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Part 1:
Design at a Class Level

Design for Change:
Information Hiding, 

Contracts, Unit Testing, 
Design Patterns

Design for Reuse:
Inheritance, Delegation, 

Immutability, LSP, 
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment, 
Design Patterns, 

GUI vs Core,
Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent 

Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for 
Concurrency

Intro to Java

Git, CI
Static Analysis

GUIsUML Lambdas and streams
More Git       

DevOps
More design patternsPerformance

Design
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Administrivia

• Homework 6 checkpoint deadline (Monday, April 30th)
• Homework 6 due Wednesday, May 2nd 
• Final exam Monday May 7th 5:30-8:30 PH 100
• Review session Saturday May 5th
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Key concepts from Carnival
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Scenario

A customer wants a bug fix to software version 8.2.1, which was 
released 2 years ago. 

How to make sure we can fix, build, and release?
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Configuration Management (CM)

Pressman: 
“is a set of tracking and control activities that are initiated when 

a software engineering projects begins and terminates when 
software is taken out of operation”

Configuration management originates from the 50s, when spacecraft failures resulted 
from undocumented changes.
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The Modern World 

Complex Source
Languages,
Directories,

Dependencies
Source Files

Data

Versioning
Branching

Many Tools
Compilers,

Linkers,
Code gens,
Translators

Traceability
Scalability
Configuring

Complex
Systems

Executables
Libraries

Dependencies
Config Files

Data

Consistency
Flexibility

Cloud
Deployment
Distributed

Data

Virtualization
Load Balancing

Security

Diverse User Base
Many Platforms
Product Lines

Shared Libraries

Security
Localization
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The Modern World 

• Which Version? 
• How to recreate?
• How to fix?
• Where to apply the fix?
• How/when to 

Redistribute?
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Components of Modern CM

Version
Control
+

Workflows

Build
Managers

Package
Managers

Deployment
Managers

+
VMs/

Containers

App Markets
+

Update 
Managers
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Configuration management as safety net

• Doing software development without CM is “working without 
a safety net”

• Configuration management refers to both a process and a 
technology 
– The process encourages developers to work in such a way that 

changes to code are tracked 
• changes become “first class objects” that can be named, tracked, 

discussed and manipulated 
– The technology is any system that provides features to enable this 

process 



1117-214

Activity

In pairs, discuss other reasons why we may want configuration 
management

Some reasons
• “Works for me”; difficulty onboarding new devs, installing 

dependencies
• Audits: Discovery request on changes made to system (e.g. no 

tracking in breathalyzer lawsuit)
• Product lines (Home, Business, Professional); different 

customer types.
• Markets: Asia, Europe, America (Language + feature variance)
• Platforms: Windows, Mac OS, Android, iOS
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CM is a key part of DevOps (more later)
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Components of Modern CM

Version Control: Branches/Forks/Workflows
Task and Build managers
Build machines, virtual environments (dev stacks)
Package managers
Containers, VMs, in the Cloud
Deployment – Infrastructure as Code. 
Data migration

Other issues: orchestration, inventory, compliance
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Config. management vs version control

• “version control” is “versioning” applied to a single file 
while “configuration management” is “versioning” 
applied to collections of files 
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VERSION CONTROL WITH GIT
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A. GOAL: COLLABORATION ON FILES
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Collaborating on Files

• How to exchange files
– Send changes by email
– Manual synchronization at project meeting
– All files on shared network directory

• Permission models
– Each file has an owner; only person allowed to change it
– Everybody may change all files (collective ownership)
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Concurrent Modifications

• Allowing concurrent modifications is challenging
• Conflicts (accidental overwriting) may occur
• Common strategies

– Locking to change
– Detecting conflicts (optimistic model)
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Change Conflicts

source „Version Control with Subversion“
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Locking Files Practical problems of 
locking model?
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Merging (1/2)
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Merging (2/2)
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Example
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Example

