Principles of Software Construction:
Objects, Design, and Concurrency

Managing change

Charlie Garrod Bogdan Vasilescu

School of
Computer Science

kel
institute for
I S SOFTWARE
RESEARCH

o institute for
17-214 1 soffdast

Intro to Java

Git, Cl

UML GUis

Static Analysis
Performance

Lambdas and streams

ore Git
DevOps

More design patterns

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,
Contracts, Unit Testing,
Design Patterns

Design for Reuse:
Inheritance, Delegation,
Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment,
Design Patterns,
GUI vs Core,
Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent
Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for
Concurrency

17-214

-
institute for
RESEARCH

Administrivia

* Homework 6 checkpoint deadline (Monday, April 30th)
e Homework 6 due Wednesday, May 2nd

* Final exam Monday May 7th 5:30-8:30 PH 100
* Review session Saturday May 5th

. institute for
17-214 3 it

Key concepts from Carnival

- institute for
17-214 4 e

Scenario l >

Maintenance

A customer wants a bug fix to software version 8.2.1, which was
released 2 years ago.

How to make sure we can fix, build, and release?

-
institute for
17-214 5 sorrwat

Configuration Management (CM)

Pressman:

“is a set of tracking and control activities that are initiated when
a software engineering projects begins and terminates when
software is taken out of operation”

Configuration management originates from the 50s, when spacecraft failures resulted
from undocumented changes.

. institute for
17-214 6 soffdast

Cloud
Deployment
Distributed
Data

The Modern World o
Virtualization

Load Balancing
Security

Complex Source Many Tools Comple \
Languages, Compilers, Systems

Directories, Linkers, Executables
Dependencies Code gens, Libraries
Source Files Translators Dependencies e ot o Do Té
Data Config Files Diverse User Base
Data Many Platforms
Product Lines
.. . Shared Libraries
Versioning Traceability Consistency
Branching Scalability Flexibility Security
. . Localization
Configuring

institute for
17-214 7 sorrwat

The Modern World

\

« Which Version?

« How to recreate?

« How to fix?

« Where to apply the fix?

« How/when to
Redistribute?

BUG FEATURE

- institute for
17-214 8 sorst

Deployment
Managers
+

Components of Modern CM VMs/
Containers

Version Build Package \
Control Managers Managers
+
Workflows

+
Update
Managers

- institute for
17-214 o sorst

Configuration management as safety net

* Doing software development without CM is “working without
a safety net”

* Configuration management refers to both a process and a

technology
— The process encourages developers to work in such a way that

changes to code are tracked
e changes become “first class objects” that can be named, tracked,

discussed and manipulated
— The technology is any system that provides features to enable this

process

= H\‘v\ll('[)
17-214 10 sor ALt

Activity

In pairs, discuss other reasons why we may want configuration
management

Some reasons

17-214

“Works for me”; difficulty onboarding new devs, installing
dependencies

Audits: Discovery request on changes made to system (e.g. no
tracking in breathalyzer lawsuit)

Product lines (Home, Business, Professional); different
customer types.

Markets: Asia, Europe, America (Language + feature variance)
Platforms: Windows, Mac OS, Android, iOS

-
institute for
11 SOFTWARE
RESEARCH

CM is a key part of DevOps (more later)

~Application Lifecycle Mgmt. — ~SCM/VCS ~ Testing ~Deployment ~Cloud / laaS / PaaS
’ _ Nun heroku
¥IJIRA Kmingle [Trello gi t 1 o@@ ée;!IAeu:r:i:I;;‘ ‘ *Octopus Deploy (xL) DepLOY :{-m&%&% Flynn (0]
GevERSION Jasmine
i B oy =

=RUNDECK CCapiStrano o ll Microsot B
Azure
Team Foundation Server

CLOUDFOUNDRY

PivotalTracker 6 GAUNTLT 2QF ® N NOLIO | | Google CloudPtatform @rackspace
Atlassian
@, Basecamp seasana 9 Bitbucket S&, i ZAP n 21 AN
L GitLab Batling o JUE T e e
PHABRICATOR T GitBucket U LV) ElasticBox Spinnaker # DEIS appfog opensirr [JaR0
nit

~Communication & ChatOps ~Cl \\K ARMA ~Config Mgmt./Provisioning ~Orchestration & Scheduling

: . H = ker & snap ‘
. slack QHipChat #IrC @ werc _
¥ P 16 TeamCity @Jenkins ®FitNesse N /\\ € 4 (A 2 MESOSPHERE o

