
117-214

School of
Computer Science

Toward software engineering in practice

Michael Hilton

217-214

Learning Goals

• Introduction to Software Engineering
• Discussion of Test Driven Development

317-214

Introduction

417-214

SOFTWARE IS EVERYWHERE
SOFTWARE IS IMPORTANT

517-214

617-214

717-214

817-214

917-214

iOS 11 bug

1017-214

1117-214

1217-214

SOFTWARE ENGINEERING?

What is engineering? And how is it different from
hacking/programming?

1317-214

1968 NATO Conference on Software Engineering

• Provocative Title
• Call for Action
• “Software crisis”

1417-214

“Software Engineering”

1517-214

Envy of Engineers

• Producing a car/bridge
– Estimable costs and risks
– Expected results
– High quality

• Separation between plan
and production

• Simulation before construction
• Quality assurance through

measurement
• Potential for automation

1617-214

Software Engineering?

‘‘The Establishment and use of
sound engineering principles in

order to obtain economically
software that is reliable and

works efficiently on real
machines.”

[Bauer 1975, S. 524]

1717-214

1817-214

What happened with HealthCare.gov?

• Poor team and process coordination.
• Changing requirements.
• Inadequate quality assurance

infrastructure.
• Architecture unsuited to the ultimate

system load.

1917-214

PROCESS

2017-214

How to develop software?

1. Discuss the software that needs to
be written

2. Write some code

3. Test the code to identify the defects

4. Debug to find causes of defects

5. Fix the defects

6. If not done, return to step 1

2117-214

Example process issues

• Change Control: Mid-project informal agreement to changes
suggested by customer or manager. Project scope expands 25-50%

• Quality Assurance: Late detection of requirements and design
issues. Test-debug-reimplement cycle limits development of new
features. Release with known defects.

• Defect Tracking: Bug reports collected informally, forgotten
• System Integration: Integration of independently developed

components at the very end of the project. Interfaces out of sync.
• Source Code Control: Accidentally overwritten changes, lost work.
• Scheduling: When project is behind, developers are asked weekly

for new estimates.

2217-214

TEST DRIVEN DEVELOPMENT (TDD)

2317-214

Three simple rules

1. You are not allowed to write any
production code unless it is to make a
failing unit test pass.

2. You are not allowed to write any more of a
unit test than is sufficient to fail; and
compilation failures are failures.

3. You are not allowed to write any more
production code than is sufficient to pass
the one failing unit test.

2417-214

TDD Cycle

2517-214

Why TDD?

“The act of writing a unit test is more an act of
design than of verification.

It is also more an act of documentation than of
verification.

The act of writing a unit test closes a remarkable
number of feedback loops, the least of which is
the one pertaining to verification of function”.

2617-214

Advantages of TDD

•Clear place to start
•Much less code thrown

away, less wasted effort
• Less Fear
• Side Effect: Robust test suite

2717-214

CODE KATA

A programming exercise that you repeat many many times, looking to
make small, incremental improvements.

2817-214

Diamond Kata

• Given a letter, print a diamond starting with ‘A’ with the supplied
letter at the widest point.

• For example: ‘C’ prints

A
B B

C C
B B
A

2917-214

TDD Demo

3017-214

IMPRESSIONS?

3117-214

TDD Research

• Hilton et al.: Students learn better when
forced to write tests first

• Bhat et al.: At Microsoft, projects using TDD
had greater than two times code quality,
but 15% more upfront setup time

• George et al.: TDD passed 18% more test cases, but took 16%
more time

• Scanniello et al.: Perceptions of TDD include: novices believe
TDD improves productivity at the expense of internal quality

3217-214

More TDD Research

• Fucci et al.: Results: The Kruskal-Wallis tests did not show any

significant difference between TDD and TLD in terms of testing

effort (p-value = .27), external code quality (p-value = .82), and

developers' productivity (p-value = .83).

• Fucci et al.: Conclusion: The claimed benefits of TDD may not be

due to its distinctive test-first dynamic, but rather due to the fact

that TDD-like processes encourage fine-grained, steady steps

that improve focus and flow.

3317-214

WHY IS THIS HARD?

3417-214

Summary: take 17-313 this fall!

• Software Engineering in practice requires
consideration of numerous issues---
technical and social---above the level of
individual class design/implementation.
• Do you think this is interesting? 17-313,

Foundations of Software Engineering is
offered in the Fall.
• And consider the undergraduate SE minor!

