214

Concurrent Modifications

• Allowing concurrent modifications is challenging
• Conflicts (accidental overwriting) may occur
• Common strategies

– Locking to change
– Detecting conflicts (optimistic model)

1917-214

Change Conflicts

source „Version Control with Subversion“

2017-214

Locking Files Practical problems of
locking model?

2217-214

Merging (1/2)

2317-214

Merging (2/2)

2417-214

Example

2517-214

Example

Edit 2Edit 1

2617-214

Example
Einführung in die Softwaretechnik26

Merge Merge

System cannot decide order

2717-214

3-way merge

• File changed in two ways
– Overlapping changes -> conflicts
– Merge combines non-conflicting changes from both

• Merging not always automatic
– diff tool to show changes
– Manual resolution of conflicts during merge (potentially requires

additional communication)

• Automatic merge potentially dangerous
-> syntactic notion of conflicts

• Merging of binary files difficult
• In practice: most merges are conflict free

2817-214

B. GOAL: RELEASE MANAGEMENT

2917-214

Challenge:
• Refer to concrete consistent versions of the project (code and all

dependencies and infrastructure)

• Why?
– Parallel development of independent features
– Bug fixes for old releases; patches
– Variants for different customers
– Traceability and accountability of changes (provenance)

3017-214

Branching

• Parallel copies of the source tree
• Can be changed independently, versioned separately, and

merged later (or left separate)
• Often used for exploratory changes or to isolate development

activities
• Many usage patterns, common:

– Main branch for maintenance OR main development
– New branches for experimental features; merge when successful
– New branches for nontrivial maintenance work
– Branches for maintenance of old versions

3117-214

Release management with branches

3217-214

Release cycle of Facebook’s apps

3317-214

Variants and Revisions

• Revision replaces prior revision (temporal)
• Variant coexists with other variants
• Version describes both
• Release: Published and named version

V1.0 V2.0 V3.0V1.1

Base system (Windows)

Extension for customer A

Extension for customer B

Linux variant

Server variant

X X X X
X X

X X
X X X

X

3417-214

Semantic Versioning for Releases

• Given a version number MAJOR.MINOR.PATCH, increment the:
– MAJOR version when you make incompatible API changes,
– MINOR version when you add functionality in a backwards-compatible

manner, and
– PATCH version when you make backwards-compatible bug fixes.

• Additional labels for pre-release and build metadata are
available as extensions to the MAJOR.MINOR.PATCH format.

http://semver.org/

3617-214

Managing variants

• Branching for variants does not scale well
• Requires special planning or tooling

• Many solutions
– Configuration files
– OO polymorphism
– Preprocessors
– Build systems
– DSLs
– Software product

lines
– …

3717-214

C. TYPES OF VERSION CONTROL

3917-214

Centralized version control

• Single server that
contains all the
versioned files

• Clients check out/in
files from that central
place

• E.g., CVS, SVN
(Subversion), and
Perforce

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

4017-214

Distributed version control

• Clients fully mirror the
repository
– Every clone is a full

backup of all the data
• E.g., Git, Mercurial,

Bazaar

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

4217-214

SVN (left) vs. Git (right)

• SVN stores changes to a base
version of each file

• Version numbers (1, 2, 3, …)
are increased by one after
each commit

• Git stores each version as a
snapshot

• If files have not changed, only a
link to the previous file is
stored

• Each version is referred by the
SHA-1 hash of the contents

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

4317-214

Which files to manage (both types)

• All code and noncode files
– Java code
– Build scripts
– Documentation

• Exclude generated files (.class, …)
• Most version control systems have a mechanism to exclude files

(e.g., .gitignore)

4417-214

Activity

• In pairs, discuss advantages and disadvantages of centralized
(e.g., SVN) vs decentralized (e.g., git) version control

4617-214

D. GIT BASICS

Graphics by https://learngitbranching.js.org

4717-214

git commit

4817-214

git branch newImage

4917-214

git commit

5017-214

git checkout newImage; git commit

5117-214

Activity: Make a new branch named bugFix and switch
to that branch

5217-214

1) git merge bugFix

5317-214

git checkout bugfix; git merge master

5417-214

Activity:

5517-214

2) git rebase master
Move work from bugFix
directly onto master

5617-214

git rebase bugFix

5717-214

To be continued …

7017-214

Summary

• Version control has many advantages
– History, traceability, versioning
– Collaborative and parallel development

• Locking vs. merging and merge conflicts
• Collaboration with branches
• From local to central to distributed version control