RYVER® OMatte,most SBamlboo @ auq:lgr Tes]y J@ CFEngine SWARH kubernetes
circleci d
® SALTSTAC PowerShell DSC @ ¢ Noma
& % D go @T'av's c cucumber” NE T Ny o RANCHER €
E?G Nestor lITA I °°°ESH'P VVAGRANT TERRAFORM s MESOS
~Knowledge Sharing ——— Build % & () Galen Framewock ~Artefact Management ———— Bl / Monitoring / Logging
P MRGradle GRUNT logstash ®= elasticsearch
i, .Sbt LOAD IMPACT (OQUAY ||~ - ' Ea
github'PageS J J/q APACHE @ ' Q splunk-- Vectér ‘klbanaDATAooc
m docker /JMeter t g Q
X Confluence sk ~ =BlazeMeter || pocxerHus) dic zrekin)
q..‘%f Nant ‘A - W P < GR{K § Google Analytics x-pack
Mw} et REGISTRY Bower S\ SENTRY .
_ S . D) Prometheus |
Mark Read the Docs _ %|+ MsBuild pytest g © New Relic. wzzug' rtrace |
down ml- o aR ‘ O) PINPOINT % M S
nin; n 1 o
."_‘apiblueprint 2L e - 'j Browsersync =i pg(hog S Runscope sensu os [N |
-Database Management . QQAPIMeElics 13Grafana gy | 2
. 4%72OPENAPI =) Pally Dnuget Elia |
WFLARUM @‘*‘ || _DBmaestro DBDeploy specflow g L R"‘YCUN.STITsnnRoIIbar S
o o Gucumbertor e . - - @} Aibrakeio [,
Discose G 3 redgote Focker 22 vewnan XUnNitnet || archiva mm Nexus pagerduty 00O
reddit S redga LIQUISBASE beats @ OpsGenie /A Keen 10

- institute for
17-214 12 sorst

Components of Modern CM

Version Control: Branches/Forks/Workflows

Task and Build managers

Build machines, virtual environments (dev stacks)
Package managers

Containers, VMs, in the Cloud

Deployment — Infrastructure as Code.

Data migration

Other issues: orchestration, inventory, compliance

17-214 12 [

Config. management vs version control

|Il .

e “version control” is “versioning” applied to a single file
while “configuration management” is “versioning”
applied to collections of files

Particular versions of ... different versions of a
files are included in... configuration
File A File B Configuration Z

o institute for
17-214 14 soffdast

VERSION CONTROL WITH GIT

= mulxlut«'[!
17-214 I | S [B

A. GOAL: COLLABORATION ON FILES

= \rwulnlut«'[!
17-214 16 |[SIN o

Collaborating on Files

* How to exchange files
— Send changes by email
— Manual synchronization at project meeting
— All files on shared network directory

* Permission models
— Each file has an owner; only person allowed to change it
— Everybody may change all files (collective ownership)

. institute for
17-214 17 soffdast

Concurrent Modifications

* Allowing concurrent modifications is challenging
e Conflicts (accidental overwriting) may occur

 Common strategies

— Locking to change
— Detecting conflicts (optimistic model)

. institute for
17-214 18 soffdast

Change Conflicts

17-214

~ Iwousersreadthe same file

Repository

A

l/—nmd

A

Re

Read —1

A

~ Harry publishes his version first
itory

A" |

... .

Saly

 They bath begin to edit their copies
Repository

A

LT

* Sally accidentally overwiites Harry's version

Repository

. . . " = institute for
source ,Version Control with Subversion 19 - Py

Locking Files

Practical problems of

locking model?

~ While Hanry edits, Sally’s lock
] aftemptfaifs
Itqposlry

m«kE

 Now Sallycan lock, read and
edi the latest vrsion '

Repository

1Y

L L e e L e e e e T T T P E T

17-214 20

Merging (1/2)

Immmmpymfsmeﬁfe —

Repository
=N
A

feod—) \— R
{ R

" Sally publishes her version first

Repository

17-214

oD

Mamy o sally

" They bath begin to edit their copies

Repository
=S

A

H R

Ky sy

" Harry gets an “our-of-date”error

H S isnétitute for
-~ F TWARE
22 RESEARCH

Merging (2/2)

17-214

" Harry compares the latest version
fo his own
itory

. Harry
* The merged versian is published

Re

Re

itory

Sally

?