Edit 2Edit 1
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Example
Einführung in die Softwaretechnik26

Merge Merge

System cannot decide order
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3-way merge

• File changed in two ways
– Overlapping changes -> conflicts
– Merge combines non-conflicting changes from both

• Merging not always automatic
– diff tool to show changes
– Manual resolution of conflicts during merge (potentially requires 

additional communication)

• Automatic merge potentially dangerous 
-> syntactic notion of conflicts

• Merging of binary files difficult
• In practice: most merges are conflict free
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B. GOAL: RELEASE MANAGEMENT
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Challenge:
• Refer to concrete consistent versions of the project (code and all 

dependencies and infrastructure)

• Why?
– Parallel development of independent features
– Bug fixes for old releases; patches
– Variants for different customers
– Traceability and accountability of changes (provenance) 
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Branching

• Parallel copies of the source tree
• Can be changed independently, versioned separately, and 

merged later (or left separate)
• Often used for exploratory changes or to isolate development 

activities
• Many usage patterns, common:

– Main branch for maintenance OR main development
– New branches for experimental features; merge when successful
– New branches for nontrivial maintenance work
– Branches for maintenance of old versions
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Release management with branches
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Release cycle of Facebook’s apps
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Variants and Revisions

• Revision replaces prior revision (temporal)
• Variant coexists with other variants 
• Version describes both
• Release: Published and named version

V1.0 V2.0 V3.0V1.1

Base system (Windows)

Extension for customer A

Extension for customer B

Linux variant

Server variant

X X X X
X X

X X
X X X

X



3417-214

Semantic Versioning for Releases

• Given a version number MAJOR.MINOR.PATCH, increment the:
– MAJOR version when you make incompatible API changes,
– MINOR version when you add functionality in a backwards-compatible 

manner, and
– PATCH version when you make backwards-compatible bug fixes.

• Additional labels for pre-release and build metadata are 
available as extensions to the MAJOR.MINOR.PATCH format.

http://semver.org/
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Managing variants

• Branching for variants does not scale well
• Requires special planning or tooling

• Many solutions
– Configuration files
– OO polymorphism
– Preprocessors
– Build systems
– DSLs
– Software product 

lines
– …
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C. TYPES OF VERSION CONTROL
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Centralized version control

• Single server that 
contains all the 
versioned files

• Clients check out/in 
files from that central 
place

• E.g., CVS, SVN 
(Subversion), and 
Perforce

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
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Distributed version control

• Clients fully mirror the 
repository
– Every clone is a full 

backup of all the data
• E.g., Git, Mercurial, 

Bazaar

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control



4217-214

SVN (left) vs. Git (right)

• SVN stores changes to a base 
version of each file

• Version numbers (1, 2, 3, …)
are increased by one after 
each commit 

• Git stores each version as a 
snapshot

• If files have not changed, only a 
link to the previous file is 
stored

• Each version is referred by the 
SHA-1 hash of the contents

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
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Which files to manage (both types)

• All code and noncode files
– Java code
– Build scripts
– Documentation

• Exclude generated files (.class, …)
• Most version control systems have a mechanism to exclude files 

(e.g., .gitignore)
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Activity

• In pairs, discuss advantages and disadvantages of centralized 
(e.g., SVN) vs decentralized (e.g., git) version control
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D. GIT BASICS

Graphics by https://learngitbranching.js.org
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git commit
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git branch newImage
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git commit
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git checkout newImage; git commit
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Activity: Make a new branch named bugFix and switch 
to that branch
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1) git merge bugFix
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git checkout bugfix; git merge master
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Activity:
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2) git rebase master
Move work from bugFix
directly onto master
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git rebase bugFix



5717-214

To be continued …
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Summary

• Version control has many advantages
– History, traceability, versioning
– Collaborative and parallel development

• Locking vs. merging and merge conflicts
• Collaboration with branches
• From local to central to distributed version control