~ Anew merged version is created.

. Hany
 Nowbothwershaveeach

EI

Repository

Sally

others” changes
Repository

Al

Read

A-ﬁ*

Csally

23

institute for
SOFTWARE
RESEARCH

Example

import java.util.LinkedList;
public class Stack<T> implements Cloneable {
private LinkedList<T> items = new LinkedList<T>();
public void push(T item) {
items.addFirst(item);
}
public T pop() {
if(items.size() > 0) return items.removeFirst();
else return null;

J
}

. institute for
17-214 24 sorrwat

Example

import java.util.LinkedList;
public class Stack<T>
implements Cloneable {

private LinkedList<T> items =

new LinkedList<T>();
public void push(T item) {
items.addFirst(item);
}
public int size() {
return items.size();

}
—publicTpop(){
if(items.size() > 0) return
items.removeFirst();
else return null;

}

}

import java.util.LinkedList;
public class Stack<T> implements Cloneable {
private LinkedList<T> items = new LinkedList<T>();

size() > 0) return items.remov
arn null;

17-214

}

mport java.util.LinkedList;
ublic class Stack<T>
implements Cloneable {
private LinkedList<T> items =
new LinkedList<T>();
public void push(T item) {
items.addFirst(item);
1
public T top() {
return items.getFirst();
}

public T pop() {
if(items.size() > 0) return
items.removeFirst();
else return null;

}

- institute for
i S SOFTWARE
RESEARCH

25

Ehfuhrung in die Softwaretechnik

Example
import javag.util.LinkedList; import java.util.LinkedList;
public clz public class Stz
imp : S — Lo loneable {
private Linke mport java.util.LinkedList; Mist<T> items =

public class Stack<T> implements Cloneable { kedList<T>():

ew LIfl¥ private LinkedList<T> items = new LinkedList<T>(); |4 push(T item) {

public void pus

: : public void push(T item) { ot (i :
} items.addFirst itemns.addFirst(item): IdFirst(item);
public int size()| ! | op() {

return items. | <<<<<<< Top/Stack.java lems.getFirst():

public T top() {

Lubli ¢ T pop() { } return items.getFirst(); bop() {

if(items.size(){ ' size() > 0) return
items.re| . xms.removeFirst();

else return nu public i".t size() .{ urn null;
) return items.size();
}

} >>>>>>> Size/Stack.java

public T pop() {
if(items.size() > 0) return items.removeFirst();
else return null;

}

}

17-214 System cannot decide orde'rw

3-way merge

* File changed in two ways
— Overlapping changes -> conflicts
— Merge combines non-conflicting changes from both

* Merging not always automatic
— diff tool to show changes

— Manual resolution of conflicts during merge (potentially requires
additional communication)

 Automatic merge potentially dangerous
-> syntactic notion of conflicts

* Merging of binary files difficult
* In practice: most merges are conflict free

. institute for
17-214 27 soffdast

B. GOAL: RELEASE MANAGEMENT

= \rwulnlut«'[!
17-214 YR | S [

Challenge:

e Refer to concrete consistent versions of the project (code and all
dependencies and infrastructure)

e Why?
— Parallel development of independent features
— Bug fixes for old releases; patches
— Variants for different customers
— Traceability and accountability of changes (provenance)

. institute for
17-214 29 soffdast

Branching

* Parallel copies of the source tree

 Can be changed independently, versioned separately, and
merged later (or left separate)

e Often used for exploratory changes or to isolate development
activities
 Many usage patterns, common:
— Main branch for maintenance OR main development
— New branches for experimental features; merge when successful
— New branches for nontrivial maintenance work

— Branches for maintenance of old versions

= mululut«'[!
17-214 30 SOt

Release management with branches

Bug fix

Bug fix

T

ease 2

TA

QA passes - goes alpha Public release

Bug fix x

Release 1 ; A A —+ x
QA passes - goes|alpha| Public release
De\relopmentA - VA - -4
End of Release ‘I\I(development End of Release 2 development

New festime 1 (Tor Relesse 2)

N 5
New festime 2 (Tor ase 2)

17-214

X

New festime 3 (Tor Relesse 3)

A Project milestone

x End of branch

T Create branch/merge changes

institute for
3 1 I S SOFTWARE
RESEARCH

Release cycle of Facebook’s apps

=" N
m Fa L J -~ L i
E =)) >
L=
)
5 pushes pushes
\ﬁ YYVYYVYY YYVYYYY //
/ 2 weeks of development {: 2 weeks of development j}L
[Master branch : cherry r\.
-picks
o I 1
E Release stabilizing soak * ,
> branch I |
_: 1 1 | 1
8 Vi oy }
3 daily dog-food deployment

\ builds ;

" J

- —

-
institute for
17-214 32 soffdast

Variants and Revisions

* Revision replaces prior revision (temporal)
* Variant coexists with other variants

* Version describes both

* Release: Published and named version

V1.0 V1.
Base system (Windows) X X
Linux variant X

Server variant
Extension for customer A X

Extension for customer B

17-214

V2.0 V3.0
X X
X
X X
X X

X

-
institute for
33 SOFTWARE
RESEARCH

Semantic Versioning for Releases

* Given a version number MAJOR.MINOR.PATCH, increment the:

— MAIJOR version when you make incompatible APl changes,

— MINOR version when you add functionality in a backwards-compatible
manner, and

— PATCH version when you make backwards-compatible bug fixes.

* Additional labels for pre-release and build metadata are
available as extensions to the MAJOR.MINOR.PATCH format.

http://semver.org/
17-214 sa [E0 i

Managing variants

* Branching for variants does not scale well

* Requires special planning or tooling

* Many solutions

17-214

Configuration files
OO polymorphism
Preprocessors
Build systems
DSLs

Software product
lines

/+» common parts +/

/+ dependent on operating system :/
#if (0S8 == Unix)

#elif (0OS == VMS)
ffelse

fendif

-
institute for
36 SOFTWARE
RESEARCH

C. TYPES OF VERSION CONTROL

= \rwulnlut«'[!
17-214 37 YN o

Centralized version control

* Single server that
contains all the

VerSiOned flles e Central VCS Server
* Clients check out/in &€& T

files from that central version 3

p ace Version 2

Computer B ‘

+ E.g., CVS, SUN
5 =D

(Subversion), and
Perforce

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

- institute for
17-214 39 soffdast

Distributed version control

* Clients fully mirror the server Computer
Version Database
repOSItO ry Version 3
— Every clone is a full
backup of all the data
4 |
* E.g., Git, Mercurial,
y A
Bazaa r Computer A Computer B
File File
(o CRmD
Version Database | |4 »| | Version Database
Version 3 Version 3
Version 2 Vers‘ion 2
Version 1 Vers‘ion 1
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
17-214 40 B

SVN (left) vs. Git (right)

Checkins Over Time

File A A1 A2
File B Al 02

File C Al A2 A3

* SVN stores changes to a base
version of each file

* Version numbers (1, 2, 3, ...)
are increased by one after
each commit

Checkins Over Time

File A Al Al A2 A2
File B B B Bl B2

File C (1 (2 (2 (3

@it stores each version as a
snapshot

* |f files have not changed, only a
link to the previous file is
stored

* Each version is referred by the
SHA-1 hash of the contents

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

17-214

-
institute for
42
RESEARCH

Which files to manage (both types)

 All code and noncode files

— Java code
— Build scripts
— Documentation

* Exclude generated files (.class, ...)

* Most version control systems have a mechanism to exclude files
(e.g., .gitignore)

. institute for
17-214 43 soffdast

Activity

* |n pairs, discuss advantages and disadvantages of centralized
(e.g., SVN) vs decentralized (e.g., git) version control

- institute for
17-214 a4 Sy

D. GIT BASICS

Graphics by https://learngitbranching.js.org

17-214 s [

git commit

17-214

git branch newImage

O

OP

17-214

git commit

O

17-214

git checkout newImage; git commit

newImage*

17-214

Activity: Make a new branch named bugFix and switch
to that branch

O O

17-214

1) git merge bugFix

O

O

Sgas

17-214

git checkout bugfix; git merge master

O O
O

0
+“ oo
—

17-214 53

Activity:

17-214 54

Move work from bugFix

. directly onto master
2) git rebase master Y

O
O

17-214 55

git rebase bugFix

O
O

O
O
o <
@P

17-214

To be continued ...

- institute for
17-214 57 soffdast

Summary

* Version control has many advantages
— History, traceability, versioning
— Collaborative and parallel development

* Locking vs. merging and merge conflicts

Collaboration with branches

From local to central to distributed version control

. institute for
17-214 70 soffdast

